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ABSTRACT

Motivation: Model selection is a fundamental part of the scientific

process in systems biology. Given a set of competing hypotheses,

we routinely wish to choose the one that best explains the observed

data. In the Bayesian framework, models are compared via Bayes

factors (the ratio of evidences), where a model’s evidence is the sup-

port given to the model by the data. A parallel interest is inferring the

distribution of the parameters that define a model. Nested sampling is

a method for the computation of a model’s evidence and the gener-

ation of samples from the posterior parameter distribution.

Results: We present a C-based, GPU-accelerated implementation of

nested sampling that is designed for biological applications. The algo-

rithm follows a standard routine with optional extensions and add-

itional features. We provide a number of methods for sampling from

the prior subject to a likelihood constraint.

Availability and implementation: The software SYSBIONS is avail-

able from http://www.theosysbio.bio.ic.ac.uk/resources/sysbions/
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1 INTRODUCTION

Given a set of models proposed to explain some observation, we

seek to rank them according to the extent to which they are sup-

ported by some data. Likelihood-based approaches find the point

at which the likelihood function is maximized, and compare

models based on these maxima (Burnham and Anderson, 2002).

Bayesian approaches formodel selection rest onBayes factors: the

ratio of evidences of competing models. A number of methods

exist to estimate the evidence (Kirk et al., 2013), a metric of the

support afforded to a model by some data.

Nested sampling is a Bayesian method for evidence estimation

and parameter inference for systems where a likelihood function

can be defined (Skilling, 2006). As the algorithm progresses, it gen-

erates samples from the posterior parameter distribution directly.
We present a C-based nested sampling tool for computational

biologists. The user supplies a likelihood function, some experi-

mental data and the prior parameter distribution. The program

returns a value for the evidence alongside samples from the pos-

terior parameter distribution. There exists a Fortran-based

nested sampling package, MultiNest (Feroz et al., 2009), used

in the astrophysics community. Our work is aimed specifically at

the biological community and includes an SBML (Systems

Biology Markup Language, Rodriguez et al., 2007) parser so

that models can be specified according to current standards.

The recent growing use of nested sampling in systems biology

invites the release of a tool implementing the method (Aitken and

Akman, 2013; Burkoff et al., 2012; Dybowski et al., 2013; Kirk

et al., 2013; Pullen and Morris, 2014).

2 APPROACH

The evidence is defined as Z=
R

� ‘ð�Þ�ð�Þ d�, where � is the par-
ameter set (and � the parameter space), ‘ the likelihood function

and � the prior. The change in notation �ð�Þ d�=dXð�Þ, where
Xð�Þ is the cumulative density function, allows the integral to be

written Z=
R 1
0 ‘ð�Þ dXð�Þ. This can be approximated as a sum,

Z �
PN

i=1 ‘iWi, where N points are sampled and Wi is the pro-

portion of prior mass represented by point i, calculated as the

difference between the volume enclosed by the contour of con-

stant likelihood through ‘i and that through ‘i�1. Nested sam-

pling is a method for generating the sequence of points f‘i;Wig.
For a thorough presentation of nested sampling, we refer the

reader to the work of Skilling (2006) and Sivia and Skilling

(2006). For our purposes, we follow the general algorithm:

1. Initialise Z=0
2. Generate N points from �ð�Þ
3. for i=1 : M

a. Find �� with lowest likelihood, ‘�

b. Calculate Wi=exp � i�1
N

� �
� exp � i

N

� �

c. Set Z=Z+‘�Wi

d. Resample ����ð�Þj‘ð�Þ4‘�

4. end for

5. Set Z=Z+
XN

j=1
‘jexp �

M
N

� �
=N

Our program is written primarily in C with additional capabil-

ity for GPU acceleration. Other features include an SBML

parser for automated generation of likelihood functions (Liepe

et al., 2010) and plotting tools. For the task of sampling from the

prior subject to a likelihood constraint (step 3d), we provide

three methods. The accuracy of the approximation in step 3b

depends on the population of N points (live points) being truly

distributed as the prior within the given likelihood constraint

(Skilling, 2006).

3 METHODS

Our nested sampling package is a command-line tool for Linux and

MacOSX platforms. Pre-requisites are listed in the accompanying
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manual. The user supplies a likelihood function, either by editing a tem-

plate file or using an SBML file. An executable is then made that receives

input from the command line. When the program is run, live points are

generated and their likelihoods evaluated according to the function sup-

plied by the user. On completion, it returns the calculated evidence with

standard deviation, samples from the posterior, trajectories generated by

points from the posterior and files from which the algorithm can be

restarted.

3.1 Algorithm options

Options available to the user are listed in Table 1. The only required input

is the parameter set (all other variables have default values). Parameters

may be constant or inferred subject to a uniform prior distribution, for

which lower and upper bounds must be supplied. The algorithm can be

terminated either by specifying the number of iterations, or by monitoring

the rate at which the evidence accumulates: the loop terminates at iter-

ation m if ‘mWm=
Pm

i=1 ‘iWi5tol.

3.2 Sampling methods

We include three sampling methods for step 3d of the algorithm: rejec-

tion, for perfectly sampling from the prior, and random walk (following

Sivia and Skilling, 2006) and ellipsoidal (following Feroz et al., 2009) for

refined sampling with reduced computational cost.

Rejection: The rejection method samples from the prior as initially

defined, accepting the point if its likelihood value is within the constraint

and rejecting otherwise. This method remains true to the requirement that

samples are taken from the prior subject to the likelihood constraint, but

its efficiency is poor: as the lowest likelihood increases, the acceptance

rate becomes prohibitively small.

Random walk: The random-walk method duplicates a point randomly

chosen from the current live-point population and walks it 20 steps, ac-

cepting the new point at each step if its likelihood is within the constraint.

The steps are scaled according to the covariance among the present popu-

lation, and scaled further to converge to an acceptance rate of 0.5 (Sivia

and Skilling, 2006).

Ellipsoidal: The ellipsoidal method (Mukherjee et al., 2006) creates an

ellipsoid surrounding the current population of live points, expanded

by some user-supplied factor. The new point is sampled from within

the ellipsoid. This increases the acceptance rate but risks excluding

areas of prior mass that lie inside the current likelihood constraint.

3.3 Output

A summary file of input and output information is created, documenting

the number of live points, number of iterations, tolerance, sampling

method and parameter ranges, followed by the evidence with standard

deviation, the prior-to-posterior information gain and the means of

all parameters and their standard deviations. Posterior distributions

of the parameters can be plotted individually as histograms and in

pair-wise scatter plots using the data stored in the posterior file.

Finally, a file of trajectories is created that can be compared against

the input data.

Restart files are created, documenting input parameters that must per-

sist upon restart (such as the number of live points) and listing all points,

live and discarded. These files can be used to restart the program from

where it completed. It is also possible to specify the path to where the

restart files are written.

4 SUMMARY

We present SYSBIONS, a computational tool for model selec-
tion and parameter inference using nested sampling. Using a
data-based likelihood function, our package calculates the evi-

dence of a model and the corresponding posterior parameter
distribution.
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Table 1. Input options

Variable Tag Input Default

Number of live points nLive **integer 1000

Number of iterations maxIter **integer on, 10000

Tolerance tol decimal off, 0.001

*Parameters constant **value none

uniform ** bounds none

Sampling method rejection none off

rw none off

ellipsoid expansion factor on, 2

Restart from file Restart file paths _restart_points.txt,

_restart_input.txt

Write restart write_restart file path root _restart

Points to leap nLeap **integer 1

Adaptive leaping adaptive none off

CUDA cuda **nLeap, off, none,

**max. threads none

*required; **required if tag given.
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