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Abstract: Nasopharyngeal carcinoma (NPC) is one of the most common head and neck cancers. Early
diagnosis plays a critical role in the treatment of NPC. To aid diagnosis, deep learning methods
can provide interpretable clues for identifying NPC from magnetic resonance images (MRI). To
identify the optimal models, we compared the discrimination performance of hierarchical and simple
layered convolutional neural networks (CNN). Retrospectively, we collected the MRI images of
patients and manually built the tailored NPC image dataset. We examined the performance of the
representative CNN models including shallow CNN, ResNet50, ResNet101, and EfficientNet-B7.
By fine-tuning, shallow CNN, ResNet50, ResNet101, and EfficientNet-B7 achieved the precision of
72.2%, 94.4%, 92.6%, and 88.4%, displaying the superiority of deep hierarchical neural networks.
Among the examined models, ResNet50 with pre-trained weights demonstrated the best classification
performance over other types of CNN with accuracy, precision, and an F1-score of 0.93, 0.94, and 0.93,
respectively. The fine-tuned ResNet50 achieved the highest prediction performance and can be used
as a potential tool for aiding the diagnosis of NPC tumors.

Keywords: nasopharyngeal carcinoma; deep learning; image diagnosis; convolutional neural
network; artificial intelligence

1. Introduction

Nasopharyngeal carcinoma (NPC) is the 23rd most common cancer in the world
according to the 2018 Global Cancer Statistics [1]. NPC occurs more often in certain parts
of South Asia, the Middle East, and North Africa. As one of the most common cancers,
its diagnosis and therapy attract extensive attention [2]. Survival rates differ significantly
between NPC patients in the early stages and late stages, which can be classified as stages
T1 to T4. The ten-year survival rate of patients with early-stage (stage T1) is around
98%, whereas survival of stage T2 drops to 60% [3], implying the importance of early
diagnosis for successful treatment. However, NPC usually has no specific symptoms at the
early stage.

Many early diagnosis approaches are under development. For example, Epstein-Barr
virus (EBV) and consumption of certain foods including salted fish and preserved foods
are reported to be associated with high risks of NPC [4]. EBV serological biomarkers and
fiberoptic endoscopy/biopsy enable early diagnosis of NPC. However, identifying the
biomarker is labor-intensive. Other diagnosis methods of NPC include physical exami-
nation, nascopharygoscopy, and imaging. As one convenient approach, medical imaging
examinations are widely used in diagnosis, such as computed tomography (CT), magnetic
resonance imaging (MRI), or positron emission tomography (PET) [5]. Medical imaging
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examinations provide detailed information on NPC for specialists. However, the lesion
of NPC presents variable shapes, sizes, and locations. The lesion may even occupy only
a very small fraction of the whole image series. Medical image interpretation has been
performed solely by radiologists in the clinic, which requires professional experience and,
meanwhile, brings high labor and time costs.

Artificial intelligence (AI) has seen significant developments in academia and indus-
try. The applications of AI have achieved great breakthroughs in many fields, such as
cheminformatics, drug design, and AI-assisted medical imaging [6]. AI plays an important
role in medical data analysis, medical diagnosis, and healthcare [7–9]. Particularly, suc-
cessful applications have been reported in medical imaging, such as image classification,
image segmentation, object detection, image generation, and image transformation [10–15].
It is still challenging to obtain high-quality open databases. To overcome this problem,
image generation and image transformation methods have been developed [16,17]. As
one popular application of AI-assisted diagnosis, image classification can automatically
classify medical images into benign and malignant, or differentiate the stage of disease [18].
Moreover, AI greatly speeds up disease detection and the segmentation of the pneumonia
lesions of COVID-19 [19]. According to a recent review of deep learning in medical imaging,
applications have focused on several major fields: ophthalmology imaging, respiratory
imaging, breast imaging, and other specialties [20]. Notwithstanding, the concern should
be pointed out that previous studies have put more emphasis on the major disease, and
attempts of implementing AI in particular minor specialties are still in their infancy.

Several computer-assisted disease diagnoses of NPC have been developed from ma-
chine learning approaches to deep learning approaches. Medical images of NPC, such
as CT and MRI, can be processed by AI methods [21]. Researchers have adopted tradi-
tional machine learning (ML) based medical image analysis of NPC. The generally used
ML methods include artificial neural network (ANN), k-nearest neighbor (KNN), ran-
dom forest (RF), and support vector machine (SVM) models, etc. Lu et al. reported that
ML methods can be used to differentiate local recurrence versus inflammation from post-
treatment nasopharyngeal positron emission tomography/X-ray computed tomography
(PET/CT) images [22]. Zhang et al. obtained the highest mean area under the curve (AUC)
of 0.846 from the selected features of MRI by using RF [23]. However, feature selection
is required in traditional machine learning methods. The purpose of feature selection is
to reserve meaningful features extracted from original images. The appropriate feature
selection is critical for the performance of machine learning models. Consequently, extra
efforts need to be conducted before identifying the optimal combination of feature selection
methods and ML methods. For example, Zhang et al. conducted systematic research on
combinations of six feature selection methods and nine ML classification methods [23].
Recent studies show that there is still invisible information that remains to be discovered
while traditional feature selection methods cannot capture all of the information, especially
for high-dimensional information [24]. The existing works on NPC classification have
adopted traditional machine learning methods, such as SVM, ANN, and simple CNN, etc.
Acceptable accuracy has been achieved, however, feature selection is required. The detailed
strengths and weaknesses of models can be found in the recent literature [25–29].

Deep learning (DL) has been reported to show the capability of feature selection and
can train algorithms to automatically determine important features [30,31]. Instead of
extracting features manually, DL can learn the informative representations in a self-taught
manner. The unique advantages of automatic feature selection make deep learning one
powerful tool for analyzing high-dimensional image data. DL started attracting increased
interest when the convolutional neural network (CNN) surpassed human performance
in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) in 2012 [32]. CNN
was originally designed to solve the computer vision problem that makes computers
recognize objects from natural images. CNN can easily extend its applications in medical
imaging. Yeh et al. used CNN to successfully identify NPC in nasopharyngeal biopsies [33].
Qian et al. reported a DL-based automatic diagnosis system for identifying NPC from
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noncancer using both white light imaging and narrow-band imaging nasopharyngoscopy
images [34]. Xia et al. proposed NPC-Seg for the segmentation of NPC using computed
tomography (CT) [35]. Sun et al. applied CNN to the automated contour of primary tumor
volumes by MRI, indicating the success of AI-based tools in detecting NPC tumors [36].
Few studies have been conducted to explore the generalizability and reliability of the latest
CNN on the classification task of MRI images of NPC. Meanwhile, DL models suffer from
issues in choosing suitable architecture and searching for the best set of hyper-parameters
during optimization [37]. Therefore, choosing a suitable network for a given problem is
still a challenging task.

Compared with other medical imaging, MRI is commonly adopted as a routinely used
protocol for the diagnosis of NPC because of its non-invasiveness and its high efficiency.
MRI is the most commonly used radiographic method for diagnosis besides the endoscopic
image. The application of deep neural networks needs to be fine-tuned based on specific
requirements. To verify the effectiveness of deep learning models for identifying NPC from
non-NPC, this study investigated the performance of the latest established hierarchical
CNN models. As proved, ResNet and EfficientNet gain great improvement in the clas-
sification task of ImageNet than the previous reported CNN-based models. It would be
worthy of study to apply hierarchical CNN models to the specific classification of NPC
in order to harness the feature learning ability of deep learning methods. To the best of
our knowledge, hierarchical CNN models, such as ResNet and EfficientNet, have not been
applied in NPC discrimination. In this study, we examined the performance of shallow and
deep convolutional neural networks in order to identify one optimal model for automatic
diagnosis from MRI images of NPC by comparing the accuracy, precision, and F1-score
of each model. Due to the lack of a high-quality NPC image database, we collected MRI
images of patients and manually built the tailored NPC image dataset. We first performed
hyper-parameter optimization for each model. Then, we compared the performance of
sCNN, ResNet50, ResNet101, and EfficientNet-B7 without and with the pre-trained weights.
Finally, we applied the gradient-weighted class activation map (Grad-CAM) to visualize
convolutional layers in order to provide interpretable information for classification.

2. Materials and Methods
2.1. Dataset Preparation

The original MRI images from different imaging planes and the proportion of effective
images that can be used for the diagnosis are small. Generally, the critical factor in the
successful application of deep learning is to construct a high-quality dataset. MRI images
of NPC were collected from our hospital. MRI images in DICOM format were collected
from 52 subjects. Fast-spin echo (FSE) axial T1-weighted images and contrast-enhanced
FSE axial T1-weighted images were scanned at 1.5 T. The ages of the patients range from 27
to 74 years old. The collected data period lasted from 2018 to 2021. The section gaps range
from 2.0–9.0 mm along the scanning planes.

Axial contrast-enhanced T1-weighted images are routinely used to detect tumor exten-
sion and provide more clinical value for NPC, such as perineural spread and intracranial
extension of tumors. Therefore, axial contrast-enhanced T1-weighted images were chosen
for this study. The personal information was removed from the original MRI images, such
as the patient’s name, the patient’s age, and the series description, etc. Figure 1 shows the
axial MRI images of the NPC patients. The fossa of Rosenmuller is the most common site
of origin for NPC. We selected 9–39 slices around the original site of the nasopharynx space
from the MRI images depending on the different slice thicknesses. In order to make the
NPC image dataset compact, the images containing invaded organs were selected for the
confirmed patients under the supervision of the radiologist. After screening the images,
we collected 972 MRI images from 20 confirmed patients and 20 control by balancing the
number of positive and negative samples. The images were further preprocessed by data
augmentation with default settings implemented in Keras. The images were normalized to
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0–255 and then the input shape was reshaped from 512×512×3 into 150×150×3 in order to
save GPU memory by the ImageDataGenerator of Keras.
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Figure 1. Example of contrast-enhanced T1-weighted MRIs. (A) The image from normal control
without NPC cancer; (B) the images from patients with varying sizes of NPC. The arrows indicate the
location of the NPC tumor.

2.2. Choice of Splitter

For each patient, multiple image slices would be obtained from the MRI. The image-
level contextual splitter has been used by previous classification algorithms. For a general
random train-test splitter, the images from the patients were mixed. The images from an
individual patient may be separated into a training and a test set by only using image-level
contextual information. Though images were different in the image series of the MRI along
the scanned plane, the neighboring images in the MRI image sequences shared a high
similarity. However, the random splitter based on image-level contextual information may
lead to information leakage during the training process. Hence, we decided to divide
the dataset by including the patient-level contextual information. That is to say, images
from one patient can only be split into one category (training set or test set) during each
training process. The patient index and the image index were then used to divide the
train-test dataset in the “model_selection” method in the Scikit-learn package when using
a patient-level splitter. The images were then split into a train and test set with a ratio of
9:1. For comparison, the image- and patient-level contextual information was adopted for
the splitter when training the shallow and deep neural networks.

2.3. Evaluated Shallow and Hierarchical Convolutional Neural Network

Shallow and deep CNN models were selected to identify the optimal classifier for NPC
images. The parameters in each layer of ResNet and EfficientNet models were optimized for
the ImageNet dataset. Due to the difference in the domains of the ImageNet and our NPC
images database, we could not directly use the pre-trained parameters from the trained
model on the ImageNet. For our application, one new layer for our case replaced the top
layer. For binary classification, we realized the necessity to add one dense layer at the top of
each model after removing the top layers from each model. The modified model is shown
in Figure 2. We performed the fine-tuning process for the model. We tried to leverage the
learned knowledge from the models trained on the ImageNet dataset. In the fine-tuning
step, the parameters-trained model was tuned to adapt to the new image dataset of NPC.
The fine-tuning was performed in order to obtain some parameters for the last few layers
of a pre-trained model while keeping the parameters of the frozen layers. The number of
last layers was optimized.

The following CNN-based models are evaluated.
CNN: The shallow CNN is hereby referred to as sCNN. The sCNN consists of three 2D

convolution layers, three max-pooling layers, and two dense layers. We aimed to identify
one deep CNN for the diagnosis of NPC. The sCNN is built by 3 convolutional layers as the
baseline model in order to show the improvement from shallow to deep CNN models. We
did not build a model with more than 3 convolutional layers considering the visualization
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for Grad-CAM. The filters on the convolution layers were 32, 64, and 128. The kernel
size was set as (3, 3) and the pool size of three max-pooling layers was set as (2, 2). A
dropout of 0.5 was used to improve the generalization ability of sCNN. A batch size of
24 was used in the training and validation process. The number of neurons in the dense
layer, the activation, and the learning rate was optimized by the Bayesian hyper-parameter
optimization method.

Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. The schematic figure of the model. 

The following CNN-based models are evaluated. 
CNN: The shallow CNN is hereby referred to as sCNN. The sCNN consists of three 

2D convolution layers, three max-pooling layers, and two dense layers. We aimed to iden-
tify one deep CNN for the diagnosis of NPC. The sCNN is built by 3 convolutional layers 
as the baseline model in order to show the improvement from shallow to deep CNN mod-
els. We did not build a model with more than 3 convolutional layers considering the vis-
ualization for Grad-CAM. The filters on the convolution layers were 32, 64, and 128. The 
kernel size was set as (3, 3) and the pool size of three max-pooling layers was set as (2, 2). 
A dropout of 0.5 was used to improve the generalization ability of sCNN. A batch size of 
24 was used in the training and validation process. The number of neurons in the dense 
layer, the activation, and the learning rate was optimized by the Bayesian hyper-parame-
ter optimization method. 

ResNet50 and ResNet101: The representative residual learning architectures Res-
Net50 and ResNet101 were selected [38]. The output layer was modified for the binary 
classification using “Sigmoid” activation. The last several layers of ResNet will be trained 
on our dataset. The number of trainable layers, the activation, and the optimizer were 
chosen in order to optimize by the Bayesian hyper-parameter optimization method. We 
also compared the effects of whether or not to include pre-trained weights of “ImageNet” 
in this study. The advantage of ResNet is that it can train a deeper network and alleviate 
the problem of gradient disappearance due to its special connection structure. Take one 
block of ResNet for example (Figure 3), H(x) is the desired mapping to fit some stacked 
layers. F(x) is the residual function for the network layer: 

( ) ( ) -F x H x x=  (1) 

Because H(x) is more difficult to learn than F(x). We can recast the original mapping 
to F(x) + x. 

( ) ( )H x F x x= +  (2) 

As proved by He et al., ResNet can easily train deeper networks than other feedfor-
ward networks [38]. 
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ResNet50 and ResNet101: The representative residual learning architectures ResNet50
and ResNet101 were selected [38]. The output layer was modified for the binary classi-
fication using “Sigmoid” activation. The last several layers of ResNet will be trained on
our dataset. The number of trainable layers, the activation, and the optimizer were chosen
in order to optimize by the Bayesian hyper-parameter optimization method. We also
compared the effects of whether or not to include pre-trained weights of “ImageNet” in
this study. The advantage of ResNet is that it can train a deeper network and alleviate the
problem of gradient disappearance due to its special connection structure. Take one block
of ResNet for example (Figure 3), H(x) is the desired mapping to fit some stacked layers.
F(x) is the residual function for the network layer:

F(x) = H(x)− x (1)
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Because H(x) is more difficult to learn than F(x). We can recast the original mapping to
F(x) + x.

H(x) = F(x) + x (2)
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As proved by He et al., ResNet can easily train deeper networks than other feedforward
networks [38].

EfficientNet-B7: EfficientNet is one type of scaled CNN that carefully balances net-
work depth, width, and resolution [39]. EfficientNet achieves better top-1 accuracy on
ImageNet and CIFAR-100, etc. EfficientNet models were scaled from baseline EfficientNet-
B0 up to EfficientNet-B7 by scaling the coefficients of network width, depth, and resolution.
Because EfficientNet-B7 achieves the highest top-1 accuracy in the ImageNet task, we
selected EfficientNet-B7 for our evaluation. The number of trainable layers, the activation,
and the optimizer were further optimized.

The “ImageNet” weights provided the basic parameters for deep neural networks.
Whether pre-trained weights can improve model robustness is still under debate [40,41].
Thus, we also examined whether pre-trained weight is beneficial for our image classification
task. Early stopping was used to decide when to stop training by monitoring the loss
of the validation set. All models were built by TensorFlow (TensorFlow v2.6.0. https:
//anaconda.org/conda-forge/tensorflow/files?version=2.6.0 (accessed on 16 November
2021)) and Keras (Keras v2.6.0. https://anaconda.org/conda-forge/keras (accessed on 16
November 2021).

2.4. Hyper-parameter Optimization

Bayesian hyper-parameter optimization was used to search the hyper-parameters for
shallow and deep CNN. We first optimized the hyper-parameters of sCNN, ResNet50,
ResNet101, and EfficientNet-B7 on one randomly selected dataset. Parameter space was
assigned following the Gaussian process because the choice can be smartly made to choose
the next parameter to evaluate by the acquisition function over the Gaussian prior. The
fitness value can be defined according to the requirement. The negative value of validation
accuracy of models was used as the acquisition function in order to minimize during each
cycle of hyper-parameter optimization. The performance scores were calculated in each
loop until the acquisition function did not improve. The Scikit-optimize 0.9.0 package was
used to conduct the hyper-parameter optimization process.

2.5. Data Analysis

The performance of the model was evaluated using precision, accuracy, F1-score,
sensitivity, and specificity. The precision and accuracy are defined as:

Precision =
TP

TP + FP
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

where TP, TN, FP, and FN are the numbers of true positive, true negative, false positive,
and false negative detections, respectively. F1-score is the harmonic average of precision
and recall, which is defined as follows:

Recall =
TP

TP + FN
(5)

F1-score =
2 × TP

2 × TP + FN + FP
(6)

Sensitivity and specificity are evaluation metrics that show the ability of a model to
correctly classify a person as a patient or normal control. Sensitivity refers to the model’s
ability to designate an individual with the disease as positive. It is also called the true-
positive rate.

Sensitivity =
TP

TP + FN
(7)

https://anaconda.org/conda-forge/tensorflow/files?version=2.6.0
https://anaconda.org/conda-forge/tensorflow/files?version=2.6.0
https://anaconda.org/conda-forge/keras
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Specificity is defined as the ability of the model to correctly identify a person who
does not have the disease. It is also called the true negative rate.

Specificity =
TN

FP + TN
(8)

The AUC score indicates how well the model can distinguish between classes. This
score is usually adopted to assess a binary classification task. The range of the AUC score
is from 0 to 1. A model having an AUC score close to 1 is considered the best model. The
AUC score is calculated as follows:

AUC =
1

mn

m

∑
i=1

n

∑
j=1

1pi>pj (9)

Here i runs over all m data points with true label 1, and j runs over all n data points
with true label 0; pi and pj denote the probability score assigned by the classifier to data
point i and j, respectively.

The confusion matrix was used to visualize the performance of the evaluated models,
which comprises four combinations of prediction and ground truth.

The k-fold cross-validation method was used to calculate the evaluation metrics. To
reduce statistical bias induced by a chance encounter of single learning, the models were
conducted 50 times by using a different initialization of neural networks and different
splitting seed. The memory of the trained model was cleared after each cycle.

3. Results
3.1. Hyper-Parameter Optimization

We trained shallow and deep convolutional neural networks on our collected NPC
image dataset. First of all, we tuned the hyper-parameters of each model using the
Bayesian optimization process. The hyper-parameter of sCNN, ResNet50, ResNet101,
and EfficientNet-B7 were optimized on one train-test split set by using the same random
seed for the model_selection method in the Scikit-learn package. We trained the model
on Nvidia Geforce RTX 3070 with 8 GB GPU memory. The batch size was set as 24. The
optimization processes take 3.6 h and 7.5 h for ResNet and EffficientNet, respectively. For
the training process, the accuracy and loss of the validation dataset are used to monitor the
course of training. The loss is computed according to binary cross-entropy. The network is
re-trained from scratch. As shown in Figure 4, the fitness values suggested that the optimal
hyper-parameters can be achieved within 50 runs. The min f(x) is the lowest value that has
been obtained in the number of calls in the Bayesian optimization process. In this study,
50 calls were used to get the converged lowest f(x). The hyper-parameter corresponding to
the lowest f(x) was chosen for the CNN models. The hyper-parameters of each model are
listed in Table S1 in the supporting information.

We validated the performance of each model by monitoring the accuracy and loss.
Figure 5 shows the accuracy and loss of models on the training and validation datasets in
the 25 epochs of training. The training process was stopped when the validation accuracy
did not improve further by using the early stopping method. The small deviation between
the accuracy of the training set and the accuracy of the validation set was in the reason-
able region, suggesting that the models were not over-fitted in the 25 epochs. From the
statistical average of 50 rounds of k-fold calculation, the validation accuracy values of three
deep neural networks including ResNet50, ResNet101, and EfficientNet-B7 reached 0.98,
outperforming the sCNN with a validation accuracy of 0.73. The loss of three deep neural
networks was as low as 0.05 while it was 0.57 for sCNN. Moreover, Deep neural networks
including ResNet50, ResNet101, and EfficientNet-B7 quickly reached the converged results
within 10 epochs and sCNN required 22 epochs, suggesting that the three deep neural
networks are effective in learning. In the training process, we found that three hierarchical
CNN models achieved a higher accuracy in both training and validation datasets than
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the sCNN. Among the examined models, ResNet50 gave the smoothest training accuracy,
indicating the quick learning ability of ResNet50 on the NPC image dataset. For a fair
comparison, we used 25 epochs for all of the models in the following training.
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3.2. Performance of Shallow and Hierarchical Learning

To further validate the performance, we computed the evaluation metrics of shallow
and deep neural networks. We examined the effects of two factors on the performance: the
choice of splitters and the transfer learning of the pre-trained weights. The performance
was validated by varying the initialization of models and the random seed of the train/test
splitter in 50 individual runs. The accuracy, precision, and F1-score are shown in Figure 6
and the statistical average is summarized in Tables 1 and 2.
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Figure 6. Precision and accuracy of each model on the test dataset. The models without pre-trained
weights are labeled as ResN50, ResN101, and EffNet for ResNet50, ResNet101, and EfficientNet-
B7. The models using pre-trained weights are labeled as ResN50W, ResN101W, and EffNetW for
ResNet50, ResNet101, and EfficientNet-B7.

Table 1. Evaluation metrics of each model by using an image-level splitter.

Accuracy Precision F1-Score AUC

sCNN 0.72 0.75 0.72 0.73
ResNet50 0.64 0.67 0.59 0.64

ResNet50-Weight 0.97 0.97 0.97 0.97
ResNet101 0.62 0.68 0.57 0.63

ResNet101-Weight 0.98 0.98 0.98 0.98
EfficientNet 0.56 0.60 0.52 0.56

EfficientNet-Weight 0.97 0.97 0.97 0.97

Table 2. Evaluation metrics of each model by using the patient-level splitter.

Accuracy Precision F1-Score AUC Sensitivity Specificity

sCNN 0.67 0.72 0.64 0.66 0.78 0.54
ResNet50 0.74 0.82 0.71 0.76 0.66 0.86

ResNet50-Weight 0.93 0.94 0.93 0.94 0.90 0.98
ResNet101 0.61 0.66 0.55 0.63 0.76 0.97

ResNet101-Weight 0.91 0.93 0.91 0.98 0.87 0.97
EfficientNet 0.75 0.79 0.73 0.76 0.72 0.80

EfficientNet-Weight 0.87 0.88 0.87 0.87 0.83 0.91

3.3. Choice of Splitter Affects Performance

The image- and patient-level splitters were examined by using the same set of hyper-
parameters. Though the section gap was adopted between neighboring slices in the MRI
image series, we could not overlook that consecutive images stored in the MRI series shared
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a higher similarity. The image-level splitter was expected to yield better performance when
neighboring slices were divided into train and test datasets.

Figure 6 and Table 1 show that the image-level splitter reproduces both higher accuracy
and precision than the patient-level splitter. The confusion matrix shown in Figure 7
represents the classification performance in differentiating non-NPC and NPC images. The
confusion matrix shows that the classification probability for the image-level splitter is
higher than that of the patient-level splitter for all four CNN models. The choice of splitter
gives less influence on ResNet50, indicating the robustness of the model.
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The image-level diagnosis determines the incurrence of NPC based on a single image.
To remove the bias introduced by neighboring images, the patient-level splitter was used
to divide the train/test dataset. The patient-level splitter should then provide a reliable
prediction, which will reveal the true prediction performance of the examined models. As
shown in Table 2, ResNet50 with pre-trained weights (referred to as ResNet50-Weight),
respectively, achieves accuracy, precision, and an F1-score of 0.97, 0.97, 0.97, which would be
the optimal model for the classification. ResNet101-Weight gives a slightly higher average
value but wider distribution as shown in Figure 6, meaning that the reliability is slightly
lower than ResNet50-Weight. As revealed from the evaluation metrics, ResNet50-Weight
provides the highest value of accuracy, precision, F1-score, sensitivity, and specificity.
ResNet50-Weight can classify both the true positive and true negative images. From the
average value and the distribution, we can see that the ResNet50-Weight is a suitable
DL-based model for NPC image classification.

3.4. Pre-trained Weight Improves Performance

Pre-training weights trained on the large image dataset “ImageNet” can be trans-
ferred to the image classification. Without pre-trained weights, ResNet50, ResNet101, and
EfficientNet-B7 displayed a slightly higher classification performance than sCNN as shown
in Figures 7 and S1. After including pre-trained weights, all three deep learning models
reached a higher precision and accuracy than sCNN, leading to the best accuracy of 0.93
achieved by the ResNet50-Weight. As shown in Figure 7, ResNet50 is capable of differenti-
ating non-NPC and NPC images with accuracies of 0.89 and 0.98 by using the patient-level
splitter. The pre-trained weights were beneficial for our medical image classification though
the weights were pre-trained on the general image classification task of “ImageNet”.

To make a comparison with the previous machine learning-based model, we com-
puted the area under the curve (AUC), which was summarized in Table 1. The AUCs
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of ResNet50-Weight, ResNet101-Weight, and EfficientNet-B7-Weight were 0.97, 0.98, 0.97,
respectively. The AUCs were higher than 0.846 when obtained by RF using the selected
features of MRI [23]. Note that the value between our model and previous reports cannot
be compared directly because the computational details and datasets are not exactly set the
same. However, the result indicates that our model achieves comparable performance as
shown in Table 3. Further validation of our proposed model can be examined with other
public datasets. The result implies that deep CNN can get comparable performance over
traditional machine learning methods in the classification of NPC images without feature
selection.

Table 3. Accuracy of recently reported models.

Model Image Accuracy

Inception [42] endoscopy 0.89
ANN [29] microscopy 0.93
ANN [28] endoscopy 0.92
CNN [43] MRI 0.91
CNN [34] endoscopy 0.95

Residual Attention [44] MRI 0.92
ResNet50-Weight MRI 0.93

It is worth noting that a deeper neural network does not always guarantee higher accu-
racy and precision in our study. The fine-tuned ResNet50-Weight reached the best accuracy
of 0.93, which is higher than that of the ResNet101-Weight (0.91) and the EfficientNet-B7-
Weight (0.87). Though EfficientNet-B7 achieved the highest top-1 accuracy in the task of
“ImageNet”, the optimal prediction model was the ResNet50 in the NPC classification task.
Therefore, deep learning models should be self-tested on a case-by-case basis. The optimal
model needs to be identified based on the specified tasks.

3.5. Interpretability of Shallow and Hierarchical Learning

To obtain the interpretability of the diagnosis of DL methods, a gradient-weighted
class activation map (Grad-CAM) was used to visualize the feature map [45]. Grad-CAM
was used to understand which regions of the image affect the prediction by projecting back
the weights of the convolutional layer back to the input images. The convolutional layers
adjacent to the output layers of sCNN, ResNet, and EfficientNet-B7 were generated for
feature representation.

The feature maps in Figure 8 visualize the regions that most influence the model’s
decision in the selected testing images by superimposing the heatmap on the original
images. The whole nasopharynx space includes the nasopharynx, the fibrofatty parapha-
ryngeal space, the pterygoid bodies, and the anterolateral plates. NPC causes thickening
and asymmetry in the nasopharynx, thus more weights should be concentrated around
the nasopharynx space. Two images with an asymmetry in the nasopharynx were selected
for visualization. From the feature maps of Figure 8, we can notice that sCNN can contour
the boundary between the skull and background, whereas ResNet50-Weight, ResNet101-
Weight, and EfficientNet-B7-Weight provide more weights on localized regions. ResNet50
gives more concentrated weights on the site of the parapharyngeal space, which is the com-
mon occurrence site of NPC. Conv2_2 and conv2_3 of ResNet50-Weight put more weight
on the lateral nasopharyngeal walls and eustachian tubes. Among the three deep CNN
models, the weights of ResNet50 are more concentrated, explaining why ResNet50-Weight
outperforms over two deeper models, ResNet101-Weight and EfficientNet-B7-Weight.



Diagnostics 2022, 12, 2478 12 of 15

Diagnostics 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

ages. The whole nasopharynx space includes the nasopharynx, the fibrofatty parapharyn-
geal space, the pterygoid bodies, and the anterolateral plates. NPC causes thickening and 
asymmetry in the nasopharynx, thus more weights should be concentrated around the 
nasopharynx space. Two images with an asymmetry in the nasopharynx were selected for 
visualization. From the feature maps of Figure 8, we can notice that sCNN can contour 
the boundary between the skull and background, whereas ResNet50-Weight, ResNet101-
Weight, and EfficientNet-B7-Weight provide more weights on localized regions. Res-
Net50 gives more concentrated weights on the site of the parapharyngeal space, which is 
the common occurrence site of NPC. Conv2_2 and conv2_3 of ResNet50-Weight put more 
weight on the lateral nasopharyngeal walls and eustachian tubes. Among the three deep 
CNN models, the weights of ResNet50 are more concentrated, explaining why ResNet50-
Weight outperforms over two deeper models, ResNet101-Weight and EfficientNet-B7-
Weight. 

 
Figure 8. Feature maps for sCNN, ResNet50, ResNet101, and EfficientNet-B7 for normal control and 
patient. Left two for normal and right two for patients. The top row is for the original images and 
the bottom row is for the convolutional layers adjacent to the output layers. 

4. Discussion 

Figure 8. Feature maps for sCNN, ResNet50, ResNet101, and EfficientNet-B7 for normal control and
patient. Left two for normal and right two for patients. The top row is for the original images and the
bottom row is for the convolutional layers adjacent to the output layers.

4. Discussion

Increasing interest has been directed to AI-assisted medical diagnosis. However, the
latest deep CNN has not yet been adopted in the AI-assisted diagnosis of NPC. The classifi-
cation performances of deep and shallow CNN have not been quantitatively compared. In
this study, we constructed a small but high-quality NPC image dataset and evaluated four
popular CNN-based AI tools in the classification of NPC images of control and patients.
Though the sample size of our dataset was small, it can provide valuable information.
We demonstrated that hierarchical neural networks including ResNet50, ResNet101, and
EfficientNet-B7 can achieve a better performance than that of sCNN in the classifying of
non-NPC and NPC based on 50 rounds of k-fold calculation. Moreover, the results indicate
that the pre-trained weights can be transferred to our NPC classification task. To interpret
the different performances of each DL model, we generated feature maps for convolutional
layers adjacent to the output layers. The ResNet50-Weight put more weight on the localized
region that is closer to the areas of the common occurrence site of NPC. In summary, the
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effectiveness in learning comes from the deep architecture of the model, and the higher
accuracy benefited from the pre-trained weights for our classification task.

Two limitations of our study are worthy of improvement. First, the dataset was not
large enough in comparison to other medical image datasets, such as the chest X-ray dataset.
As the preliminary dataset of NPC images, the models were trained to classify non-NPC
and NPC images without conducting staging. To advance the effectiveness and reliability
of deep CNN-based models, more patients from additional trials will be continuously
collected. Second, our proposed DL models utilized MRI imaging information. In the
future, clinical and biopsy information (e.g., stage, segmentation, and lesion images) can
be incorporated into other DL models in order to further improve the robustness and
prediction performance.

5. Conclusions

We examined the classification performance of deep hierarchical and simple shal-
low CNN models on our tailored NPC image dataset. By fine-tuning the networks of
ResNet50, ResNet101, and EfficientNet-B7, we obtained higher accuracy than shallow CNN.
Particularly, ResNet50 with pre-trained weight achieved the highest precision, accuracy,
F1-score, sensitivity, and specificity, displaying the best classification performance. From
visualization using Grad-CAM, ResNet50 gave more concentrated weights on the site of the
parapharyngeal space in images, which is the common occurrence site of NPC. Therefore,
ResNet50 was identified as the optimal deep CNN-based model for the potential support
of clinical decisions in the diagnosis of NPC. Hopefully, the DL models will be integrated
into clinical practice to provide supplementary and quantitative information on the early
diagnosis of NPC tumors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12102478/s1, Table S1: Optimized hyper-parameters;
Figure S1: Confusion matrix of each model on the test dataset using the image and patient-level
splitter.

Author Contributions: Study Design, L.J., J.W., C.G. and X.X.; Data Acquisition, L.J., R.M., X.G.,
C.G., F.X., J.W. and X.X.; Statistical Analysis, L.J., R.M., X.G., C.G., F.X., J.W. and X.X.; Manuscript
Preparation, L.J., R.M., X.G., C.G., F.X., J.W., L.X. and X.X.; Manuscript Editing, L.J., L.X. and X.X.;
Manuscript Review, L.J., R.M., X.G., C.G., F.X., J.W., L.X. and X.X. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Jiangsu Province
(BK20191032), Changzhou Sci. & Tech. Program (CJ20200045), and Postgraduate Research & Practice
Innovation Program of Jiangsu Province (SJCX22_1480).

Institutional Review Board Statement: The MRI images of 40 NPC patients were retrospectively
recruited from the Second People’s Hospital of Changzhou affiliated to Nanjing Medical University.
The ethics committee of Second People’s Hospital of Changzhou affiliated to Nanjing Medical
University performed the ethical review and approved this study. The formal approval was waived
due to the non-intervention.

Informed Consent Statement: The ethics committee of Second People’s Hospital of Changzhou
affiliated to Nanjing Medical University waived the necessity to obtain informed written consent
for the collection, analysis, and publication of the retrospectively obtained and anonymized data for
this study.

Data Availability Statement: The datasets generated during the current study are stored in the
Open Science Framework https://osf.io/42x7d/?view_only=6b78b450cb3f409dae9226eff4a6fcb4
(accessed on 1 April 2022). The scripts used in this study can be found in the online repositories
https://github.com/xlxgit/NPC_Classify (accessed on 1 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/diagnostics12102478/s1
https://www.mdpi.com/article/10.3390/diagnostics12102478/s1
https://osf.io/42x7d/?view_only=6b78b450cb3f409dae9226eff4a6fcb4
https://github.com/xlxgit/NPC_Classify


Diagnostics 2022, 12, 2478 14 of 15

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
2. Wong, K.C.W.; Hui, E.P.; Lo, K.-W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.-F.; King, A.D.; et al.

Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol. 2021, 18, 679–695. [CrossRef] [PubMed]
3. Wu, L.; Li, C.; Pan, L. Nasopharyngeal carcinoma: A review of current updates. Exp. Ther. Med. 2018, 15, 3687–3692. [CrossRef]

[PubMed]
4. Bakkalci, D.; Jia, Y.; Winter, J.R.; Lewis, J.E.; Taylor, G.S.; Stagg, H.R. Risk factors for Epstein Barr virus-associated cancers: A

systematic review, critical appraisal, and mapping of the epidemiological evidence. J. Glob. Health 2020, 10, 010405. [CrossRef]
[PubMed]

5. Razek, A.A.K.A.; King, A. MRI and CT of Nasopharyngeal Carcinoma. Am. J. Roentgenol. 2012, 198, 11–18. [CrossRef] [PubMed]
6. Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef]
7. Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]
8. Wang, M.; Liang, Y.; Hu, Z.; Chen, S.; Shi, B.; Heidari, A.A.; Zhang, Q.; Chen, H.; Chen, X. Lupus nephritis diagnosis using

enhanced moth flame algorithm with support vector machines. Comput. Biol. Med. 2022, 145, 105435. [CrossRef]
9. Yang, X.; Zhao, D.; Yu, F.; Heidari, A.A.; Bano, Y.; Ibrohimov, A.; Liu, Y.; Cai, Z.; Chen, H.; Chen, X. An optimized machine

learning framework for predicting intradialytic hypotension using indexes of chronic kidney disease-mineral and bone disorders.
Comput. Biol. Med. 2022, 145, 105510. [CrossRef] [PubMed]

10. Kim, M.; Yun, J.; Cho, Y.; Shin, K.; Jang, R.; Bae, H.-J.; Kim, N. Deep Learning in Medical Imaging. Neurospine 2019, 16, 657–668.
[CrossRef] [PubMed]

11. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez,
C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]

12. Zhou, S.K.; Greenspan, H.; Davatzikos, C.; Duncan, J.S.; Ginneken, B.V.; Madabhushi, A.; Prince, J.L.; Rueckert, D.; Summers,
R.M. A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies with Progress Highlights,
and Future Promises. Proc. IEEE 2021, 109, 820–838. [CrossRef]

13. Hwang, D.K.; Hsu, C.C.; Chang, K.J.; Chao, D.; Sun, C.H.; Jheng, Y.C.; Yarmishyn, A.A.; Wu, J.C.; Tsai, C.Y.; Wang, M.L.; et al.
Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics 2019, 9, 232–245. [CrossRef]

14. Li, L.; Wei, M.; Liu, B.; Atchaneeyasakul, K.; Zhou, F.; Pan, Z.; Kumar, S.A.; Zhang, J.Y.; Pu, Y.; Liebeskind, D.S.; et al. Deep
Learning for Hemorrhagic Lesion Detection and Segmentation on Brain CT Images. IEEE J. Biomed. Health Inform. 2021, 25,
1646–1659. [CrossRef]

15. Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [CrossRef] [PubMed]

16. Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation
for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [CrossRef]

17. Bozorgtabar, B.; Mahapatra, D.; von Tengg-Kobligk, H.; Poellinger, A.; Ebner, L.; Thiran, J.-P.; Reyes, M. Informative sample
generation using class aware generative adversarial networks for classification of chest Xrays. Comput. Vis. Image Underst. 2019,
184, 57–65. [CrossRef]

18. Yun, J.; Park, J.E.; Lee, H.; Ham, S.; Kim, N.; Kim, H.S. Radiomic features and multilayer perceptron network classifier: A robust
MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci. Rep. 2019,
9, 5746. [CrossRef] [PubMed]

19. Ge, C.; Zhang, L.; Xie, L.; Kong, R.; Zhang, H.; Chang, S. COVID-19 Imaging-based AI Research—A Literature Review. Curr. Med.
Imaging 2022, 18, 496–508.

20. Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic
accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. 2021, 4, 65. [CrossRef]
[PubMed]

21. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019, 29,
102–127. [CrossRef] [PubMed]

22. Du, D.; Feng, H.; Lv, W.; Ashrafinia, S.; Yuan, Q.; Wang, Q.; Yang, W.; Feng, Q.; Chen, W.; Rahmim, A.; et al. Machine Learning
Methods for Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal
Carcinoma Post-therapy PET/CT Images. Mol. Imaging Biol. 2020, 22, 730–738. [CrossRef] [PubMed]

23. Zhang, B.; He, X.; Ouyang, F.; Gu, D.; Dong, Y.; Zhang, L.; Mo, X.; Huang, W.; Tian, J.; Zhang, S. Radiomic machine-learning
classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 2017, 403, 21–27. [CrossRef]

24. Xie, C.-Y.; Hu, Y.-H.; Ho, J.W.-K.; Han, L.-J.; Yang, H.; Wen, J.; Lam, K.-O.; Wong, I.Y.-H.; Law, S.Y.-K.; Chiu, K.W.-H.; et al.
Using Genomics Feature Selection Method in Radiomics Pipeline Improves Prognostication Performance in Locally Advanced
Esophageal Squamous Cell Carcinoma-A Pilot Study. Cancers 2021, 13, 2145. [CrossRef]

25. Mohammed, M.A.; Abd Ghani, M.K.; Hamed, R.I.; Ibrahim, D.A. Review on Nasopharyngeal Carcinoma: Concepts, methods of
analysis, segmentation, classification, prediction and impact: A review of the research literature. J. Comput. Sci. 2017, 21, 283–298.
[CrossRef]

http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1038/s41571-021-00524-x
http://www.ncbi.nlm.nih.gov/pubmed/34194007
http://doi.org/10.3892/etm.2018.5878
http://www.ncbi.nlm.nih.gov/pubmed/29556258
http://doi.org/10.7189/jogh.10.010405
http://www.ncbi.nlm.nih.gov/pubmed/32257153
http://doi.org/10.2214/AJR.11.6954
http://www.ncbi.nlm.nih.gov/pubmed/22194474
http://doi.org/10.1561/2200000006
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://doi.org/10.1016/j.compbiomed.2022.105435
http://doi.org/10.1016/j.compbiomed.2022.105510
http://www.ncbi.nlm.nih.gov/pubmed/35585728
http://doi.org/10.14245/ns.1938396.198
http://www.ncbi.nlm.nih.gov/pubmed/31905454
http://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://doi.org/10.1109/JPROC.2021.3054390
http://doi.org/10.7150/thno.28447
http://doi.org/10.1109/JBHI.2020.3028243
http://doi.org/10.1109/TMI.2016.2538465
http://www.ncbi.nlm.nih.gov/pubmed/26960222
http://doi.org/10.1016/j.neucom.2018.09.013
http://doi.org/10.1016/j.cviu.2019.04.007
http://doi.org/10.1038/s41598-019-42276-w
http://www.ncbi.nlm.nih.gov/pubmed/30952930
http://doi.org/10.1038/s41746-021-00438-z
http://www.ncbi.nlm.nih.gov/pubmed/33828217
http://doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
http://doi.org/10.1007/s11307-019-01411-9
http://www.ncbi.nlm.nih.gov/pubmed/31338709
http://doi.org/10.1016/j.canlet.2017.06.004
http://doi.org/10.3390/cancers13092145
http://doi.org/10.1016/j.jocs.2017.03.021


Diagnostics 2022, 12, 2478 15 of 15

26. Mohammed, M.A.; Ghani, M.K.A.; Hamed, R.I.; Ibrahim, D.A. Analysis of an electronic methods for nasopharyngeal carcinoma:
Prevalence, diagnosis, challenges and technologies. J. Comput. Sci. 2017, 21, 241–254. [CrossRef]

27. Ng, W.T.; But, B.; Choi, H.C.W.; de Bree, R.; Lee, A.W.M.; Lee, V.H.F.; López, F.; Mäkitie, A.A.; Rodrigo, J.P.; Saba, N.F.; et al.
Application of Artificial Intelligence for Nasopharyngeal Carcinoma Management—A Systematic Review. Cancer Manag. Res.
2022, 14, 339–366. [CrossRef]

28. Abd Ghani, M.K.; Mohammed, M.A.; Arunkumar, N.; Mostafa, S.A.; Ibrahim, D.A.; Abdullah, M.K.; Jaber, M.M.; Abdulhay,
E.; Ramirez-Gonzalez, G.; Burhanuddin, M.A. Decision-level fusion scheme for nasopharyngeal carcinoma identification using
machine learning techniques. Neural Comput. Appl. 2020, 32, 625–638. [CrossRef]

29. Mohammed, M.A.; Abd Ghani, M.K.; Hamed, R.I.; Ibrahim, D.A.; Abdullah, M.K. Artificial neural networks for automatic
segmentation and identification of nasopharyngeal carcinoma. J. Comput. Sci. 2017, 21, 263–274. [CrossRef]

30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
31. Xie, L.; Xu, L.; Kong, R.; Chang, S.; Xu, X. Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep

Learning. Front. Pharmacol. 2020, 11, 606668. [CrossRef]
32. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of

the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 3–6 December 2012; Volume
1, pp. 1097–1105.

33. Chuang, W.Y.; Chang, S.H.; Yu, W.H.; Yang, C.K.; Yeh, C.J.; Ueng, S.H.; Liu, Y.J.; Chen, T.D.; Chen, K.H.; Hsieh, Y.Y.; et al.
Successful Identification of Nasopharyngeal Carcinoma in Nasopharyngeal Biopsies Using Deep Learning. Cancers 2020, 12, 507.
[CrossRef]

34. Xu, J.; Wang, J.; Bian, X.; Zhu, J.Q.; Tie, C.W.; Liu, X.; Zhou, Z.; Ni, X.G.; Qian, D. Deep Learning for nasopharyngeal Carcinoma
Identification Using Both White Light and Narrow-Band Imaging Endoscopy. Laryngoscope 2022, 132, 999–1007. [CrossRef]

35. Bai, X.; Hu, Y.; Gong, G.; Yin, Y.; Xia, Y. A deep learning approach to segmentation of nasopharyngeal carcinoma using computed
tomography. Biomed. Signal Process. Control 2021, 64, 102246. [CrossRef]

36. Lin, L.; Dou, Q.; Jin, Y.M.; Zhou, G.Q.; Tang, Y.Q.; Chen, W.L.; Su, B.A.; Liu, F.; Tao, C.J.; Jiang, N.; et al. Deep Learning
for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology 2019, 291, 677–686.
[CrossRef]

37. Soniya; Paul, S.; Singh, L. A review on advances in deep learning. In Proceedings of the 2015 IEEE Workshop on Computational
Intelligence: Theories, Applications and Future Directions (WCI), Kanpur, India, 14–17 December 2015; pp. 1–6.

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
39. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th

International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019.
40. Cheplygina, V. Cats or CAT scans: Transfer learning from natural or medical image source data sets? Curr. Opin. Biomed. Eng.

2019, 9, 21–27. [CrossRef]
41. Studer, L.; Alberti, M.; Pondenkandath, V.; Goktepe, P.; Kolonko, T.; Fischer, A.; Liwicki, M.; Ingold, R. A Comprehensive Study

of ImageNet Pre-Training for Historical Document Image Analysis. In Proceedings of the 2019 International Conference on
Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 720–725.

42. Li, C.; Jing, B.; Ke, L.; Li, B.; Xia, W.; He, C.; Qian, C.; Zhao, C.; Mai, H.; Chen, M.; et al. Development and validation of an
endoscopic images-based deep learning model for detection with nasopharyngeal malignancies. Cancer Commun. 2018, 38, 59.
[CrossRef]

43. Wong, L.M.; Ai, Q.Y.H.; Mo, F.K.F.; Poon, D.M.C.; King, A.D. Convolutional neural network in nasopharyngeal carcinoma: How
good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI? Jpn. J. Radiol.
2021, 39, 571–579. [CrossRef]

44. Wong, L.M.; King, A.D.; Ai, Q.Y.H.; Lam, W.K.J.; Poon, D.M.C.; Ma, B.B.Y.; Chan, K.C.A.; Mo, F.K.F. Convolutional neural network
for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI. Eur. Radiol. 2021, 31, 3856–3863. [CrossRef]

45. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

http://doi.org/10.1016/j.jocs.2017.04.006
http://doi.org/10.2147/CMAR.S341583
http://doi.org/10.1007/s00521-018-3882-6
http://doi.org/10.1016/j.jocs.2017.03.026
http://doi.org/10.1038/nature14539
http://doi.org/10.3389/fphar.2020.606668
http://doi.org/10.3390/cancers12020507
http://doi.org/10.1002/lary.29894
http://doi.org/10.1016/j.bspc.2020.102246
http://doi.org/10.1148/radiol.2019182012
http://doi.org/10.1016/j.cobme.2018.12.005
http://doi.org/10.1186/s40880-018-0325-9
http://doi.org/10.1007/s11604-021-01092-x
http://doi.org/10.1007/s00330-020-07451-y

	Introduction 
	Materials and Methods 
	Dataset Preparation 
	Choice of Splitter 
	Evaluated Shallow and Hierarchical Convolutional Neural Network 
	Hyper-parameter Optimization 
	Data Analysis 

	Results 
	Hyper-Parameter Optimization 
	Performance of Shallow and Hierarchical Learning 
	Choice of Splitter Affects Performance 
	Pre-trained Weight Improves Performance 
	Interpretability of Shallow and Hierarchical Learning 

	Discussion 
	Conclusions 
	References

