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Abstract: Chemotherapy is one of the most important ways to treat cancer. At present, chemotherapy
medicines are mainly administered by intravenous injection or oral administration. However, sys-
temic medical care requires the dosage of high concentrations of drugs to defeat the malignant tumor
growth. In recent years, the use of polymer composites for local and sustained drug release has be-
come an important field of research to minimize side effects due to high-concentration chemotherapy
drugs. Here, 19F-{1H} heteronuclear Overhauser enhancement spectroscopy (HOESY) was used to
study the micellular environment of the F-containing chemotherapeutic drug 5-FU in Pluronic F127,
Pluronic L121, and F127/L121 binary blending composites. The distribution of 5-FU in micelles is
related to the PEO and PPO segment length of Pluronic polymers and the environmental temperature.
The drug release tests further confirm that if 5-FU medicines were loaded in the PPO segment inside
the micelles, the purpose of the prolonged drug release carrier is achieved.

Keywords: anticancer drug; 5-fluorouracil; drug release; Pluronic block copolymer; microenvironment

1. Introduction

The fluoropyrimidine 5-fluorouracil (5-FU) is an antimetabolite drug that is widely
used for cancer treatment in the abdominal cavity [1]. Increased understanding of the
mechanism of 5-FU has led to the development of its anticancer activity. However, 5-FU has
a chemical structure similar to uracil and thymine and interferes with nucleotide synthesis
and incorporates into DNA, which may have a mutational impact on both surviving
tumor and healthy cells [2]. Additionally, 5-FU could trigger cancer cell-initiated anti-
tumor immunity to reduce the tumor burden, and to improve therapeutic effectiveness for
colon and other cancers [3]. Despite these advances, drug resistance remains a significant
limitation to the clinical use of 5-FU [4]. To design a comprehensive and effective 5-FU
drug delivery system for targeting tumors would be a part of precision medicine.

The poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copoly-
mer (PEO-PPO-PEO) (commercially available as Pluronics and Poloxamers) is an am-
phiphilic block copolymer that can self-assembly into micelles in aqueous solution. Enor-
mous study shown that the micellular structure is a practical approach for incorporating
medicines, as it not only builds a drug delivery system but also applies to gene and cancer
therapies [5–10]. The key attribute for the biological activity of Pluronic block copolymers
is their ability to interact with multidrug-resistant cancer tumors with respect to various
anticancer agents both in vitro and in vivo [11–13].

Studies of Pluronic F127 have been carried out in transparent flowing solution at
ambient temperature, but it became a hydrogel at body temperatures above 30 ◦C [14].
This Pluronic F127 sol-gel transformation with 5-FU loading is able to effectively induce
the death of gastric cancer cells using a hollow microneedle injection [15]. Interactions
between non-ionic micelles (not limited to Pluronic block copolymers) and small molecules
(not limited to 5-FU) can be found in the literature too [16,17]. Further, binary mixing of
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Pluronic F127 and Pluronic L121 produces tiny micelles that satisfy the stability criteria by
demonstrating appropriate thermodynamic and kinetic stability in biologically relevant
media as pharmaceutical ingredients [18].

Here, the characterization of 5-FU in Pluronic F127, Pluronic L121, and their binary
mixing was studied by 19F-{1H} heteronuclear Overhauser enhancement spectroscopy
(HOESY). When the fluorine-19 nuclei were irradiated on 5-FU in the NMR, the identified
polarization of hydrogen-1 nuclei could only be detected in the range of 6 Å from the
fluorine-19 nuclei. The utilization of dipolar coupling (i.e., cross-relaxation) presents the
distribution of 5-FU medicine loading and its interfacial movement in the Pluronic micelles.
The main results can significantly increase the understanding of drug delivery systems in
prolonged drug delivery. 5-FU/F127/L121 Pluronic blending composites provide insights
into the design of future drug delivery systems, resulting in major progress in tumor
therapy. Additionally, the cellular uptake or expulsion of incorporated chemotherapeutic
drugs in Pluronic micelles mimics the normal cell function as a microenvironment.

2. Materials and Methods

Tween 20, Dimethyl sulfoxide (DMSO), Deuterium oxide (D2O) with 99.9 atom % D,
and Pluronic® polymers of F127 and L121 were purchased from Sigma-Aldrich and used as
received without any purification. Pluronic® polymers of F127 and L121 have an average
Mn at ~12,600 g/mol and ~4400 g/mol, respectively. Both Pluronic F127 and Pluronic
L121 were diluted with D2O, respectively, until 4.2 wt% and 50 wt%. 5-FU medicine was
purchased from AdooQ® Bioscience and stored in DMSO as 0.2 M at 4 ◦C. For spectra
experiments, the as-prepared samples were well mixed by an ultrasonic processor and
then kept in Eppendorf tubes before usage or transfer. Every control sample had the same
composition as its relative experimental sample. Briefly, the total volume of every sample
was taken in 600 µL, and the binary mixing of Pluronic® polymers was proceeded by the
ratio of volume.

Based on the 1H and 19F NMR characterization, because 5-FU has a fluorine atom,
this feature allowed us to determine the radio frequency through chemical shift coupling
and the corresponding environment. Accordingly, the chemotherapeutic drug 5-FU was
used as an indicator to observe its distribution between the interface of F127, L121, and
their Pluronic blending composites. All NMR experiments were performed on a JEOL
ECZ400S/L1 spectrometer with an HFX probe at a resonance frequency of 399.78 MHz
for 1H and 376.17 MHz for 19F. The 1D selective 19F-{1H} heteronuclear Overhauser en-
hancement experiments were performed using the pulse program (19F_1H_1d_selhoesy)
from the JEOL library. The scan numbers were set at 64, with a relaxation delay of 3 s.
Additionally, a mixing time of 2.7 s was used. The FID results were treated by the software
of delta v.5.3.1.

To measure the amounts of 5-FU medicine during drug release experiments, 600 µL
Pluronic blending composites with or without 5-FU was placed in triplicate in an Eppendorf
tube, and 600 µL PBS (pH 7.4, containing 0.1% Tween 20 (v/v)) was pipetted onto the upper
part of the Eppendorf tube. The as-prepared Eppendorf tube was stored in a 37 ◦C sink
condition under agitation at 100 rpm for the release monitoring of 5-FU. In each time set of
the measurement, the amount of drug-released 5-FU was determined at OD265 by using a
calibration curve generated from known concentrations of 5-FU. Average was taken from
three recorded 5-FU concentrations with respect to the time evolution. Fresh PBS was
replaced each time for further analysis.

3. Results and Discussion

5-FU is a common chemotherapeutic medicine for intravenous injection or oral admin-
istration [19]. The chemical structure of 5-FU is depicted in Figure 1. Pluronic® polymers
were self-assembled into Pluronic micelles with a hydrophilic PEO segment at the corona
and a hydrophobic PPO segment in the core. Studies elucidated that 5-FU would be
hydrophilic [20–24] or hydrophobic molecules [25–28]. However, for drug release, the
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encapsulation of the drug in micelles was highly dependent on its loading location rather
than the intrinsic solubility of the drug in aqueous solution. Therefore, the important thing
is how to extend the effective time of drug release from a designated polymeric area. This
study used NMR technology to identify the position of the 5-FU medicine in the drug
release carrier, trying to propose a mechanism simulating the microenvironment of the
cell operation.
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Figure 1. Schematic representation of the chemical structure of 5-Fluorouracil (5-FU). 5-FU medicine was loaded in the
hydrophobic core of Pluronic micelles.

Figure 2 shows the measurement results of HOESY. Figure 2a demonstrates the HOESY
spectrum of Pluronic F127 mixed with 4 mM of the 5-FU medicine. The DMSO signal
at 2.7 ppm and the PEO signal at 3.7 ppm derived from the 5-FU medicine and Pluronic
F127, respectively, can be clearly seen in the spectrum. This spectrum result shows that
because Pluronic F127 has a longer hydrophilic PEO segment, at least three times that
of the PPO segment, most of the 5-FU medicine is captured by the hydrophilic segment
of Pluronic F127. Moreover, the DMSO spectrum signal is strong and obvious because
the initial configuration conditions of the 5-FU medicine are dissolved in DMSO. This
indicates that the 5-FU medicine was surrounded by the DMSO solvent and then eventually
distributed among the hydrophilic PEO segments of Pluronic F127. In Figure 2b, the HOESY
spectrum of Pluronic L121 mixed with 4 mM of the 5-FU medicine is shown. It can be
clearly seen that the 5-FU medicine moved between the hydrophilic and hydrophobic
segments of Pluronic L121. At 25 ◦C, the energy transferred through the fluorine atom
resonance could reach the hydrophilic and hydrophobic segments of Pluronic L121, which
are, respectively, displayed at 3.7 ppm and 3.5, 3.4, and 1.1 ppm, which are estimated to be
evenly distributed. When the temperature reached 37 ◦C and 45 ◦C, the signal of the PEO
segment at 3.7 ppm almost disappeared, and the signal of the PPO segment at 1.1 ppm was
relatively enhanced, confirming that most of the 5-FU medicine was concentrated in the
hydrophobic PPO segment. It is speculated that the 5-FU medicine prefers Pluronic F127
in the hydrophilic segment and Pluronic L121 in the hydrophobic segment. In order to
produce a regulated drug release carrier, the combination of the two will have excellent
drug release control capabilities.
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Figure 2. (a) HOESY of 5-FU embedded in F127 at 25 ◦C. (b) HOESY of 5-FU embedded in L121 at 25 ◦C, 37 ◦C, and 45 ◦C.

The same measurement protocols of HOESY are reported in Figure 3, in order to
observe the distribution of the 5-FU medicine in the F127/L121 Pluronic composites at
25 ◦C, 37 ◦C, and 45 ◦C. At 25 ◦C, although the F127/L121 Pluronic composite is already in
the micelle state, the 5-FU medicine is distributed in both the hydrophilic and hydrophobic
segments. When the temperature was raised to 37 ◦C, the hydrophilic PEO segment and
the hydrophobic PPO segment signals can both be observed within the resonance energy
transfer range of 6 Å of the fluorine atom. The difference is the deteriorated signal of the
PEO segment at 3.7 ppm. Among them, for the measurement performed at 45 ◦C, the 5-FU
medicine was mainly at the hydrophobic PPO segment, except for a barely observable
signal from the PEO segment that was detected due to the signal around the copolymer
junction point. Previous studies demonstrated that the amphiphilic nature of the Pluronic
block copolymers would self-assemble into micellization in aqueous solutions above the
critical micelle concentration (CMC) and the critical micelle temperature (CMT) [11,29].
Obviously, the stable micellization at a fixed concentration occurs above the CMT, and it
becomes a driving force for the migration of the 5-FU medicine leaving away from the
hydrophilic PEO segment in the self-assembly. Despite the fact the HOESY experiments
were performed at ascending temperatures, the kinetics for the migration of the 5-FU
medicine or the reversible process in short-term and long-term stability issues, which
influence their shelf life, handling, and storage conditions, should be investigated in the
future. The established 5-FU/F127/L121 Pluronic blending composites have a micelle
structure that acts as a microenvironment mimicking the cell function to uptake or expel
the 5-FU medicine by an external stimulus.



Polymers 2021, 13, 2705 5 of 8
Polymers 2021, 13, x FOR PEER REVIEW 5 of 8 
 

 

 

 
Figure 3. Left: HOESY of the Pluronic blending composites with volume ratio of F127/L121 = 1/3 at 
25 °C, 37 °C, and 45 °C. Right: Schematic illusion of the molecular chain model in the spectra of 
HOESY. 

In Figure 4, the curves of 5-FU drug release are plotted for the 5-FU/Pluronic F127, 5-
FU/Pluronic L121, and 5-FU/F127/L121 Pluronic blending composites. The drug release 
from polymeric systems can be described by a semi-empirical equation, the Korsmeyer–
Peppas model, which has a power–law relationship: 𝑀𝑀 𝐾𝑡  

where Mt and M∞ are the absolute cumulative amounts of drug released at time t and 
infinite time, respectively; K is the release constant; exponent n describes the kinetic and 
the release mechanism [30–34]. The calculated n values are 0.05, 0.31, and 0.31 with respect 
to Pluronic F127, Pluronic L121, and F127/L121. This well represents the idea that the drug 
release mechanism of 5-FU followed Fick’s laws of diffusion since the value is below 0.43. 
In contrast, the release constant K determines the drug release rate accordingly at 0.93, 
0.33, and 0.46. As expected, Pluronic F127 has a really fast drug release rate of less than 
one day, resulting from the 5-FU medicine loading at the hydrophilic PEO segments. The 
5-FU medicine was directly released from the hydrophilic corona without any molecular 
resistance. Meanwhile, Pluronic L121 has a pretty slow drug release rate, and it took 
longer than twelve days until the 5-FU drug loading was completely released from the 
hydrophobic core of the micelles. Thus, a regulated drug release carrier was presented for 
the polymer blending of Pluronic F127 and Pluronic L121 in the volume ratio of 1:3. The 
curve of 5-FU drug release of the 5-FU/F127/L121 Pluronic blending composites steadily 
ascended within two weeks. This result tells us that the 5-FU/F127/L121 Pluronic blending 
composites would work effectively by slowing or stopping cancer cell growth in a desig-
nated medicine concertation after the first deployment surrounding the tumor site. 

Finally, these HOESY and drug release studies suggest that Pluronic® polymers have 
a broad amphiphilic nature in response to biological activities. Based on the better under-
standing of the 5-FU medicine loading and the migration in the Pluronic micelles, it has 
gradually become clear that this medical treatment can be applied in the tumor microen-
vironment [35,36]. This unique drug delivery system is one of the most remarkable im-
pacts in the emergent field of nanomedicine. 

Figure 3. (Left): HOESY of the Pluronic blending composites with volume ratio of F127/L121 = 1/3 at 25 ◦C, 37 ◦C, and
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In Figure 4, the curves of 5-FU drug release are plotted for the 5-FU/Pluronic F127,
5-FU/Pluronic L121, and 5-FU/F127/L121 Pluronic blending composites. The drug release
from polymeric systems can be described by a semi-empirical equation, the Korsmeyer-
Peppas model, which has a power-law relationship:

Mt

M∞
= Ktn

where Mt and M∞ are the absolute cumulative amounts of drug released at time t and
infinite time, respectively; K is the release constant; exponent n describes the kinetic and
the release mechanism [30–34]. The calculated n values are 0.05, 0.31, and 0.31 with respect
to Pluronic F127, Pluronic L121, and F127/L121. This well represents the idea that the drug
release mechanism of 5-FU followed Fick’s laws of diffusion since the value is below 0.43.
In contrast, the release constant K determines the drug release rate accordingly at 0.93,
0.33, and 0.46. As expected, Pluronic F127 has a really fast drug release rate of less than
one day, resulting from the 5-FU medicine loading at the hydrophilic PEO segments. The
5-FU medicine was directly released from the hydrophilic corona without any molecular
resistance. Meanwhile, Pluronic L121 has a pretty slow drug release rate, and it took
longer than twelve days until the 5-FU drug loading was completely released from the
hydrophobic core of the micelles. Thus, a regulated drug release carrier was presented
for the polymer blending of Pluronic F127 and Pluronic L121 in the volume ratio of 1:3.
The curve of 5-FU drug release of the 5-FU/F127/L121 Pluronic blending composites
steadily ascended within two weeks. This result tells us that the 5-FU/F127/L121 Pluronic
blending composites would work effectively by slowing or stopping cancer cell growth in
a designated medicine concertation after the first deployment surrounding the tumor site.
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Figure 4. Curves of 5-FU drug release were plotted for F127, L121, and 5-FU/F127/L121 Pluronic
blending composites at 37 ◦C.

Finally, these HOESY and drug release studies suggest that Pluronic® polymers
have a broad amphiphilic nature in response to biological activities. Based on the better
understanding of the 5-FU medicine loading and the migration in the Pluronic micelles,
it has gradually become clear that this medical treatment can be applied in the tumor
microenvironment [35,36]. This unique drug delivery system is one of the most remarkable
impacts in the emergent field of nanomedicine.

4. Conclusions

This NMR study demonstrates that HOESY spectroscopy can be applied for the struc-
tural characterization of 5-FU drug-loaded Pluronic® polymers, considering their potency
as polymer-based drug delivery precision medicines. The results show that the distribution
of the 5-FU medicine in the Pluronic micelles will move across the interface between the
hydrophilic corona and the hydrophobic core according to the external temperature. The
drug loading location of the 5-FU medicine is dominated by PEO segments at 25 ◦C. As
the temperature increases from 25 to 45 ◦C, the 5-FU medicine migrates aggressively to
the hydrophobic core inside the micelles. The 5-FU medicine was embedded into the PPO
segment of Pluronic® polymers above 37 ◦C due to stable micellization. The precise 5-FU
loading in the hydrophobic area gives rise to prolonged and sustained drug release in daily
clinical practice. Thus, the drug loading location and drug-carrier interactions are able to
be designed to deliver drugs at predetermined release rates. The drug-carrier formulation
developed here would diminish the side effects and improve the life quality of patients.
The methodology could also apply to another chemotherapeutic medicine, gemcitabine, as
well as to the fluorine atom content.
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