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Abstract
The developmental and epileptic encephalopathies encompass a group of rare syndromes characterised by severe drug-
resistant epilepsy with onset in childhood and significant neurodevelopmental comorbidities. The latter include intellectual 
disability, developmental delay, behavioural problems including attention-deficit hyperactivity disorder and autism spectrum 
disorder, psychiatric problems including anxiety and depression, speech impairment and sleep problems. Classical examples 
of developmental and epileptic encephalopathies include Dravet syndrome, Lennox–Gastaut syndrome and tuberous sclerosis 
complex. The mainstay of treatment is with multiple anti-seizure medications (ASMs); however, the ASMs themselves can 
be associated with psychobehavioural adverse events, and effects (negative or positive) on cognition and sleep. We have 
performed a targeted literature review of ASMs commonly used in the treatment of developmental and epileptic encepha-
lopathies to discuss the latest evidence on their effects on behaviour, mood, cognition, sedation and sleep. The ASMs include 
valproate (VPA), clobazam, topiramate (TPM), cannabidiol (CBD), fenfluramine (FFA), levetiracetam (LEV), brivaracetam 
(BRV), zonisamide (ZNS), perampanel (PER), ethosuximide, stiripentol, lamotrigine (LTG), rufinamide, vigabatrin, lacosa-
mide (LCM) and everolimus. Bromide, felbamate and other sodium channel ASMs are discussed briefly. Overall, the current 
evidence suggest that LEV, PER and to a lesser extent BRV are associated with psychobehavioural adverse events including 
aggressiveness and irritability; TPM and to a lesser extent ZNS are associated with language impairment and cognitive dull-
ing/memory problems. Patients with a history of behavioural and psychiatric comorbidities may be more at risk of developing 
psychobehavioural adverse events. Topiramate and ZNS may be associated with negative effects in some aspects of cogni-
tion; CBD, FFA, LEV, BRV and LTG may have some positive effects, while the remaining ASMs do not appear to have a 
detrimental effect. All the ASMs are associated with sedation to a certain extent, which is pronounced during uptitration. 
Cannabidiol, PER and pregabalin may be associated with improvements in sleep, LTG is associated with insomnia, while 
VPA, TPM, LEV, ZNS and LCM do not appear to have detrimental effects. There was variability in the extent of evidence 
for each ASM: for many first-generation and some second-generation ASMs, there is scant documented evidence; however, 
their extensive use suggests favourable tolerability and safety (e.g. VPA); second-generation and some third-generation ASMs 
tend to have the most robust evidence documented over several years of use (TPM, LEV, PER, ZNS, BRV), while evidence 
is still being generated for newer ASMs such as CBD and FFA. Finally, we discuss how a variety of factors can affect mood, 
behaviour and cognition, and untangling the associations between the effects of the underlying syndrome and those of the 
ASMs can be challenging. In particular, there is enormous heterogeneity in cognitive, behavioural and developmental impair-
ments that is complex and can change naturally over time; there is a lack of standardised instruments for evaluating these 
outcomes in developmental and epileptic encephalopathies, with a reliance on subjective evaluations by proxy (caregivers); 
and treatment regimes are complex involving multiple ASMs as well as other drugs.
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Key Points 

Patients with developmental and epileptic encephalopa-
thies have significant neurodevelopmental comorbidities 
including cognitive, behavioural, psychiatric and sleep 
impairments.

Some anti-seizure medications have side effects that may 
contribute to these impairments, including levetiracetam 
and perampanel (aggressiveness and irritability), topira-
mate and zonisamide (language and memory problems) 
and lamotrigine (insomnia).

Cannabidiol, fenfluramine, levetiracetam, brivaracetam 
and lamotrigine may have positive effects on some 
aspects of cognition.

1 Introduction

The developmental and epileptic encephalopathies (DEEs) 
encompass a group of rare syndromes characterised by 
severe epilepsy with onset in childhood and neurodevelop-
mental impairment [1]. Individuals with DEEs experience 
frequent severe seizures, often numerous times a day; the 
seizures can be of many different semiologies and they tend 
to be refractory to currently available anti-seizure medi-
cations (ASMs). Dravet syndrome (DS), Lennox–Gastaut 
syndrome (LGS) and tuberous sclerosis complex (TSC) 
are classical examples of DEEs in which advances in the 
understanding of the underlying aetiology have translated 
through to the clinic with new drug approvals in recent years 
(Table 1) [2–5].

Neurodevelopmental impairment is common in these 
syndromes, affecting cognition, communication, attention, 
behaviour and sleep (Fig. 1; Table 1). The underlying aeti-
ology of the syndrome can be a cause of the neurodevel-
opmental impairment, while seizures themselves can also 
have an adverse impact (Fig. 2) [6]. A vicious cycle can also 
emerge whereby sleep disorders, which can be exacerbated 
by nocturnal seizures as well as cogitative/behavioural prob-
lems, can in turn further affect the cognitive/behavioural 
problems [7]. Sleep problems may also cause neuroinflam-
mation and neurodegeneration, further intensifying seizures 
[8]. These comorbidities can have profound effects on the 
quality of life (QoL) of patients and their families [9–13], 
and therefore their importance has been growing in recent 
decades, with more recent clinical trials and observational 
studies including specific evaluations of these outcomes.

In addition to the pathogenesis of the syndrome, the 
very treatments used to alleviate seizures in patients with 
DEEs—the ASMs themselves—can be associated with var-
ious psychobehavioural adverse events (PBAEs) (Fig. 2). In 
addition, some ASMs can have negative effects on cogni-
tion and sleep in some patients, while others can be neutral 
or are associated with positive effects. Psychobehavioural 
adverse events encompass a range of behavioural adverse 
events (AEs) including irritability, aggression, tantrum/
outbursts, hyperactivity and emotional lability/mood 
changes and a range of psychiatric AEs including depres-
sion, psychosis, anxiety and suicidal ideation. Adverse 
events, including PBAEs in epilepsy patients, are associated 
with decreased patient QoL [10] and increased healthcare 
resources and costs [14].

We have conducted a narrative review of the effects of 
ASMs on PBAEs, cognition, sedation and sleep, with a focus 
on ASMs used to treat DEEs/drug-resistant epilepsy (DRE), 
particularly DS, LGS and TSC, either as approved therapies 
(bold text in Table 1) or off-label (unbold text in Table 1), 
as specified in recent treatment guidance/reviews for DS [3, 
15–17], LGS [18–21] and TSC [2, 22–26]. Studies of particu-
lar interest were those that included patients with DEE/DREs, 
especially studies whose main objective was to assess these 
specific outcomes, pooled safety analyses and meta-analyses 
(as rarer events may only become evident with such analyses), 
and data from real-world studies (as regulatory clinical trials 
can often exclude people with suicidal ideation and psycho-
sis) [27, 28]. To identify the studies, PubMed was searched 
in March 2022 using a range of MeSH terms encompassing 
cognition, behaviour, psychiatric and sleep for each ASM. 
Furthermore, regulatory documents, including the Summary 
of Product Characteristics (SmPC) for the European Union 
(EU) and the US prescribing information (PI), were identified. 
In particular, this review includes data on recently approved 
ASMs such as CBD and FFA, and the potential of preventa-
tive treatment in TSC, as well as the most up-to-date data on 
other ASMs.

The following sections are divided into those ASMs 
used in the treatment of at least two of the three DEEs, 
followed by those used predominantly for DS alone, LGS 
and then TSC (Table 1). Finally, we briefly discuss ASMs 
that are less commonly used including bromide, felbamate 
and the other sodium channel blockers carbamazepine, esli-
carbazepine acetate, oxcarbazepine and phenytoin, and the 
GABA agonists gabapentin and pregabalin. Of note, all the 
ASMs are associated with somnolence/sedation to some 
extent, which are usually pronounced during uptitration. 
However, because of differences in study designs and popu-
lations, it is not possible to make comparisons between the 
ASMs. In addition, most ASMs have a precautionary warn-
ing for an increased risk of suicidal behaviour and ideation; 
however, suicidal outcomes are not a specific focus of this 
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review; a recent meta-analysis of placebo-controlled ran-
domised controlled trials (RCTs) of newer ASMs reporting 
suicide outcomes (ESL, PER, BRV, CBD and CNB) found 

no evidence of an increased risk of suicide attempt or idea-
tion overall or for any individual drug compared to placebo 
[29]; however, patients should still be monitored.

Fig. 1  Cognitive, behavioural, 
psychiatric and sleep distur-
bance comorbidities associ-
ated with developmental and 
epileptic encephalopathies 
(DEEs). ADHD attention-deficit 
hyperactivity disorder, ASD 
autism spectrum disorder

Fig. 2  Factors affecting cognition, behaviour, mood and sleep distur-
bances. The underlying aetiology can result in damage to the brain, 
including during critical periods of development, and the seizures 
themselves may exacerbate damage to the brain leading to further 

cognitive impairments [6]. Patient characteristics (e.g. age of onset, 
genetics) and anti-seizure medications (ASMs) can also have an 
effect. The comorbidities and the factors contributing to them are all 
tightly inter-linked
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2  ASMs Used in the Treatment of More Than 
One of the Syndromes: DS, LGS and TSC

2.1  Valproate (VPA)

Valproate has a broad indication for the treatment of focal 
and generalised seizures, or other epileptic syndromes 
[30, 31], and is the mainstay first-line treatment for many 
DEEs including DS and LGS. While VPA has been used 
for many decades, there is a lack of evidence of efficacy 
and safety from RCTs, with the main evidence from expert 
opinion (Table 1) and a few small observational studies in 
patients with DS [32], LGS [33] and TSC [34]. It is gener-
ally accepted that VPA rarely controls seizures as mono-
therapy in patients with DEEs [35], and it is usually used 
in combination with other escalation ASMs (Table 1). Its 
multiple mechanisms of action include the modulation of 
the inhibitory neurotransmitter GABA and voltage-gated 
sodium channels, and as a histone deacetylase inhibi-
tor [30, 31]. While generally a well-tolerated treatment 
(Table 2), VPA is associated with major congenital mal-
formations mandating the use of effective contraception in 
women of childbearing age, and also rare cases of hepatic 
failure (see Table 3).

As per the SmPC and the PI, VPA is associated with a 
range of psychiatric and behavioural disorders including 
confusion, aggression, agitation and disturbance in atten-
tion, chiefly in the paediatric population [30, 31]. How-
ever, in general, VPA appears to have a good PBAE profile, 
with observational studies in adults and children with epi-
lepsy (~ 80% with DRE in both adult and paediatric popu-
lations) showing it had a significantly lower rate of PBAEs 
compared with the average across 18 ASMs in adults [36] 
and a low/moderate rate in children [37] (Table S1 of the 
Electronic Supplementary Material [ESM]). Of note, VPA 
is also licensed as a mood stabiliser [30, 31].

Reports on the effects of VPA on sleep have been con-
flicting, with positive, neutral and negative effects on vari-
ous aspects of sleep observed across seven small studies in 
patients with various epilepsy conditions [38]. Further to 
this, VPA-associated cases of nocturnal enuresis have been 
reported, with studies suggesting a link to sleep architec-
ture problems [39, 40]. Overall, the effects of VPA on 
sleep need to be addressed in larger dedicated studies in 
DEEs, although the prevalent use of this ASM suggests 
that problems are likely to be minimal.

There is a paucity of studies on the effects of VPA on 
PBAEs, cognition and sleep in patients with DRE. How-
ever, the available evidence of this extensively used ASM 
suggests minimal effects across these outcomes. Although 
VPA has been used extensively, it does have several limi-
tations, including a lack of gold-standard evidence from 

RCTs, a range of AEs and a propensity for adverse drug 
interactions (Table 2), and therefore it has been suggested 
that newer ASMs could replace VPA in the future [41]. 
Because of the significant teratogenic effects of VPA that 
increase the risk of malformations and neurodevelopmen-
tal disorders (e.g. autism spectrum disorder [ASD]), VPA 
is already heavily restricted in women of childbearing age 
across all indications, to be used only when there are no 
other options available, and when pregnancy prevention 
measures are followed [42]. Further to these concerns, 
recent evidence suggests VPA may cause congenital 
impairments with an epigenetic inheritance that have the 
potential to be transgenerational [43–45].

2.2  Clobazam (CLB)

Clobazam is a 1,5-benzodiazepine that is indicated as an 
adjunctive therapy in epilepsy in the EU and for seizures 
associated with LGS in the USA [46, 47]. Its efficacy and 
safety have been evaluated in RCTs in patients with LGS 
[48–50], and in small observational studies in patients with 
DS [32] and TSC [51], although it has been extensively 
used in patients with DREs for decades. In the EU, CLB is 
also indicated for the short-term treatment of severe anxiety 
[46]. Benzodiazepines, including CLB, mediate their effects 
through the GABA-A receptor. Clobazam has lower sedative 
effects than the 1,4-benzodiazepine clonazepam, owing to it 
being structurally distinct with a lower affinity for GABA-A 
subunits that are involved in sedation. As with other benzo-
diazepines, CLB has a warning for physical and psychologi-
cal dependence, although real-world studies suggest this is 
rare in patients with epilepsy, with one study estimating that 
patients with epilepsy had a 99.4% chance of being free of 
drug dependency over a 5-year treatment for CLB and 98.5% 
for clonazepam [52]. Overall, CLB has a good tolerability 
and safety profile (Table 2) [46, 47].

Psychobehavioural AEs have been reported in real-
world studies evaluating CLB in children with DREs, 
with a frequency of 2.2–7.7% across studies [53–55]. A 
post-hoc analysis evaluating aggression and behaviour 
in patients enrolled in the phase III RCT in patients with 
LGS reported the occurrence of aggression-related AEs in 
23/146 (15.8%) CLB-treated patients versus 4/48 (8.3%) 
placebo-treated patients [56]. There was no difference in 
the frequency of aggression-related AEs in those with and 
without a history of aggressive behaviour. No significant 
differences between CLB and placebo were observed for 
the behaviour domains of the Child Behavior Checklist 
(CBCL) [56]. This is in line with a previous study in chil-
dren with newly diagnosed epilepsy that showed no differ-
ences between CLB (n = 24) and standard monotherapy 
(phenytoin or carbamazepine; n = 17) across a range of 
neuropsychological measures (intelligence, memory, 
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attention, psychomotor speed and impulsivity) obtained 
at 6 weeks or 12 months [57]. However, in a study of 115 
children with DREs, 72% reported an improvement in at 
least one aspect of neurologic function after initiating 
CLB, particularly alertness, attention span, mood, balance 
and appetite, while 26% reported a worsening [58]. A more 
recent (2019), albeit small pilot study, in ten children with 

LGS treated with CLB observed statistically significant 
improvements from baseline to week 10 in cognition, 
behaviour and overall QoL assessed using the Quality of 
Life in Childhood Epilepsy questionnaire [59]. No studies 
specifically analysing the effects of CLB on sleep param-
eters were identified, although benzodiazepines are a treat-
ment option for chronic insomnia in adults [60].

Table 3  Summary of PBAEs, and effects on cognition and sleep with ASMs used in DEEs
ASM Behaviour Mood/

psychiatric
Cognition Sedation Sleep Special PBAEs Notes

Valproate (VPA) - -

Clobazam (CLB) - -

Topiramate (TPM) Language 
impairment 

Memory
Cognitive dulling

* Regulatory warning/precaution for 
cognitive/neuropsychiatric AEs

Cannabidiol 
(CBD) 

- * Increased risk of somnolence and sedation with CLB 
(dose reduction of CLB recommended)

Fenfluramine 
(FFA)

- -

Levetiracetam 
(LEV)

Aggressiveness
Irritability

* Regulatory warning/precaution for behavioural 
abnormalities including psychotic symptoms, suicidal 
ideation, irritability, and aggressive behaviour
PBAEs more common in paediatric patients and 
adolescents than in adults

Brivaracetam 
(BRV)

Irritability
Aggressiveness?

* Regulatory warning/precaution for psychiatric and 
behavioral reactions including psychotic symptoms, 
irritability, depression, aggressive behaviour, and 
anxiety

PBAEs more common in paediatric patients and 
adolescents than in adults
May be a valid option for patients who discontinued 
LEV due to PBAEs

Zonisamide (ZNS) Agitation 
Irritability
Language 
impairment

* Regulatory warning/precaution for cognitive/ 
neuropsychiatric AEs

Perampanel 
(PER)

Aggressiveness
Irritability

Depression

* Regulatory warning/precaution for serious or life-
threatening psychiatric and behavioral adverse 
reactions including aggression, hostility, irritability, 
anger, and homicidal ideation and threats
BAEs may be more common in adolescents

* * *

*

* *

* *

* * *

* *

Ethosuximide 
(ESM)

Attentional 
dysfunction
Insomnia

Stiripentol (STP) 
(+VPA+CLB)

- -

Lamotrigine (LTG) Insomnia -

Rufinamide (RUF) - -

Vigabatrine (VGB) Depression Applies to TSC patients; not generally used for other 
DEEs

Lacosamide 
(LCM)

- -

Everolimus (EVE) - -

Infrequent
Bromide (Br) - * Bromism includes psychiatric toxicities including 

somnolence, psychosis, and hallucinations
Felbamate (FLB) - -

Other Na+ 
channel ASMs

- -

GABA agonists 
gabapentin and 
pregabalin

* Pregabalin: positive impact on sleep maintenance 

= negative effects; =neutral/moderate effects; =positive effects; =no data;   in corner=lacking conclusive evidence 

* *

*
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Overall, CLB has a generally good tolerability profile; 
however, PBAEs have been reported in a proportion of 
patients with DREs, although there is also some evidence 
that CLB may be associated with improvements in some 
aspects of cognition and behaviour. There is a lack of stud-
ies on sleep; however, its properties as a benzodiazepine 
can aid in falling asleep, while somnolence or sedation is a 
frequently reported AE.

2.3  Topiramate (TPM)

Topiramate is indicated as an adjunctive therapy in patients 
with LGS, as well as for focal seizures or primary general-
ised tonic-clonic seizures [61, 62]. The efficacy and safety 
of TPM have been evaluated in RCTs in patients with LGS 
[63], with evidence being limited to observational studies 
in patients with DS [32, 64, 65] and TSC [34]. A Cochrane 
analysis identified 12 trials evaluating add‐on TPM for 
DREs (Table S1 of the ESM) [66]. This second-genera-
tion ASM modulates voltage-dependent sodium channels, 
enhances GABA inhibition and antagonises the AMPA/kain-
ate subtype of glutamate receptors [61, 62].

While generally well tolerated, the SmPC and PI con-
tain a warning for PBAEs (Table 2); in the regulatory RCTs 
(which used a rapid titration schedule), PBAEs were more 
common in adults than children, and occurred more fre-
quently at higher doses [61, 62]. In the Cochrane analysis 
of trials evaluating add‐on TPM for DREs, PBAEs associ-
ated with TPM were concentration difficulties and ‘think-
ing abnormally’; however, the majority of the studies were 
in adults [66] (Table S1 of the ESM). Although rare, co-
administration with VPA may increase the risk of hyperam-
monaemia that may present as encephalopathy (with associ-
ated neurocognitive and behavioural changes) or sedation 
(Table 2) [61, 62].

Negative effects on language abilities and memory are 
particular concerns of TPM, worse than for many other 
ASMs [67–73]. For example, in 84 adults with DRE, TPM 
showed significantly worse scores compared with LTG for 
verbal fluency, verbal digit, nonverbal working memory and 
visual Corsi block spans, with a trend for worse scores for 
verbal working memory, verbal comprehension, mental rota-
tion, visual anticipation speed and planning ability [69]. The 
effects appear to be dose related; they are common at high 
doses but can occur even at low doses in some patients [69, 
73–75].

Several observational studies in patients with DREs show 
that PBAEs and cognitive AEs are frequently reported in 
these real-world situations. In 36 children with DS, AEs 
included behavioural disorders (agitation or aggression 

in 14%]), fatigue (11%), insomnia (11%) and impairment 
of language (5.6%) [65]. In 45 children with LGS, AEs 
included drowsiness (8.9%), cognitive dulling (8.9%), tran-
sient dysarthric speech (4.4%), hyperexcitability (4.4%) and 
nervousness (2.2%) [76]. In a large study of children with 
various DREs, behaviour disturbances/aggressiveness was 
reported in 14/227 (6.2%), attention or concentration dif-
ficulty in 11 (4.8%) and acute psychosis in six (2.6%) [65]. 
Another study in 98 children with DREs reported that cogni-
tive dulling was a particular problem, leading to discontinu-
ation in 31% of patients [77].

Studies specifically evaluating the effect of TPM on 
PBAEs and cognition in epilepsy patients with cognitive 
comorbidities have suggested that TPM is associated with 
worsening of cognition (including cognitive speed, verbal 
memory, verbal fluency and flexibility) and behaviour in a 
significant proportion of patients [70, 78]. A post-marketing 
study of TPM in 596 adults with epilepsy found that having 
a past psychiatric history was not only a predictor of having 
PBAEs (including irritability, aggression and depression) 
but also of cognitive AEs [79]. In contrast to the above stud-
ies, a study of 64 adults with DRE and a learning disability 
found that mean caregiver scores for behaviour, alertness 
and sleep improved with TPM use [80].

The effect of TPM on sleep has not been extensively stud-
ied; however, data from three studies in adults with epilepsy 
suggest that TPM is not associated with sleep problems, 
including excessive daytime sleepiness, subjective sleep 
quality and insomnia [80–82]. Overall, TPM is associated 
with a range of PBAEs and cognitive deficits including 
behavioural disorders and cognitive dulling. Speech dis-
orders are particularly common, occurring even at lower 
doses in some patients. Clinicians should also be aware of 
the increased risk of hyperammonaemic encephalopathy 
with VPA.

2.4  Highly Purified Cannabidiol (CBD)

Cannabidiol is a third-generation ASM approved as an 
adjunctive therapy for seizures associated with LGS, DS 
(in conjunction with CLB in the EU) and TSC [83, 84]. The 
approvals were based on evidence from RCTs in patients with 
LGS [85, 86], DS [87, 88] and TSC [89]. Cannabidiol is also 
being evaluated for the treatment of anxiety disorders, depres-
sion, attention-deficit hyperactivity disorder and ASD [90, 
91]. Cannabidiol has multiple mechanisms of action that are 
distinct from other ASMs including modulating intracellular 
calcium via G protein-coupled receptor 55 and extracellular 
calcium influx via transient receptor potential vanilloid type 1 
channels, and inhibiting adenosine cellular uptake [92].
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Cannabidiol is a generally well-tolerated treatment 
(Table 2) [83, 84, 93]. In the regulatory trials, sleep dis-
turbances (insomnia/sleep disorder/poor quality sleep) 
occurred in 5–11% of patients with CBD versus 4% for 
placebo [83]. Somnolence and sedation are more com-
mon in patients taking concomitant CLB owing to a 
bi-directional drug–drug interaction that increases the 
plasma concentrations of the major metabolites of CBD 
(7-OH-CBD) and CLB (norclobazam [N-desmethyl-
clobazam]); dose reductions of CLB are recommended 
if somnolence/sedation is observed [83, 84]. In-line with 
this, a recent meta-analysis of CBD trials across multiple 
therapy areas noted that CBD was only associated with 
somnolence and sedation in childhood epilepsy trials, 
most likely owing to interactions with other ASMs such 
as CLB and VPA [94]. A small study in children with 
DRE (n = 35, including DS, LGS and other genetic epi-
lepsy syndromes) found that of 13 patients with abnor-
mal sleep architecture at baseline, sleep improved in 11 
(84.6%) patients [95].

Regarding cognition, no cases of significant cognitive 
decline from baseline were observed in 39 children with 
DRE assessed using standardised neuropsychological tests 
on memory, executive functions and attention completed 
by the patient or caregiver [96]. The vast majority (>89%) 
of the individual test results showed stable or improved 
outcomes from baseline, and a significant improvement 
in measures of selective attention and behaviour were 
observed. In line with this, in a phase II expanded access 
program study evaluating the long-term treatment of chil-
dren with DRE, improvements were recorded for sleep 
(sleep duration, daytime sleepiness and nocturnal arous-
als), irritability, hyperactivity, cognition in QoL, behav-
ioural function and general health (n = 28, assessed using 
the Children’s Sleep Habit Questionnaire [CSHQ], Aber-
rant Behavior Checklist [ABC] or the Quality of Life in 
Childhood Epilepsy questionnaire) [97]. Similar to studies 
in children, a study of 27 adults with DRE reported that 
cognitive testing (assessed using the NIH Toolbox Cogni-
tion Battery) was below average at baseline, but impor-
tantly it did not decline further during CBD treatment 
(1-year follow-up) [98]. Although CBD has only recently 
been approved (2018–21 across indications and regions), 
there is now a growing body of evidence beyond the clini-
cal trial programme that CBD may have associated benefits 
(improvements or stabilisation) for sleep, cognition and 
behavioural outcomes, albeit from small studies.

2.5  Fenfluramine (FFA)

Fenfluramine, a third-generation ASM, is approved in the 
EU and USA as an add-on treatment for seizures associated 
with DS [99, 100]. In the USA, it is also recently approved 
for LGS, and is currently undergoing regulatory review 
for this indication in the EU. Pivotal RCTs have been con-
ducted in patients with DS [101, 102] and with LGS [103]. 
Uniquely among ASMs, FFA has agonistic activity at mul-
tiple serotonin receptors and acts as a positive modulator of 
the sigma-1 receptor, and it is hypothesised the two mech-
anisms together may help to restore the balance between 
inhibitory GABA signalling and excitatory glutamatergic 
signalling [104].

Fenfluramine is generally well tolerated (Table 2) [100, 
105, 106]. Psychobehavioural AEs occurred infrequently 
in pivotal trials, most commonly abnormal behaviour in 
0–9% across the FFA doses versus 0% in a combined pla-
cebo group, and irritability in 0–9% in FFA-treated patients 
versus 2% with placebo [99]. Of 78 patients with DS treated 
with FFA in a compassionate use programme in Germany, 
an increase in behavioural problems was reported in five 
(6%) patients and aggressive behaviour in three (4%) and 
two discontinued because of PBAEs [107]. Across the entire 
European compassionate use programme (n = 149 patients 
with DS), PBAEs were reported in 13 (9%) patients, sleep 
disturbances in six (4%) and somnolence in 24 (16%) [108].

A post-hoc analysis of data from a pivotal RCT and 
open-label extension (with a ≥ 1 year follow-up) in children 
and young adults with DS found that responders (a ≥ 50% 
reduction in monthly convulsive seizure frequency) showed 
improved everyday executive function assessed using the 
Behavior Rating Inventory of Executive Function (BRIEF2), 
which measures factors such as behaviour (e.g. impulsivity), 
emotion (e.g. emotional outbursts) and cognitive regulation 
(e.g. attention, memory, planning/organising); in particu-
lar, the ≥ 50% monthly convulsive seizure frequency reduc-
tion group was significantly more likely to achieve clini-
cally meaningful improvements in emotional regulation (p 
= 0.002) and cognitive regulation (p = 0.001) than the < 
50% monthly convulsive seizure frequency reduction group 
[109]. Initial data presented at conferences also show that 
FFA is associated with improvements in executive function 
in preschool children with DS [110] and in patients with 
LGS [111]. Importantly, in a real-world study, caregivers of 
patients with DS treated with FFA reported improvements 
in patient QoL associated with enhanced cognitive function, 



1093Psychobehavioural Adverse Events in DEEs

alertness and academic performance [112]. Fenfluramine 
has only recently been approved in patients with DS, and 
evidence of its effects on cognition and sleep is still being 
garnered; however, initial data suggest FFA has a positive 
effect on executive function, which may be mediated through 
sigma-1 receptors [113, 114].

2.6  Levetiracetam (LEV)

Levetiracetam is a second-generation ASM indicated for 
the treatment of focal seizures (with or without secondary 
generalisation in the EU), myoclonic seizures in patients 
with juvenile myoclonic epilepsy and primary generalised 
tonic-clonic seizures in patients with idiopathic generalised 
epilepsy [115, 116]. Retrospective observational studies 
have provided evidence of the efficacy and safety of LEV in 
patients with DS [32, 117], LGS [118] and TSC [119], while 
there is RCT evidence from 14 studies in patients with DREs 
(Table S1 of the ESM) [120]. Levetiracetam may act through 
multiple targets, including binding to the synaptic vesicle 
protein 2A (SV2A), a membrane glycoprotein that is present 
in synaptic vesicles of neurons and endocrine cells [121].

The tolerability profile of LEV is generally favourable 
[122] (Table 2), and it is frequently used in patients with 
DEEs [115]. However, the SmPC and PI for LEV contain a 
warning for PBAEs including psychotic symptoms, suicidal 
ideation, irritability and aggressive behaviours [115, 116]. 
Furthermore, a number of pooled analyses and meta-anal-
yses of RCTs and observational studies have confirmed the 
association with PBAEs, particularly hostility, aggression, 
irritability, nervousness and anxiety [120, 123–128], with 
a higher rate of PBAEs compared with many other ASMs 
(Table S1 of the ESM) [36, 37, 127], which can lead to treat-
ment discontinuations in a small proportion of patients [126, 
127] (Table S1 of the ESM).

Psychobehavioural AEs appear to be more common in 
paediatric patients and adolescents than in adults across the 
pivotal regulatory RCTs (Table 2) [116, 129]. Indeed, the 
latest Cochrane meta-analysis of placebo-controlled RCTs of 
LEV as add‐on therapy for DREs reported that the increased 
risks of PBAEs compared to placebo were minimal in adults 
but significant in children [120] (Table S1 of the ESM). Lev-
etiracetam was not significantly associated with an increased 
risk of any individual PBAE alone (Table S1 of the ESM).

Levetiracetam does not appear to have a significant detri-
mental effect on cognition, and it may even have some ben-
efits on certain aspects [130–132]. For example, in one RCT 
in children and adolescents with DRE and an IQ ≥ 65, no 
differences were found between LEV and placebo in mem-
ory and attention [133], while in the long-term open-label 
extension study, cognitive functioning (Leiter-R Score) was 
stable and behavioural and emotional functioning (CBCL) 
showed slight improvements from baseline to week 48 [134]. 

In another RCT in children and adolescents with DRE, a 
worsening of the mean CBCL Aggressive Behavior score 
was reported in the LEV group but not placebo, whereas 
the CBCL Activities Competence score worsened in the pla-
cebo group but not the LEV group [135]. There is a lack of 
dedicated studies examining sleep disorders with LEV [38]; 
however, Thelengana et al. observed sleep-related AEs in 
only one of 66 patients with adult epilepsy (1.6%) treated 
with LEV and cases of hypersomnolence were rare [136].

Overall, while generally a tolerable treatment option, 
PBAEs may be the biggest drawback of LEV, leading to 
discontinuation in a proportion of adults and children. How-
ever, LEV may have neutral effects on sleep and neutral/
positive effects on cognition. Sedation might occur during 
uptitration, but will usually resolve after a few weeks.

2.7  Brivaracetam (BRV)

Brivaracetam is a third-generation ASM that is indicated as 
adjunctive therapy in the treatment of focal seizures (with 
or without secondary generalisation in the EU) [137, 138]. 
A Cochrane analysis identified six trials evaluating add‐on 
BRV for DREs (Table S1 of the ESM) [139], while BRV has 
also been analysed in a large number of observational studies 
in patients with DEEs/DREs [140–148]. Brivaracetam is an 
analogue of LEV that has 15–30 times greater affinity for 
SV2A and higher brain permeability compared with LEV 
[149]. Brivaracetam has a good tolerability profile similar to, 
or perhaps better than, LEV [150, 151]. The most frequently 
reported AEs in regulatory trials were somnolence and diz-
ziness (Table 2).

Similar to LEV, the SmPC and PI for BRV warns of 
behavioural reactions including psychotic symptoms, irri-
tability, depression, aggressive behaviour, anxiety, and sui-
cidal behaviour and ideation [137, 138]. In a pooled analysis 
of the clinical trial programme for adjunct BRV in patients 
aged ≥  16 years, overall psychiatric disorder-related AEs 
were reported in 11.3% of patients treated with BRV versus 
8.2% with placebo, behavioural disorder-related AEs in 4.0% 
versus 2.5%, irritability in 2.7% versus 1.5%, while anger, 
aggression and agitation were each reported infrequently 
(≤ 1% of BRV-treated patients) [152]. Psychosis-related AEs 
were also rare [152]. Two meta-analyses of BRV placebo-
controlled RCTs in adults with DREs have both found that 
BRV was significantly associated with irritability but not 
for other PBAEs including insomnia, depression and anxi-
ety [153, 154]

As with LEV, PBAEs appear to occur more common in 
children. In the regulatory, open-label, uncontrolled, long-
term studies, behavioural disorders were reported in 24.8% 
of paediatric patients compared with 15.1% of adults, sui-
cidal ideation in 4.7% of paediatric patients compared with 
2.4% of adults and psychomotor hyperactivity was reported 
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in 4.7% of paediatric patients [137]. In both adult and pae-
diatric patients, most of the PBAEs were not serious, were 
of mild or moderate intensity and did not lead to study dis-
continuation [137].

The efficacy and tolerability of BRV have also been 
analysed in a number of real-world observational studies. 
Across five observational studies in paediatric patients, with 
most or all patients having DRE (n = 23–66), PBAEs were 
reported in 3–31% of patients, primarily irritability and 
aggressiveness [140–144], while discontinuations because 
of PBAEs were infrequent (0–6%) [141–144]. Similarly in 
studies exclusively [145, 146] or predominantly in adults 
with DREs [147, 148] (n = 44–1029), PBAEs included 
irritability/agitation (6–9% across studies [145, 146, 148], 
aggression (2–7% [145, 146, 148]), mood changes (2.3% 
[145]) and memory disturbances (4.7% [146]), and discon-
tinuations because of PBAEs were reported in 4–11% of 
patients [146, 147]. While one study reported that toler-
ability in general was not influenced by having a history of 
learning disability or psychiatric comorbidity [146], other 
studies have suggested that having pre-existing psychiatric 
or behavioural comorbidities is a risk factor for the associ-
ated PBAEs [155, 156]. Of note, switching from LEV to 
BRV may have a favourable effect on PBAEs in a proportion 
of patients (33.3–83.0% across observation studies [Table S1 
of the ESM]) [127].

Brivaracetam may benefit some aspects of cognition, with 
one study in 43 patients with epilepsy showing a signifi-
cant improvement in attention and executive functions and a 
trend towards improved reaction times, and stabilised verbal 
memory performance [157]. No studies were identified that 
specifically analysed the effect of BRV on sleep disorders, 
although somnolence is a commonly reported AE, which 
usually resolves after few weeks.

There is a lack of head-to-head RCTs precluding a direct 
comparison of the rate of PBAEs in LEV-treated and BRV-
treated patients. However, the evidence suggests that BRV 
has a fairly neutral PBAE profile (except for irritability and 
aggressiveness), and it may be a valid alternative in patients 
who have discontinued LEV because of PBAEs. The fact 
that BRV has enhanced activity at SV2A compared with 
LEV, but a similar or better psychobehavioural tolerabil-
ity profile, suggests that SV2A may not be the mechanism 
responsible for the occurrence of PBAEs [158].

2.8  Zonisamide (ZNS)

Zonisamide, a synthetic sulfonamide, is indicated for the 
treatment of focal seizures as adjunctive therapy from ≥ 
6 years of age in the EU and in adults in the USA [159, 
160]. Zonisamide has been evaluated in patients with 
DREs [161–163], and in a multicentre open-label study in 
patients with LGS [164]. There is also some evidence of use 

in clinical practice in patients with DS, albeit in a limited 
capacity [165, 166]. A Cochrane analysis identified eight 
RCTs in patients with DREs (Table S1 of the ESM) [162]. 
Zonisamide is a carbonic anhydrase inhibitor, and although 
its exact mechanism of action is unknown, it includes inhibi-
tion of voltage-dependent sodium and a reduction in voltage-
sensitive T-type calcium channels [131, 160]. It also alloster-
ically binds to the GABA-benzodiazepine receptor and has 
been found to facilitate both dopaminergic and serotonergic 
neurotransmission [160]. Evidence from 20 years of clinical 
studies in Japan, confirmed by four placebo-controlled trials 
in Europe and the USA, shows ZNS is a well-tolerated ASM, 
although sulfonamides including ZNS are known to cause 
serious skin reactions, including rash and allergic reactions 
(Table 2). In addition, the SmPC and PI warn of an associa-
tion with cognitive/neuropsychiatric AEs, the most common 
being agitation and irritability (Table 2) [159, 160]. In com-
parative real-world studies, ZNS was significantly associated 
with a higher rate of PBAEs and discontinuations because 
of PBAEs in adults and children (the majority with DRE), 
especially depressed mood (Table S1 of the ESM) [36, 37].

Zonisamide may be associated with negative cognitive 
and mood effects [159]. For example, a retrospective study 
that included 28 patients with epilepsy reported ZNS-asso-
ciated negative effects on executive function (EpiTrack) that 
was reversed upon withdrawal; verbal memory and QoL 
measurements were not affected [167]. Zonisamide may also 
elicit detrimental effects on language ability, especially at 
high doses [130]. A study in patients with epilepsy evaluat-
ing the long-term effects of ZNS found negative cognitive 
(memory and concentration), mood (anxiety and depression) 
and language effects may persist even after a year of treat-
ment; the deficits were especially prevalent at high doses 
but also occurred in a small proportion of patients at low 
doses [168]. In a study of 87 adult patients with DRE and 
intellectual disability, PBAEs including sedation (38%), lan-
guage impairment (19%) and challenging behaviour (10%) 
were among the most commonly reported AEs [169]. Mania, 
psychosis and suicidal ideation were also associated with the 
use of ZNS in a study of 24 patients with DRE; however, 
psychiatric AEs were not severe and only one patient (4.3%) 
discontinued the study because of a psychiatric AE (major 
depressive disorder) [170]. This is reflected in another study 
where only 1.2% of 167 adults with DRE reported severe 
psychiatric AEs [171]. In relation to sleep, a small study (n 
= 13 patients with focal seizures) of ZNS showed no nega-
tive effects on measurements that assessed nocturnal sleep 
and daytime somnolence [172].

Overall, ZNS may be associated with negative cognitive 
and mood effects, although only limited data are available 
especially in children, meaning concrete conclusions are dif-
ficult to make [38, 130, 132]. However, ZNS appears to be 
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well tolerated in both children and adults if appropriately 
dosed.

2.9  Perampanel (PER)

Perampanel is indicated for focal seizures and primary gen-
eralised tonic-clonic seizures [173, 174]. Perampanel has 
been evaluated in observational studies in cohorts of patients 
with DEEs that included LGS, DS and TSC [175–182], 
while other studies have been performed exclusively in 
patients with LGS [183, 184] and DS [185]. Perampanel 
was being evaluated in a phase III RCT; however, the study 
was terminated by the sponsor because of challenges with 
recruitment that were exacerbated because of the coronavi-
rus disease 2019 pandemic (NCT02834793). Perampanel is 
a non-competitive antagonist of the AMPA glutamate recep-
tor on post-synaptic neurons; however, the exact mechanism 
responsible for its anti-epileptic effects are not known [174]. 
While PER is considered generally well tolerated, there are 
warnings for serious PBAEs including aggression, hostil-
ity, irritability and anger, especially at higher doses [173, 
174] (Table 2). In addition, homicidal ideation and threats 
have also been reported, although in < 1% of patients in the 
regulatory clinical trials [173, 174].

In an observational study of 62 children and adolescents 
with DRE, the most frequently reported AEs included irri-
tability (11.3%) with aggressiveness (4.8%), and reduced 
vigilance or fatigue (11.3%), while insomnia was reported 
in 3.2% of patients [180]. A meta-analysis of observa-
tional studies in adults with epilepsy have confirmed PER-
related behavioural effects, with weighted mean incidences 
of 12.3% (range 1.4–33.7%) for irritability, 2.0% (range 
1.5–7.7%) for anger and 4.4% (range 1.0–24.5%) for aggres-
siveness (Table S1 of the ESM). A large pooled analysis of 
44 retrospective and prospective studies from 17 countries 
encompassing 4617 patients with epilepsy treated with PER 
reported behavioural disorders in 5.4% of patients across 
studies and psychiatric AEs in 21%, leading to discontinu-
ation in 3.1% for irritability, 2.8% for behavioural disor-
ders and 1.1% for mood disturbance [186]. There were no 
reported cases of homicidal ideation. Psychiatric AEs were 
significantly associated with having a history of psychiatric 
comorbidity, while overall tolerability was better when a 
slow titration was used [186]. Although it has been sug-
gested that PBAEs may be affected by dose [132, 187], other 
studies have reported the occurrence of PBAEs over a wide 
range of doses [188]. In addition, PER-associated aggressive 
behaviour may be more frequent in adolescents than adults 
[189, 190]. Of note, aggressive behaviour has been reported 
to occur months or even years after initiating PER [191]. 
As well as aggression, PER may also be associated with an 
increased risk of depression [187, 192].

Other studies in patients with DRE have noted that PER 
can have variable effects on behaviour and cognition, includ-
ing some positive changes. For example, in a retrospective 
study of 135 adult patients with epilepsy (the majority with 
DRE with one or more psychiatric and behavioural comor-
bidity), 23.7% had aggravated behavioural and psychiatric 
AEs, while 16.3% showed symptom improvements [193]. In 
adult patients with LGS treated with PER, 32% had signifi-
cant adverse behavioural changes; however, improvements 
were noted in 5.6%, including “feelings of wellness, calm 
and better contact” [184]. In a study of 13 children with 
LGS, AEs included decreased activity/social interaction (n 
= 3) and behaviour disturbance with agitation (n = 2), while 
improvements in behaviour and cognitive functioning were 
experienced by 52.8% of patients, particularly with language 
abilities [183]. This is reflected in another study of children 
with DRE, in which cognitive performance was slightly 
improved and no major changes in behaviour, attention or 
executive functions were seen [194].

Regarding sleep, a cross-sectional study of adults 
observed insomnia was less prevalent in patients who 
received PER than those who did not [195]. Clinically signif-
icant insomnia scores also differed between the two groups 
when using a stepwise linear regression model, although no 
difference was found with a univariate analysis [195]. Stud-
ies identified in a systematic literature review (SLR) suggest 
PER has neutral effects or even improves several aspects of 
sleep such as reducing daytime sleepiness, and improving 
total sleep time, sleep latency, sleep efficiency, sleep main-
tenance index and wake time after sleep onset [38].

In conclusion, behavioural changes are among the most 
frequent PER-related AEs. Aggressive behaviour is common 
and may be more typical in adolescent populations. Despite 
serious warnings, PER can be a well-tolerated treatment if 
used with caution at the appropriate dose, and it may be 
associated with improvements in several sleep parameters.

2.10  Ethosuximide (ESM)

Ethosuximide is a first-generation ASM indicated for the 
control of absence seizures (petit mal) epilepsy, as well 
as for myoclonic seizures [196, 197]. In an RCT, ESM 
was found to be more effective in patients with childhood 
absence epilepsy than LTG, and to have a better tolerability 
profile (fewer adverse effects on attention) than VPA [198, 
199], and as such it is the recommended first-line therapy for 
childhood absence epilepsy [200]. For DS, ESM is recom-
mended in recent guidelines as a third-line treatment option 
but for absence seizures only [5, 15, 17]. Ethosuximide 
acts by depression of the motor cortex and reducing T-type 
currents on calcium channels, thought to prevent synchro-
nised firing, primarily in thalamocortical neurons [130, 196, 
201]. Ethosuximide-related side effects include severe skin 
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reactions such as SCARs and drug reaction with eosino-
philia and systemic symptoms, but is generally well toler-
ated (Table 2) [196, 197]. Psychiatric disorders including 
withdrawal, anxiety and sleep disturbances were reported 
to be uncommon in the SmPC (Table 2) [196].

There is very limited information about the cognitive or 
behavioural effects of ESM, even though it has been used 
clinically for over 60 years [201]. However, two studies 
have suggested ESM may be associated with attentional 
dysfunction, although to a lower or similar extent to some 
other ASMs [198, 199, 202]. The first study comparing ini-
tial monotherapy of different ASMs in 453 children with 
absence epilepsy found that ESM had significantly less 
adverse attentional effects compared with VPA, as meas-
ured by the Conners Continuous Performance Test criteria, 
observed both at 16–20 weeks and after 1 year, while there 
was no difference in attentional dysfunction between ESM 
and LTG [198, 199]. Another study of ESM monotherapy 
in 61 children with absence seizures showed that, compared 
with controls, the children had significantly lower scores for 
verbal, performance and full-scale IQ, perceptual organisa-
tion, motor integration and motor coordination, and multi-
ple domains related to attentional functions, although it was 
suggested that ESM itself caused only mild effects for some 
parameters, with the seizures and the underlying aetiology 
also being contributing factors [202].

There is limited literature available for ESM directly 
related to sleep parameters [38]; however, sleep-related AEs 
including sleep disturbances and night terrors are known to 
occur with ESM [196, 197]. In conclusion, although evi-
dence of ESM-related PBAEs, cognition or sleep changes 
are limited, mild attentional effects and other reactions have 
been reported.

3  Additional ASMs Used in the Treatment 
of DS

3.1  Stiripentol (STP)

Stiripentol is indicated as an adjunctive therapy for sei-
zures in patients with DS (in conjunction with CLB in the 
USA and VPA and CLB in the EU) [203, 204]. Stiripentol 
acts by enhancing the inhibitory neurotransmitter GABA. 
It was approved in the EU in 2007 and in the USA in 2018 
based on the evidence from a pivotal RCT in children with 
DS [205]. Stiripentol is generally well tolerated, although 
it is associated with some PBAEs including agitation and 
aggression, as well as insomnia (Table 2) [165, 203, 206]. 
Of note, an interaction with CLB leads to increased plasma 
concentrations of CLB and its metabolite N-desmethyl-
clobazam that may increase CLB-related AEs; somnolence 
and sedation are particularly prevalent with STP and CLB, 

which may be alleviated by reductions in the dose of CLB 
[203, 204].

There are limited studies evaluating PBAEs and the 
effects on cognition and sleep with STP. A prospective 
observational open-label study that followed patients 
with DS (age 11 months to 22 years at initiation) from 
2003 to 2015 reported drowsiness/sedation in 14/41 (34%) 
patients, behavioural change in nine (22%) and insomnia in 
four (10%) [207]. A long-term open-label study in Japan 
reported somnolence in 19/24 (79.2%) patients with DS, 
agitation in two (8.3%) patients and initial insomnia in two 
(8.3%) [208]. Another long-term study of patients with DS 
who initiated STP in childhood and continued into adult-
hood reported that intellectual disability present in child-
hood continued to decline into adulthood [209]. Overall, 
there do not appear to be either concerns or benefits with 
regard to PBAEs, cognition or sleep with STP, although 
somnolence and sedation are common side effects requir-
ing dose reductions of CLB.

4  Additional ASMs Used in the Treatment 
of LGS

4.1  Lamotrigine (LTG)

Lamotrigine is a second-generation, sodium-channel-
blocking ASM. It is indicated as adjunctive treatment for 
seizures associated with LGS, as well as focal and gen-
eralised tonic-clonic seizures in general [210, 211]. The 
approval in patients with LGS was based on RCT evi-
dence in patients with LGS [212]. In addition, a recent 
Cochrane analysis identified 14 trials encompassing 1806 
participants with DREs (Table S1 of the ESM) [213]. 
Slow titration of LTG is required at initiation to reduce 
the risk of serious, potentially fatal, rashes, including Ste-
vens–Johnson syndrome and toxic epidermal necrolysis, 
and titration should be even slower in combination with 
VPA. Otherwise, LTG has a good tolerability and safety 
profile (Table 2) [210, 211].

Psychobehavioural AEs reported in the regulatory trials 
include insomnia, depression, anxiety and emotional labil-
ity, reported in ≤ 6% of adult patients [210, 211]. In stud-
ies comparing the rate of PBAEs across 18 ASMs in adults 
[36] and in children [37] with epilepsy (mainly with DRE), 
LTG, one of the most frequently used ASMs, had one of 
the lowest rates of PBAEs and discontinuations because of 
PBAEs (Table S1 of the ESM). The good PBAE profile of 
LTG is in line with other studies [131, 214, 215], including 
the recent Cochrane systematic reviews of LTG studies in 
drug-resistant focal seizures and drug-resistant general-
ised tonic-clonic seizures where no PBAEs were among 
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the most frequently reported (Table S1 of the ESM) [213, 
216]. Of note, LTG also acts as a mood stabiliser and is 
indicated for depression in patients with bipolar disorder 
[210, 211].

Many studies have reported that LTG has a neutral or 
positive effect on cognition and behaviour [217–229]. 
McKee et  al. reported improvements from baseline in 
social functioning in nearly half of their patients with DRE 
and mental retardation (n = 95), with significant improve-
ments in mean scores for lethargy and habilitation [227], 
while other studies have reported significant improvements 
in measures of mood/depression in patients with DREs 
[225, 230]. This is in line with several studies report-
ing anecdotal improvements in cognition and behaviour, 
including increased alertness, responsiveness and social 
interactions [217, 219, 231]. However, it should be noted 
that negative effects on aspects of behaviour have been 
noted in patients treated with LTG [225, 226, 232]. For 
example, in a small study of seven patients with epilepsy 
with mental retardation (including five with LGS), posi-
tive effects were noted in four patients, including reduced 
irritability and hyperactivity, improved speech and social 
interactions; however, negative effects were observed in 
three patients including increased temper tantrums, hyper-
activity, irritability and poor cooperation [232].

Insomnia/sleep disturbances has been reported as a 
dose-dependent AE in a number of studies including in 
patients with LGS [231, 233, 234], although other studies 
have shown no major effect on sleep parameters includ-
ing nocturnal sleep or daytime somnolence [235, 236]. 
Overall, LTG is predominantly a favourable ASM in terms 
of PBAEs, cognition and behaviour, although it may be 
related to insomnia.

4.2  Rufinamide (RUF)

Rufinamide was approved as adjunctive therapy for the treat-
ment of seizures associated with LGS in the EU and the 
USA in 2007 and 2008, respectively [237, 238] with evi-
dence in patients with LGS garnered from RCTs [239–241]. 
Furthermore, a Cochrane analysis identified six studies in 
patients with DREs (Table S1 of the ESM) [242]. This tria-
zole derivative is thought to act by prolonging the inactive 
state of voltage-gated sodium channels, although the exact 
mechanisms are unknown [237, 238]. Rufinamide is a well-
tolerated ASM (Table 2) [237, 238, 242, 243]. Somnolence 
and anxiety were the only psychiatric disorders “commonly” 
experienced by patients in the regulatory trials. Psychobe-
havioural AEs have not been notable in RUF clinical trials 
and observational studies [239, 242–247].

In one of the pivotal RCTs in LGS paediatric patients 
(aged ≥ 1 to < 4 years; n = 25 in the RUF group vs 12 in the 
placebo group), no statistically significant differences were 

observed between groups for mean CBCL total problems 
score assessed every 24 weeks up to 106 weeks [239]. Simi-
larly, an observational multicentre prospective study of 16 
patients with LGS (aged 7–58 years) found no statistically 
significant differences from baseline in behaviour (CBCL), 
intellectual functioning (LEITER-R) and adaptive func-
tions (Vineland Adaptive Behavior Scale) after 12 months 
of treatment with RUF [246]. No studies specifically exam-
ining sleep parameters were identified. Overall, RUF does 
not negatively impact patients in terms of PBAEs, cognition 
and behaviour.

5  Additional ASMs Used in the Treatment 
of TSC

5.1  Vigabatrin (VGB)

Vigabatrin is indicated as an adjunct therapy for refractory 
focal seizures and as monotherapy for infantile spasms 
(IS) [248, 249]. The efficacy and safety of VGB for IS in 
patients with TSC was evaluated in an RCT, and it has also 
been evaluated in retrospective observational studies for 
IS and focal seizures in patients with TSC [250–253]. In 
patients with DREs, VGB has been evaluated in 11 RCTs 
as per a recent Cochrane analysis (Table S1 of the ESM) 
[254]. Vigabatrin, a structural analogue of GABA, was 
rationally designed to bind irreversibly to the enzyme 
responsible for the breakdown of GABA (GABA-transam-
inase), thus increasing GABA levels in the brain [248, 
249]. A significant drawback of VGB is its frequent asso-
ciation with visual field defects, reported to occur in up 
to a third of patients, with a range in severity from mild 
to irreversible vision loss [248, 249]. As such VGB is not 
commonly used for DREs in general, and is primarily used 
for IS in patients with TSC. Other AEs include sedation, 
drowsiness, fatigue and impaired concentration, with exci-
tation or agitation being frequent in children (Table 2). In 
addition to concerns regarding visual field defects, VGB 
has a relatively poor PBAE profile in patients with focal 
seizures, associated with depression and to a lesser extent 
psychosis (Table S1 of the ESM) [254, 255]. Of note, some 
observational studies have reported high discontinuation 
rates with VGB because of PBAEs (6–22% across studies) 
[256–260].

Three trials have evaluated cognitive outcomes in 
patients with focal seizures [261–266]; one trial reported 
small dose-dependent negative effects in cognitive per-
formance from the Digit Cancellation Test, but otherwise 
VBG showed little impact on an extensive range of cogni-
tive tests across the studies [261, 263]. However, improved 
cognitive and behavioural outcomes, including develop-
mental quotient, autistic behaviour and verbal level, was 
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observed in patients with TSC with infantile spasms 
treated with VGB, but not in patients with focal seizures 
[267]. No studies specifically evaluating the effects of 
VGB on sleep parameters, above and beyond the AEs, 
were identified in this review.

Studies have shown that early control of seizures benefits 
cognitive/behavioural outcomes in TSC [250, 268]. Vigaba-
trin has been at the forefront of preventative treatment in 
TSC: the EPISTOP trial evaluated conventional VGB treat-
ment (after the first electrographic or clinical seizure; n = 
29) versus preventive treatment (when epileptiform electro-
encephalogram activity was detected before the first seizure; 
n = 25) [269]. Preventative treatment significantly reduced 
the risk of clinical seizures; however, the neurodevelopment 
benefits were less clear because of the low occurrence of 
deficits in both groups: none of the patients across groups 
had a severe learning disability at 2 years of age, and while 
fewer patients had a neurodevelopmental delay at age 2 years 
with preventative treatment, the difference was not statisti-
cally significant (33% vs 50%). The authors hypothesised 
that the lack of a difference between groups may have been 
due to the small number of patients, short follow-up duration 
and/or the rigorous treatment strategies employed at an early 
stage in both groups (median age was similar across groups, 
and all children were aged less than 10 weeks at enrolment), 
or conversely that the window of opportunity may already 
have passed in some patients.

Overall, VGB may be associated with some PBAEs such 
as depression and psychosis. Vigabatrin treatment may have 
some positive effects on cognition and behaviour in patients 
with IS, but does not seem to have an effect in patients with 
focal seizures. The effects of early treatment (before sei-
zure onset) on neurodevelopmental outcomes are thus far 
inconclusive.

5.2  Everolimus (EVE)

Everolimus, an oral protein kinase inhibitor of the mTOR 
signalling, is a targeted therapy indicated for the treatment 
of refractory seizures and subependymal giant cell astrocy-
toma associated with TSC [270, 271]. The EXIST-3 RCT 
evaluated the efficacy and safety of EVE for controlling 
focal seizures associated with TSC [272]. Everolimus has 
immunosuppressive effects and therefore patients may be at 
increased risk of infections, but it generally has a good tol-
erability profile (Table 2) [270, 271]. Psychiatric disorders 
including insomnia, aggression and irritability are reported 
to be common (≥ 1/100 to < 1/10) [270]. In a real-world 
study involving 134 patients with TSC treated with EVE, 
stomatitis was the most frequently reported AE, while EVE 
was not associated with PBAEs [273].

Two RCTs that specifically evaluated the effects of EVE 
on TSC-associated neuropsychiatric disorders in children 

with TSC aged ≥ 6 years failed to find any significant ben-
efits of EVE compared to placebo over a range of cognitive/
behavioural outcomes [274, 275]. The first study, conducted 
in children and young adults with TSC aged 6–21 years, found 
no significant difference in patients treated with EVE (n = 32) 
versus placebo (n = 15) for most of the neuropsychological 
measures (memory, attention, executive function, behaviour), 
although there were some trends towards improvements in 
parental ratings of behaviour, social skills in older children/
young adults and depressed mood in younger children [274]. 
In line with those results, the other RCT, which evaluated 
EVE (n = 15) versus placebo (n = 17) in children aged 4–17 
years with TSC and intellectual impairment (IQ < 80, learn-
ing disability, special schooling or autism), without intrac-
table seizures, there was also no benefit of EVE compared 
to placebo for measures of IQ, autism, visual and fine motor 
skills, memory and executive functioning [275]. Similarly, no 
improvements were observed for behavioural and emotional 
problems at home and at school, social functioning, communi-
cation skills, executive functioning, sleep, QoL or sensory pro-
cessing, as assessed using parent and teacher questionnaires. 
In contrast, a small study of six patients with TSC aged 7.5–23 
years demonstrated improvements in behaviour and cognition 
in some patients: improvement in inattention and concentration 
occurred in three patients, improvements in social interactions, 
speech and verbal responses were experienced in three out 
of four patients with ASD, while aggression and irritability 
decreased in one patient but increased in another [276]. Fur-
thermore, Kadish et al. reported a modest increase in absolute 
values of developmental age for development and adaptive 
functioning, suggesting that although EVE may not reverse 
TSC-associated neuropsychiatric disorders, it may help to 
narrow the gap in developmental delay [277]. Studies have 
begun to assess EVE in younger children and infants; however, 
no consistent improvements in neurodevelopment have been 
observed in this age group [278, 279].

The existing data suggest that EVE may be associated 
with some PBAEs including aggression and irritability. Some 
behavioural improvements in patients with TSC have been 
reported in observational studies, but RCTs demonstrated no 
improvements compared with placebo across a comprehensive 
set of cognitive and behavioural measures in children aged ≥ 
6 years.

5.3  Lacosamide (LCM)

Lacosamide is indicated as monotherapy and adjunctive 
therapy for focal seizures [280, 281]. The efficacy and tol-
erability of LCM in patients with LGS were reported in an 
observational study [282], while a Cochrane analysis identi-
fied five trials in patients with DREs (Table S1 of the ESM) 
[283]. Although the mechanism of action is not fully under-
stood, LCM works selectively to increase slow inactivation in 
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voltage-gated sodium channels, which in turn causes inhibition 
of repetitive neuronal firing involved in seizures [284].

Lacosamide is considered an effective and well tolerated 
treatment (Table 2), with a PBAE and cognitive profile that 
is similar to placebo, as evidenced from a pooled analysis of 
RCTs evaluating LCM in adults with epilepsy [285]. A recent 
SLR found overwhelming evidence from 251 studies that the 
effects of LCM on cognitive and mood were negligible [286]. 
In line with this, another SLR conducted to assess the impact 
of LCM on mood in adult patients with epilepsy found that 
studies either reported a neutral or positive effect, including 
positive effects on depressive and anxiety symptoms [287]. A 
SLR in patients with DRE [288], and another specifically in 
patients with LGS [289], have noted that LCM can be associ-
ated with adverse mood and behavioural changes; however, 
AEs rarely led to discontinuations [288]. Of note, studies have 
suggested that LCM is effective and tolerable, with good reten-
tion rates in patients with epilepsy and intellectual disability 
[290, 291]; a slower titration in the first 3 months of initiating 
LCM has been recommended to reduce PBAEs [290]. Finally, 
the available evidence suggests that LCM improves or has no 
effect on sleep, with a low incidence of daytime sleepiness 
[38].

 Current evidence suggests LCM-related AEs are gen-
erally mild and well tolerated, with minimal detrimental 
effects on cognition, sleep and PBAEs, while it may even 
improve some psychiatric symptoms in patients.

6  Less Frequently Used ASMs

6.1  Bromide

Bromide is the oldest ASM and is used to treat severe epi-
lepsy in children, notably myoclonic seizures or DS [292]. 
Bromide increases noradrenaline and serotonin release and 
acts primarily through GABAergic inhibition via hyperpo-
larisation of postsynaptic membranes [293]. Bromide is not 
widely used because of historical concerns regarding psychi-
atric toxicities (bromism) that can cause somnolence, psy-
chosis and hallucinations, and in severe cases coma, paraly-
sis or even death [293]. However, at lower doses used in 
patients with DS, studies in Germany and Japan (where it is 
more widely used) have shown it be efficacious and tolerable 
with drowsiness, loss of weight and loss of appetite being 
the most commonly reported AEs [294–298]. A 1994 paper 
reported that only a minority of patients experienced dete-
rioration of cognition following bromide treatment, while 
some even reported improvements [299]. However, there are 
no studies specifically investigating effects on cognition or 
behaviour in patients receiving bromide. In conclusion, bro-
mide is not widely used because of the potential for serious 

side effects, and although studies suggest PBAEs are not 
prevalent in patients with DS, data are limited.

6.2  Felbamate (FLB)

Felbamate is indicated in the USA for the treatment of 
patients with LGS [300], but is not licenced in the EU 
because of safety concerns surrounding the risk of fatal 
aplastic anaemia and hepatic failure. However, it is available 
is some European countries based on national regulations. 
Felbamate was assessed by the Felbamate Study Group in 
an RCT in patients with LGS [301]. Felbamate is thought 
to work mainly through blockage of sodium channels and 
inhibition of glutamate neurotransmission via NMDA recep-
tors [130, 201]. Typical AEs related to FLB include ano-
rexia, vomiting, insomnia and nausea in both children and 
adults [300]. Somnolence and headache are also considered 
common, as well as dizziness in adults [300]. Psychobehav-
ioural AE data with FLB in DREs are limited; however, in 
a study of 20 children with LGS who had been taking FLB 
for 1–22 months (median = 3.5 months), parents reported 
significant improvements for social, intellectual and motor 
functioning, attention and concentration, alertness, initiative, 
variability in performance and memory [302]. Because of 
serious side effects, 17 children discontinued the treatment. 
In a placebo-controlled study of 30 patients with refractory 
epilepsy, half the patients had deterioration of psychiatric 
conditions alongside stimulant effects, while the other half 
showed a slight psychiatric improvement [303]. In terms of 
sleep, it has been reported the FLB either worsens or has 
no effect on sleep [303]. Overall, data on the effects of FLB 
on PBAEs, cognition and sleep are too limited to make any 
conclusions.

6.3  Sodium Channel Blockers and GABA Agonists

Other sodium channel blocker ASMs include carbamaz-
epine, eslicarbazepine acetate, oxcarbazepine and pheny-
toin. In general, they all have a similar AE profile to LTG 
and LCM, with a minimal impact on PBAEs, while the 
effects on sleep vary based on different sedating effects 
(Table S1 of the ESM). The recently approved cenobamate 
acts on voltage-gated sodium channels and the GABAe-
rgic system; however, experience in children or DEEs is 
not yet sufficient to make recommendations [304]. Like-
wise, the GABA agonists gabapentin and pregabalin have 
a benign PBAE profile, and pregabalin may have a positive 
impact on sleep maintenance [305]; however, both drugs 
have to be used with caution in DEEs as they can exacer-
bate seizures, especially in DS and in genetic generalised 
epilepsies.
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7  Discussion

Deciphering the effects of ASMs on cognition, behaviour, 
psychiatric symptoms and sleep is challenging and complex. 
The causes of these comorbidities associated with DEEs 
are multi-factorial (Fig. 2) [6], the specific manifestations 
are highly individual and can naturally evolve over time, 
and cognition, behaviour, psychiatric symptoms and sleep 
impairments may all be inter-linked [7, 306]. While it is 
clear that ASMs themselves are associated with various 
PBAEs (which improve upon dose reductions or discontinu-
ation), the overall complex nature of behaviour, cognition 
and sleep tends to mean that studies analysing the effects of 
ASMs on these comorbidities have heterogenous results, and 
conclusions can be difficult to make. Indeed, many questions 
remain that could help us better interpret the evidence and 
help improve patient outcomes. These relate to (1) the tailor-
ing of treatments to specific individuals based on their risk 
of developing PBAEs, i.e. what are the effects of age/sex/age 
of onset/severity of seizures/seizure type/ having a history of 
the comorbidity/specific genotypes? (2) The practical details 
of using ASMs, i.e. what are the effects of different doses 
and titration schedules, and the effects of polypharmacy 
and interactions between particular combinations of ASMs 
and other drugs? (3) Understanding the mechanisms of the 
effects of ASMs, e.g. are positive/negative effects due the 
underlying mechanisms of the ASMs themselves, or through 
their improvements/lack of improvements in seizures, or are 
both inherently connected? (4) What are the genetic factors 
involved in adverse drug reactions?

Studies are trying to elicit the answers to these questions. 
For example, the area of pharmacogenomics is growing with 
the aim of personalising therapies based on an individual’s 
genetic profile with regard to variants that affect response 
and AEs [307]. With this in mind, the HLA-A*11:01 allele 
has been identified as possibly being associated with LEV-
induced psychiatric AEs [308]. Furthermore, several studies 
documented herein suggest that having a history of psychi-
atric or behavioural problems is a predictor of PBAEs [36, 
37]. In addition, experiencing PBAEs with one ASM may 
increase the risk of having PBAEs with another ASM [309]. 
Regarding polypharmacy, AEs may increase with an increas-
ing number of concomitant ASMs [310, 311], and studies 
suggest that increased drug load may be related to some 
poorer cognitive outcomes including impaired memory [312, 
313] and executive functions [306].

In addition to the underlying aetiology of the disease, 
evidence suggests that seizures themselves can exacerbate 
the neurodevelopmental comorbidities in DEEs; early age 
of seizure onset and occurrence of (severe) seizures (e.g. 
status epilepticus in DS and infantile spasms in TSC) have 
been associated with negative impacts on neurodevelopment 

outcomes in patients with DS, TSC and other DEEs 
[314–320]. In this respect, effects on psychobehavioural and 
cognitive outcomes may reflect the ASM’s efficacy on sei-
zures, i.e. a lack of neurodevelopmental deterioration may be 
because of good seizure control, while conversely, adverse 
effects could be due to poor seizure control. However, posi-
tive effects of ASMs that lead to actual improvements in 
psychobehavioural and cognitive outcomes may be more 
complex and challenging, requiring early/preventative treat-
ment and/or therapies that target the underlying molecular 
mechanisms. Regarding the former, the use of preventative 
treatment before seizures begin is being evaluated in TSC, 
although no conclusions with regard to TSC-associated neu-
ropsychiatric disorders have been made thus far. Regarding 
targeted therapies, there is preliminary evidence that some 
ASMs may have a mode of action that could more directly 
improve aspects of cognition. For example, FFA acts as a 
positive modulator of the sigma-1 receptor, a protein that has 
been implicated in multiple cognitive disorders [104, 321]. 
In addition, CBD appears to have potential as a treatment for 
mental health and cognitive and behavioural disorders [90, 
91], suggesting it may have mechanisms of action independ-
ent of seizure activity. Additionally, of note, a phenomenon 
denoted “forced normalisation” exists whereby patients 
experience psychiatric disturbances, but when seizure 
control or epileptiform electroencephalogram patterns are 
improved, usually triggered by successful ASM treatment 
or epilepsy surgery [322, 323]. The pathophysiology of this 
condition is still unclear, but it further shows the complex 
interplay between disease aetiology, drug effect and seizures 
[322, 323].

Developmental and epileptic encephalopathies are com-
plex syndromes; however, treatment often primarily focuses 
on seizure control, and there is a need for improvements in 
the identification and treatment of the developmental, behav-
ioural and psychiatric comorbidities (including treatment-
related exacerbations) [12, 15, 324, 325]. The management 
of DEEs requires a rational, holistic and multi-disciplinary 
approach tailored to the unique circumstances of the indi-
vidual patient and their evolving symptoms throughout all 
stages of childhood, adolescence and adulthood, including 
a smooth transition from paediatric to adult care [12, 15, 
324, 325]. Indeed, the comorbidities can be the predominant 
burden in older children and adults when seizures decrease 
[320, 326, 327]. As part of this approach, clinicians should 
also actively screen for treatment-related AEs affecting these 
comorbidities and adjust treatment accordingly. This is par-
ticularly pertinent when considering the substantial impact 
that these comorbidities have on the QoL of patients with 
DEEs and their family caregivers [9–13, 312, 328]. Fur-
thermore, comorbidities contribute to the heavy economic 
burden that DEEs impose on healthcare systems, families 
and society [329–332].
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Additional novel treatments that target the underlying 
pathogenesis of both seizures and the neurodevelopment 
comorbidities would also be welcome. In this respect, soti-
clestat, which has a novel mechanism of action as an inhibi-
tor of cholesterol 24-hydroxylase, is in clinical development 
as adjunctive therapy in children with DS or LGS [333]. To 
date, soticlestat has been found to be well tolerated and was 
associated with significant reductions in seizure frequency 
in patients with DS and LGS [333].

8  Conclusions

As evidenced here, there is a growing literature base on the 
effects of ASMs on PBAEs, cognition and sleep; however, 
there are still many limitations: RCTs may exclude relevant 
populations, while observational studies lack a placebo arm 
and are often small. Furthermore, evaluations often rely on 
caregivers’ perspectives, which are inherently subjective, 
and, among a plethora of options for examining behaviour 
and cognition, there is a lack of standardised measurements 
for DEEs. There is also variability in the extent of evidence 
for each ASM: for first-generation, and some second-gen-
eration ASMs, there is scant documented evidence; how-
ever, the extensive use of VPA and CLB suggests favourable 
tolerability and safety. Second-generation and some third-
generation ASMs tend to have the most robust evidence 
documented over several years of use, while evidence is still 
being generated for newer ASMs such as CBD and FFA.

Despite some clinical challenges and limitations in the 
evidence base, trends on the effects of ASMs on cognition, 
behaviour, psychiatric symptoms and sleep have become 
apparent over time. Overall, the current evidence suggests 
that LEV and PER and to a lesser extent BRV are associ-
ated with PBAEs including aggressiveness and irritability; 
TPM and to a lesser extent ZNS are associated with lan-
guage impairment and cognitive dulling/memory problems. 
Topiramate and ZNS may be associated with negative effects 
in some aspects of cognition, while CBD, FFA, LEV, BRV 
and LTG may have some positive effects. Cannabidiol, PER 
and pregabalin may be associated with improvements in 
sleep, and LTG may be associated with insomnia. Finally, 
all the ASMs are associated with sedation to a certain extent.
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