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Absence of Hall effect due to Berry 
curvature in phase space
Takehito Yokoyama

Transverse current due to Berry curvature in phase space is formulated based on the Boltzmann 
equations with the semiclassical equations of motion for an electron wave packet. It is shown that 
the Hall effect due to the phase space Berry curvature is absent because the contributions from 
“anomalous velocity” and “effective Lorentz force” are completely cancelled out.

Berry phase1 plays an important role in a wide variety of condensed matter physics2,3 such as electric 
polarization4,5, orbital magnetization6,7 and magnetoelectric response8,9. The Berry phase is defined as the phase 
which the eigenstate will pick up when the external parameters of a system form a loop in the parameter space. 
The paremeters can be momentum, position, and time etc. Berry curvature in momentum space has a correction 
to the group velocity of the band dispersion which is perpendicular to the group velocity, anomalous velocity, 
leading to anomalous Hall effect10,11. Berry curvature in real space also has a correction to the external electric 
field (force) which is perpendicular to the electric field, resulting in topological Hall effect12,13. Momentum and 
real space Berry curvatures can be finite when there are nontrivial spin structures in momentum and real spaces, 
respectively.

The anomalous and topological Hall effects can be realized in several magnets including ferromagnets, anti-
ferromagnets, chiral magnets, and magnetic topological insulators. Anomalous Hall effect has been observed in, 
e.g., SrRuO3

14, Mn3Sn15, Mn3Ge16, and Cr-doped (Bi, Sb)2Te317, while topological Hall effect has been observed 
in, e.g., Nd2Mo2O7

18, MnSi19, MnGe20, and Mn-doped Bi2Te3 film21. In magnets with strong spin orbit coupling, 
both anomalous and topological Hall effects can coexist as realized in SrRuO3-SrIrO3 bilayer22 and Crx(Bi1−y

Sby)2−xTe3/(Bi1−ySby)2Te3 heterostructures23,24. When there are nontrivial spin textures in real and momentum 
spaces, phase space Berry curvature, namely the Berry curvature including both real and momentum space 
derivatives, is also finite in general, which may lead to new effects2,6,25,26. Then, it is natural to ask whether there is 
a Hall effect stemming from Berry curvature in phase space. This is the problem which we address in this paper.

In this paper, we investigate transverse current due to Berry curvature in phase space based on the Boltzmann 
equations with the semiclassical equations of motion for an electron wave packet. It is shown that the Hall effect 
due to the Berry curvature in phase space is absent because the contributions from “anomalous velocity” and 
“effective Lorentz force” are completely cancelled out.

Formulation
The semiclassical equations of motion for an electron wave packet under an electric field E read27

with the group velocity vk = 1
�

∂εk
∂k  , the Berry curvature in phase space (�kr)ab = i

(〈

∂kau|∂rbu
〉

−
〈

∂rbu|∂kau
〉)

 , 
and �kr = −�t

rk . Here, |u� and t denote the Bloch eigenstate and transpose, respectively.
The distribution function f obeys the Boltzmann equation:28,29

Here, f0 is the Fermi distribution function, and τk is the transport lifetime:

(1)ṙ = (1+�kr)
−1vk ,

(2)�k̇ = −(1−�rk)
−1eE

(3)f − f0 = −τk�k̇ · vk
∂f0

∂ε
.

(4)
1

τk
=

∑

k′

ωk,k′(1− cos θ)
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where ωk,k′ and θ are the scattering rate and the angle between vk and vk′ , respectively.

Results.  Now, we will show that Hall effect due to phase space Berry curvature is absent. First, consider two 
dimensional systems. Then, we have from Eqs. (1) and (2)

where �kr and �rk are 2 × 2 matrices. In the following, for simplicity, we will drop the terms with Tr�kr and Tr�rk , 
which does not change the conclusions. Note that Tr�kr = −Tr�rk holds.

The charge current is calculated as

where D is the density of states: D = 1

(2π)2
det(1−�rk)

6. Thus, we obtain the conductivity tensor of the form

where the superscripts denote the components of vectors and matrices, and the repeated indices are summed over.
We see that the off diagonal conductivity is finite in general and satisfies σij = σji since �kr = −�t

rk . There-
fore, the Hall effect is absent. Intuitively, this may be interpreted as follows. As for the anomalous Hall effect, 
a contribution from the Berry curvature to velocity (anomalous velocity) is the origin of this effect. Regarding 
the topological Hall effect, a contribution from the Berry curvature to force (effective Lorentz force) leads to 
this effect. The phase space Berry curvature induces a velocity perpendicular to the group velocity v and a force 
perpendicular to the electric field E as seen from Eqs. (5) and (6) (due to the antisymmetric parts of �kr and 
�rk ). Both terms contribute to the Hall response. However, these two contributions completely cancel out each 
other since �kr = −�t

rk , resulting in the vanishing of the Hall effect.
Next, consider three dimensional systems. Following the same procedure as in the two dimensional systems, 

we obtain the conductivity tensor of the form

with A ≡ (1+�kr)
−1 . We again find that the conductivity tensor is symmetric and hence the Hall effect is absent. 

The ladder vertex corrections are included in the relaxation time in Eq. (4). As can be seen from Eq. (9), even if 
we multiply any other (vertex) functions by the integrand of Eq. (9), the Hall effect is still absent.

If fact, Berry curvature in phase space just gives some corrections to the anomalous and topological Hall 
effects. To see this, let us consider the semiclassical equations of motion for an electron wave packet27

where �kk and �rr are Berry curvature in momentum and real spaces respectively. These equations reduce to

with B =
(

1+ A�kkA
t�rr

)−1 , �̃kk = BA�kkA
t and �̃rr = At�rrBA . Note that �̃kk and �̃rr are antisymmetric: 

�̃t
kk = −�̃kk and �̃t

rr = −�̃rr . Therefore, Berry curvature in phase space renormalizes the Berry curvatures in 
momentum and real spaces, leading to corrections to the anomalous and topological Hall effects. When �rr = 0 
or �kk = 0 , we find that Berry curvature effects can be resonantly enhanced when det(1+�kr) ∼ 0 . These 
results are applicable to ,e.g., chiral magnets which may be described by the Rashba model with inhomogene-
ous magnetization.

Although Hall effect due to Berry curvature in phase space is absent, it also affects other physical quantities 
since it gives a correction to the density of states6.

As an example, let us consider the surface state of topological insulators coupled to a magnet where the inplane 
magnetization varies in one dimension (x) as conical magnets. The Hamiltonian is then given by

(5)det(1+�kr)ṙ = (1+ Tr�kr −�kr)vk ,
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where σi and mi(i = x, y, z) represent the Pauli matrices and the exchange field, respectively. Then, the density 
of states in the presence of the phase space Berry curvature is calculated as2

with ε = ±

√

(�vky +mx(x))
2 + (−�vkx +my(x))

2 +m2
z  . The phase space Berry curvature (�rk)xx has an 

expression similar to that of the momentum space Berry curvature for massive Dirac fermions2. It becomes large 
when the spatial gradient of the magnetization is large and the energy is around the bottom of the conduction 
band or top of the valence band. When (�rk)xx = 1 , the density of states becomes zero and consequently some 
physical quantities may become zero or divergent. For v ∼ 106m/s, mx

′ ∼ 1meV/nm, and ε,mz ∼ 10 meV, we 
have (�rk)xx ∼ 3.

Conclusions
In this paper, we have investigated transverse current due to Berry curvature in phase space based on the Boltz-
mann equations with the semiclassical equations of motion for an electron wave packet. We have shown that 
the Hall effect due to the Berry curvature in phase space is absent because the contributions from “anomalous 
velocity” and “effective Lorentz force” are completely cancelled out.
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