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Gene expression drives local adaptation in humans
Hunter B. Fraser1
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The molecular basis of adaptation—and, in particular, the relative roles of protein-coding versus gene expression
changes—has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has
led to the identification of many putative ‘‘local adaptations’’ that differ between populations. Here I show that these local
adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel
framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes
involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the
first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the
hypothesis that changes in gene expression have driven human adaptation.

[Supplemental material is available for this article.]

The molecular mechanisms of adaptive mutations have long been

a topic of great interest (King and Wilson 1975). In particular, the

relative roles of protein-coding versus cis-regulatory changes have

been much debated (King and Wilson 1975; Hoekstra and Coyne

2007; Prud’homme et al. 2007; Stern and Orgogozo 2008). How-

ever, no systematic comparisons between the two classes have

been reported for humans; previously reported evidence support-

ing either mechanism has been either indirect, theoretical, or

anecdotal (King and Wilson 1975; Hoekstra and Coyne 2007;

Prud’homme et al. 2007; Stern and Orgogozo 2008). Many genome-

wide scans for positive selection in humans have been conducted

(Akey 2009; Pickrell et al. 2009; Torgerson et al. 2009; Hancock et al.

2011), but none have compared the prevalence of these two classes

of human adaptations.

Adaptations that have arisen in recent human evolution are

likely to be present only in a subset of human populations. For

example, the sickle-cell mutation in beta hemoglobin, which

confers resistance to malaria, is present at high frequency only in

populations where malaria is endemic (Kwiatkowski 2005). Like-

wise, alleles causing lactase persistence—the continued expression

of the lactase enzyme beyond childhood, allowing lactose to be

metabolized—are at high frequency primarily in populations that

have historically practiced dairy farming (Harris and Meyer 2006).

These represent ‘‘local adaptations,’’ since they are specific to the

local environments of a subset of human populations.

Recently, many other candidate local adaptations have been

detected as correlations between population-specific allele fre-

quencies and factors reflecting the climates or geographies of those

populations (e.g., temperature, latitude, etc.) (Hancock et al. 2011).

These associations are present even after controlling for genome-

wide covariation due to population structure, and are enriched for

nonsynonymous variants, suggesting the action of natural selec-

tion and not simply neutral drift (Hancock et al. 2011). Although

the allele frequencies of these putatively adaptive variants typically

differ only slightly between populations, presumably affecting

phenotypes in a highly polygenic manner, collectively they may

account for a significant fraction of recent human adaptation

(Hancock et al. 2010, 2011; Pritchard et al. 2010).

To what extent human polygenic adaptations may act via

changes in gene expression levels has not been investigated. De-

spite many examples of polygenic gene expression adaptations in

model organisms (Fraser et al. 2010, 2011, 2012; Fraser 2011), the

handful of known human gene expression adaptations all involve

changes at only single genes, such as lactase (Harris and Meyer

2006). Therefore I sought to address two questions: (1) How im-

portant is gene expression in recent human adaptation, relative to

changes in protein sequences? and (2) What specific functional

classes have been targets of gene expression adaptations?

Results

Comparing nonsynonymous versus cis-regulatory adaptation

A recent genome-wide catalog of candidate local adaptations

(Hancock et al. 2011) provides an ideal resource for comparing the

roles of changes in protein sequences versus expression in recent

human adaptation, since the approach used is agnostic with re-

spect to the molecular mechanisms of the adaptations. In this

study, nine climate variables were compared with allele frequencies

of ;623,000 autosomal SNPs in 61 diverse human populations. The

resulting putative local-adaptation SNPs show a small but signifi-

cant enrichment for nonsynonymous (NS) SNPs (Hancock et al.

2011), as expected if amino acid changes have played a role in recent

adaptation.

To assess the prevalence of cis-regulatory variants in local

adaptation, a catalog of such variants can be combined with the

putative local-adaptation SNPs. The size of their intersection

(correcting for the number expected to overlap by chance) is

a lower-bound estimate of how many local adaptations have likely

been driven by cis-regulatory changes; this can be directly com-

pared with the analogous intersection of NS SNPs (Fig. 1A; see

Methods). While the catalog of putative local adaptations surely

contains false positives and negatives, as long as these are not

systematically biased toward one of the two classes (cis-regulatory

or NS), they will not bias the comparison (other potential biases are

discussed below). Although this statistical approach to under-

standing the molecular mechanisms of local adaptation cannot

definitively implicate the mechanism of any single adaptation, it is

well suited to assess the relative importance of different classes of

genetic variation.

Gene expression-associated SNPs (eSNPs) have been identi-

fied in several human tissues, with most occurring near their target
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gene because they act in cis (Cheung and Spielman 2009). I com-

piled a compendium of cis-eSNPs from 15 studies of seven human

cell types (see Methods), and quantified their overlap with local-

adaptation LD blocks (correcting for the overlap expected by

chance). Across the nine climate variables tested, the eSNPs

showed a median of 11.3-fold greater overlap than the analogous

NS/local adaptation overlap (Fig. 1B, green vs. red bars), suggesting

that they constitute a greater fraction of local adaptations.

SNPs located within cis-regulatory elements (CREs), e.g.,

promoters and enhancers, may contain additional cis-regulatory

variants not captured by known eSNPs. Applying the same overlap

analysis to SNPs within CREs identified by genome-wide chro-

matin state profiling in nine human cell types (Ernst et al. 2011),

again a significant excess was implicated in local adaptation (Fig.

1B, blue bars). Finally, combining eSNPs and CRE SNPs into an

integrated predictor (see Methods) yielded the greatest overlap

(Fig. 1B, purple bars; median 12.4-fold above NS SNPs). In sum,

these results suggest that local adaptations are far more likely to

impact gene expression than protein sequence.

To test the robustness of these results, I carried out two types

of controls. First, the local adaptation SNPs were randomly per-

muted, and the same analyses were run on the randomized data.

No significant enrichments were observed for any category (Sup-

plemental Fig. 1), indicating that the analysis itself does not lead to

false-positive enrichments. Second, I varied each of the three ad-

justable parameters in the analysis (see Methods) and found the

results to be robust to all three (Supplemental Figs. 2–4).

It is also important to consider factors that may bias this

comparison. Specifically, (1) local-adaptation SNPs are enriched in

genic regions (Hancock et al. 2011), which (by definition) include

all NS SNPs, but only some cis-regulatory SNPs; (2) essentially all

common NS SNPs are known, but many cis-regulatory SNPs have

not yet been identified; (3) the precise locations of NS SNPs are

known, whereas eSNPs are identified at the level of linkage-dis-

equilibrium (LD) blocks often containing dozens of SNPs (only one

of which is likely to be causal); and (4) the genotyping microarray

used was designed to be highly enriched for NS SNPs (Eberle et al.

2007). Because all of these biases favor NS SNPs, they could only

make the current results conservative, by underestimating the

relative contribution of cis-regulatory variants (see Methods).

Detecting examples of local adaptations driven by gene
expression

Functional enrichments among the genes associated with eSNPs/

local-adaptation SNPs can provide insight into the types of genes

affected by recent gene expression adaptations. Such enrichments

are most likely to be found in the intersections of eSNP sets and

local-adaptation SNPs with the highest overlap (and thus the

fewest false positives overlapping due to chance). Therefore, I

identified the five pairs of eSNP sets/environmental variables with

the highest overlap (greater than twofold above expected, and

with enrichment p < 10�5) (Supplemental Table 1), for further

investigation.

Two of the most significant overlaps were between skin eSNPs

and local adaptations associated with winter precipitation and

summer shortwave radiation flux (P < 1.3 3 10�6 for each) (Sup-

plemental Table 1). The latter was particularly intriguing because

skin is greatly affected by sunlight and shows many population-

specific attributes ( Jablonski and Chaplin 2010). Testing the skin

eSNPs associated with summer shortwave solar radiation flux for

enrichment among 281 GO terms (see Methods), ‘‘DNA damage

response’’ was by far the most significantly enriched functional

category among eSNP targets (7.2-fold over expected, P = 2 3 10�5)

(Fig. 2A), suggesting that one way in which human popula-

tions may have adapted to local levels of sunlight is by altering

the expression levels of genes involved in repairing DNA

damage—consistent with the known population specificity of

the response to UV-induced DNA damage in melanocytes (Barker

et al. 1995). Interestingly, for many of these eSNPs the association

with sunlight was replicated in multiple geographic regions (Fig.

2B), implying that these eSNPs have likely been targets of selection

in diverse human populations.

While a simple enrichment analysis such as above can lead to

important insights, it ignores a valuable aspect of eSNPs: their di-

rectionality. For gene sets where most gene products have the same

direction of effect on a process or phenotype—such as enzymes

promoting flux through a pathway, or subunits of a protein com-

plex contributing to a common molecular function—many genes

may be coordinately up- or down-regulated in response to selec-

tion acting on their shared output. Indeed, this signature of

polygenic gene expression adaptation is widespread in both yeast

and mice (Fraser et al. 2010, 2011, 2012; Fraser 2011).

To take advantage of this additional information inherent in

eSNPs, I developed an approach for identifying sets of eSNPs under

selection by relating eSNP directionality to any population-specific

Figure 1. (A) Outline of the data sets integrated to identify putative local
adaptations (Hancock et al. 2011) and to assess the relative importance of
cis-regulatory variants compared with nonsynonymous variants among
these adaptations. (B) The estimated number of putative local adaptations
associated with each of nine climate/geographic variables that are expli-
cable by either a nonsynonymous SNP (green), eSNP (red), CRE SNP
(blue), or combined eSNP/CRE SNP (purple). Error bars indicate the
standard deviations when randomly sampling negative control SNPs (see
Methods). Various controls are shown in Supplemental Figures 1–5.
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variable of interest (Fig. 3A). In this framework, the mean fre-

quency of all eSNP alleles up-regulating the members of a given

gene set is calculated for each population of interest, resulting in

a single aggregate ‘‘expression score’’ for that gene set in each

population. The Pearson correlation (denoted r) between the ex-

pression score and a variable such as population latitude reflects

the strength of association. Because such associations can be

greatly affected by human population structure, a rigorous null

model is essential. A simple yet effective control is to test how often

the expression score of N randomly chosen eSNPs (where N is the

number of eSNPs regulating the gene set of interest) has a correla-

tion with latitude of at least |r|. Because the eSNPs are all sampled

from a single eSNP data set, any ascertainment biases introduced

by eSNP mapping are accounted for. Furthermore, no assumptions

or models concerning population structure or demographic his-

tory are required, since these again are precisely captured by the

randomly sampled eSNPs. This procedure results in a P-value

reflecting the probability that the observed association could arise

by chance, given the population structure and any other biases

present among the eSNPs. By comparing to this null model, the

method can identify sets of eSNPs whose allele frequencies are

inconsistent with random drift, and therefore imply the action of

natural selection (in contrast to nearly all previous genome-wide

‘‘selection scans,’’ which identify outlier SNPs in the absence of

a neutral null model [Akey 2009], and thus cannot reject neutrality

for any loci; see Supplemental Note).

Applying this approach revealed three striking cases of local

adaptations involving the expression of entire gene sets. In one

example, genes previously observed to be down-regulated in re-

sponse to UV radiation (Gentile et al. 2003) constituted a gene set,

containing genes involved in diverse functions such as apoptosis,

angiogenesis, and transcriptional regulation. The correlation be-

tween this gene set’s expression scores (the mean up-regulating

allele frequencies of 12 eSNPs in each of 60 populations) and

population absolute latitudes (distance from equator) was r = 0.80

(Fig. 3B; P = 2 3 10�6), the strongest association in this analysis. A

strong correlation was also observed with winter shortwave radi-

ation flux (r = �0.68). Separating the analysis into four major

geographic regions showed that the association is replicated within

all four (Fig. 3B, inset). Populations that receive more UV radiation

have lower frequencies of the up-regulating alleles (Fig. 3B)—i.e.,

genetically encoded down-regulation—consistent with their dy-

namic down-regulation in response to UV (Gentile et al. 2003).

Because random gene sets so rarely resulted in such a strong asso-

ciation, the null hypothesis of neutrality can confidently be rejected

in favor of natural selection acting on these eSNPs—suggesting an

adaptive ‘‘hard-wiring’’ of a transient transcriptional response.

The next most significant association highlights the rele-

vance of this methodology to understanding how natural selection

has affected population-specific disease prevalence. This associa-

tion was between eSNPs in ‘‘Diabetes pathways’’ (primarily path-

ways related to insulin, ghrelin, and insulin-like growth factors)

and distance from the equator (Fig. 3C; r = 0.76, P = 2 3 10�5). This

association was strongly replicated in three out of the four major

geographic regions (Fig. 3C, inset). Many hypotheses have been

proposed to explain the marked population specificity of type 2

diabetes (T2D), including selection for ‘‘thrifty genes’’ (Neel 1962)

or cold-tolerance genes (Fridlyand and Philipson 2006). The lat-

itudinal gradient of eSNP frequencies is most clearly consistent

with the latter, which posits that alleles originally selected for cold

tolerance may now confer protection against T2D (Fridlyand and

Philipson 2006). To further test this idea, I compared T2D risk allele

frequencies with equatorial distance and found a negative associ-

ation (r =�0.54, i.e., greater risk close to the equator; see Methods),

as expected if alleles that are advantageous in cold climates confer

protection against T2D.

Figure 2. (A) Venn diagram showing DNA damage response as the most highly enriched functional category in the intersection between skin eSNPs and
summer shortwave radiation (sunlight)–associated local-adaptation SNPs. The seven DNA damage response genes in this intersection are listed, with
eSNPs that affect their expression levels in skin. Circles and overlap are not to scale. (B) The derived allele frequencies of one SNP in the skin eSNP/summer
sunlight–associated SNP intersection (rs10458216) plotted against summer shortwave radiation flux in 58 worldwide human populations, split into four
geographic regions. The derived allele is associated with lower expression of EEF1E1 (also known as AIMP3) (a tumor-suppressor gene that activates the
DNA damage response in response to UV exposure and other DNA-damaging agents) (Kwon et al. 2011) in skin. Population names and additional data are
shown in Supplemental Figure 6.
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To increase the signal in this analysis, I recalculated the as-

sociations after excluding SNPs with little population differentia-

tion (global FST < 0.1). The strongest new association was for the

gene set ‘‘Positive regulation of cell proliferation’’ with population

latitude (Fig. 3D; r = �0.88, P = 1 3 10�6; Supplemental Fig. 7).

Again the association was strongly replicated across three out of

four geographic regions (Fig. 3D, inset) and was also present for

absolute latitude (r = �0.77) and winter shortwave radiation flux

(r = 0.74). Among the 16 eSNP target genes in this gene set, nine

were directly related to immune cell proliferation (Supplemental

Table 2), including six cytokines, strongly suggesting a relationship

with immune system function. Because the diversity of human

pathogens decreases with latitude (Guernier et al. 2004) and is

known to impact natural selection on the human immune system

(Qutob et al. 2012; Sanchez-Mazas et al. 2012), it is possible that

the higher expression of immune cell proliferation genes near the

equator is driven by selection for survival in the face of the high

diversity of pathogens endemic to the tropics.

Conclusions

These results suggest that changes in gene expression regulation

have been more prevalent in recent human adaptation than have

changes in protein sequences, supporting King and Wilson’s hy-

pothesis (King and Wilson 1975). Although further work will be

required to understand the selection pressures and phenotypic

effects of the specific adaptations reported here, it is clear that

natural selection in humans has acted in a distributed fashion on

the expression of many genes in parallel, as it has in yeast and mice

(Fraser et al. 2010, 2011, 2012; Fraser 2011).

The gene-set-based test of local adaptation introduced here

represents a departure from previous ‘‘selection scans.’’ Because of

its simple yet accurate neutral null model, it can distinguish nat-

ural selection from neutral drift—a surprisingly rare quality among

published selection scans (Akey 2009). Although only three gene

sets were significant in this initial analysis, variations of the

method may reveal many more. For example, different correlation

Figure 3. (A) Outline of the approach for identifying polygenic gene expression adaptations. (B–D) The three gene sets with significant associations
(after correction for multiple tests; see Methods). Plots show their expression scores in each population versus the most strongly associated variable. Points
are colored according to geographical regions listed in the insets; the two green points in each plot represent populations from Oceania. (B) Expression
scores for the ‘‘UV down-regulation’’ gene set compared with absolute latitude. (C ) Expression scores for the ‘‘Diabetes pathways’’ gene set compared
with absolute latitude. (D) Expression scores for the ‘‘Positive regulation of cell proliferation’’ gene set (of which most eSNP target genes were immune-
related) (Supplemental Table 2) compared with latitude.
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metrics can be used; contributions of each gene to the expression

score could be weighted by the eSNP effect size or importance of

each gene’s expression level within a gene set; associations could

be calculated separately in different geographic regions and then

combined into a single score; or some regions could be excluded

entirely in order to detect selection operating in only some parts of

the world. The approach could also be applied directly to SNPs

implicated by genome-wide association studies (with direction-

ality provided by increase/decrease in the associated trait or disease

risk, as opposed to up-/down-regulation of gene expression). Fi-

nally, the test is applicable to any species for which (1) allele fre-

quency data are available from many populations (of known

geographic coordinates), and (2) eSNPs have been mapped. Finally,

applying this approach to the most evolutionarily relevant gene

sets and population-specific selection pressures may also reveal

many more cases of polygenic adaptation.

Because eSNPs have been mapped in only a handful of human

cell types and populations, it is likely that their importance in

local adaptation has been underestimated in this analysis. As

the number of known eSNPs continues to grow, the power of

population-genetic analyses of eSNPs will grow as well, and may

eventually lead us to a comprehensive understanding of the role of

gene expression in human adaptation.

Methods

eSNPs and CRE SNPs
eSNPs were collected from studies of the following cell types:
lymphoblastoid cell lines (Kwan et al. 2008; Fraser and Xie 2009;
Ge et al. 2009; Montgomery et al. 2010; Pickrell et al. 2010;
Stranger et al. 2012), monocytes (Zeller et al. 2010; Fairfax et al.
2012), B cells (Fairfax et al. 2012), whole blood (Fehrmann et al.
2011), liver (Schadt et al. 2008; Innocenti et al. 2011), brain (Myers
et al. 2007; Gibbs et al. 2010), and skin (Ding et al. 2010). (Some
eSNP studies were not included because their results could not be
obtained.) Four of the cell line studies included eSNPs affecting
splicing and alternative transcription start/stop sites (Kwan et al.
2008; Fraser and Xie 2009; Montgomery et al. 2010; Pickrell et al.
2010). In addition, I included the ‘‘consensus eQTLs’’ for lym-
phoblastoid cells from the seeQTL database (Xia et al. 2012). For all
data sets, only local (likely cis-acting) eSNPs were included, typi-
cally defined as eSNPs located within 1 Mb of their target gene.

Putative cis-regulatory elements (CREs) were determined
previously, using combinations of histone modifications measured
in nine human cell types (Ernst et al. 2011). Using the coordinates
for those annotated as promoters, enhancers, or insulators (num-
bered types 1–8 in Ernst et al. 2011), all HapMap SNPs within each
region were designated as CRE SNPs.

Calculating the observed number of overlaps

A straightforward approach would be to choose a particular
number of the top-scoring local-adaptation SNPs and calculate the
observed overlap with eSNPs/CRE SNPs/NS SNPs by matching
dbSNP rs-IDs. However, because of linkage disequilibrium (LD),
most eSNPs and local-adaptation SNPs are only proxies that tag the
causal variants. If an eSNP study used a different genotyping array
from the local-adaptation study, then many overlapping LD blocks
might be missed if only single SNPs were checked for overlap, be-
cause different arrays use different tag SNPs. (For CRE SNPs and NS
SNPs, even though the exact locations are known, a local-adapta-
tion SNP may still be in LD with one of them, even if it is not itself
a CRE SNP or NS SNP.) Therefore, I performed this analysis at the

level of LD blocks, instead of single SNPs. I expanded each local-
adaptation SNP into an LD block by including all other HapMap
SNPs above a certain r2 cutoff in one HapMap population (see
below). If two local-adaptation SNPs were in LD with one another
or with a third SNP, they were collapsed into a single LD block.
Then eSNPs/CRE SNPs/NS SNPs were intersected with these LD
blocks; if multiple eSNPs/CRE SNPs/NS SNPs were contained in
a single LD block, they were only counted as one overlap, to avoid
double counting. Although the HapMap does not contain all
common SNPs, it is a superset of those in the array platforms used
for eSNP and local-adaptation SNP mapping, so using a more
complete SNP list (e.g., from the 1000 Genomes Project) would not
affect the results.

Because not all eSNP data sets are equally relevant to local
adaptation (due to different cell types, false-positive rates, etc.), the
overlap analysis described above was applied separately to each
eSNP set (similarly, the eight CRE types, measured in nine cell
types, yielded 72 CRE sets). A stepwise regression framework was
then applied, to exclude those eSNP/CRE SNP sets not able to
discriminate between the real versus negative control sets. It is
important to note that exclusion of any eSNP/CRE SNP sets can
only decrease the total number of overlaps with local adaptations.
Each climate-associated LD block (defined as those containing at
least one SNP in the top 0.5% of Bayes factors, with each of the
nine environmental variables [Hancock et al. 2011] tested sepa-
rately) or negative control LD block was represented by a 1 or 0,
respectively; any eSNPs on these same LD blocks were then used as
binary predictors of the climate association. Stepwise regression
was used to identify those eSNP sets adding significant (P < 0.01)
predictive power not provided by other sets. The number of in-
dependent eSNP/local adaptation SNP overlaps was estimated as
the number of local-adaptation LD blocks containing at least one
eSNP from an eSNP set that was significant in the stepwise re-
gression. For the combined eSNP/CRE SNP predictor (purple bars
in Fig. 1B), the regression procedure was applied to the eSNPs and
CRE SNPs jointly, to account for any redundancy between them.
Note that excluding those eSNP/CRE SNP sets not providing sig-
nificant predictive power reduces the number of eSNPs/CRE SNPs
overlapping with local-adaptation SNPs.

Calculating the expected number of overlaps

In this analysis, it is critical to estimate the expected number of
overlaps accurately between different SNP catalogs. The expected
overlap can be found by randomly drawing ‘‘non-local-adaptation’’
SNPs from the lower half of climate-association scores and re-
peating the overlap analysis (performed 100 times for each bar
in Fig. 1B). To minimize stochastic variation in these randomly
sampled SNP sets, 10-fold more SNPs were included in each neg-
ative control set than in the positive set (the resulting number of
expected overlaps was thus divided by 10 to be comparable to the
real SNP set). Because the negative control SNPs are drawn from the
same genotyping array (Illumina Infinium HumanHap 650Y), they
share all the same ascertainment biases as the real local-adaptation
SNPs (including over-representation of nonsynonymous SNPs on
the 650Y array) (Eberle et al. 2007).

However, two important factors may affect the overlap: LD
block length (in number of SNPs) and minor allele frequency
(MAF). LD blocks containing many SNPs will have more overlaps
with any other SNP catalog simply by chance, and if both eSNPs
and local-adaptation SNPs are biased toward high MAF, then they
will also overlap more than expected by chance. Therefore, nega-
tive control SNPs were chosen to match the local-adaptation SNPs
for these two factors. The number of local-adaptation SNPs in each
of 50 global MAF (mean MAF across all 61 populations) bins
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(0–0.01; 0.01–0.02; etc.) was counted, and negative control SNPs
were selected from the low-scoring tail in exactly the same pro-
portions. The LD block length of each negative-control candidate
was then calculated and matched to the most similar local-adap-
tation SNP. As a result, negative control SNPs were matched for
both MAF and LD block length. Because the negative controls were
sampled from a list 1003 larger than the number of putative local
adaptations, each randomly sampled negative control list was
mostly independent (composed of different SNPs) from all others.

Expected overlaps were subtracted from the observed overlaps
and averaged over 100 randomly sampled negative control sets, to
yield the number of overlaps above expected (shown in Fig. 1B).
Error bars are calculated from the variation between randomly
sampled negative control sets; empirical error bars were used (as
opposed to theoretical, Poisson-based error bars) because they
capture any deviations from the theoretical expectations of over-
lap variation. Median fold-differences of the estimated numbers of
adaptive eSNPs or CRE SNPs compared with NS SNPs were calcu-
lated by taking the median ratio of overlaps above expected for the
two SNP classes being compared, across the nine climate variables.

Potential biases

Four potentially biasing factors are listed in the main text:

1. Local adaptation SNPs are enriched in genic regions (Hancock et al.
2011), which (by definition) include all NS SNPs but only some
regulatory SNPs. I did not attempt to correct for this because its
cause is not known; e.g., if it is caused mainly by NS SNPs, then
correcting for it would be unfairly penalizing those SNPs. If, in-
stead, it is caused largely by other genic SNPs (such as synony-
mous or intronic SNPs) and inflates the NS SNP enrichment due
to LD between NS SNPs and the causal SNPs, this bias would lead
to overestimation of the role of NS SNPs in local adaptation.

2. Essentially all common NS SNPs are known, but many regulatory
SNPs have not yet been identified. I did not attempt to correct for
this because it is not known how many regulatory SNPs remain
to be discovered.

3. The precise locations of NS SNPs are known, whereas regulatory SNPs
are identified at the level of LD blocks often containing dozens of
SNPs (only one of which is likely to be causal). If LD was the same
across all human populations, this might have been accounted
for by the LD block-based overlap analysis described above.
However, because LD patterns differ between populations,
a SNP that tags a causal variant in the population where an eSNP
was discovered may not tag the causal variant in another pop-
ulation, which could decrease the signal in this analysis. A
precise correction for this is not possible without detailed LD
data from all populations studied.

4. The genotyping microarray used was designed to be highly enriched
for NS SNPs (Eberle et al. 2007). This bias may lead to preferential
detection of local adaptations involving NS SNPs, since a greater
fraction of regulatory SNPs will not be genotyped by the
microarray. Compounding this, LD is stronger in genic than
intergenic regions (Eberle et al. 2006), meaning that even NS
SNPs not directly genotyped by the array are more likely to be
indirectly measured by another variant in strong LD.

As stated in the main text, because all four of these biases act
in favor of relatively more overlap with NS SNPs, they make the
current results (an excess of regulatory SNPs overlapping with
putative local adaptations) conservative.

Factors that may exaggerate the observed results include any
unknown bias that could preferentially increase the density of
putative local adaptation SNPs in CREs or eSNP LD blocks, com-

pared with NS SNP LD blocks. For example, if climate-related
background selection led to associations with various climate
variables, and this affected regulatory regions more than coding
regions, this could lead to an excess of regulatory SNPs among
putative local adaptation SNPs. However, I am not aware of any
evidence suggesting that this is the case.

Randomization control

In randomized data, the number of observed overlaps should ap-
proximately equal the expected overlaps; therefore, to test the
accuracy of this regression approach, I randomized the local ad-
aptation scores of the 623,318 SNPs 100 times, and performed the
same enrichment analysis for NS SNPs, eSNPs, and CRE SNPs. The
results show no significant enrichment for any test (Supplemental
Fig. 1), suggesting that the analysis does not lead to false positives.

Results with other parameter values

There are several adjustable parameters in this analysis, so the re-
sults were calculated using different values of each, to assess the
robustness of the results shown in Figure 1B. These parameters are
the r2 cutoff for defining LD blocks; in which HapMap population
LD blocks were defined; and what fraction of SNPs assessed for
local adaptation were considered ‘‘putative local-adaptation SNPs’’
for overlap analysis. In Figure 1B, these are r 2 = 0.9, Yoruban, and
0.5%, respectively. Supplemental Figures 2–4 show the results of
changing each parameter; in each case the results are qualitatively
unchanged. In addition, a parameter used in calculating the cli-
mate association Bayes factors is the number of MCMC ‘‘burn-in’’
iterations (Hancock et al. 2011). Supplemental Figure 5 shows the
results of the analysis using climate associations generated with
15,000 burn-ins (burn-ins were not used in Hancock et al. 2011),
again not qualitatively affecting the results.

Functional enrichment analysis (ignoring eSNP directionality)

For each eSNP set/climate variable combination, I calculated the
fold-enrichment compared with the random expectation (as de-
termined by the negative control SNPs described above). Five
combinations yielded a greater than twofold enrichment and en-
richment P-value < 10�5 (Supplemental Table 1, boldface). To de-
termine if any functions were enriched in these intersections, I
tested the eSNP target genes from all five intersections for enrich-
ments with 281 GO terms (with >100 members each). The only GO
term to remain significant after correction for multiple testing was
‘‘DNA damage response’’ in the skin eSNP/summer solar radia-
tion intersection (281 GO terms tested in five overlaps = 1405
tests; P = 0.03 after Bonferroni correction; note, however, that the
Bonferroni correction is overly conservative because many gene
sets and climate variables are not independent—e.g., temperature
is correlated with latitude, etc.). There were seven DNA damage-
related genes in this intersection (Fig. 2A), compared with fewer
than one expected by chance. While solar radiation is a plausible
explanation for the selection pressure leading to changes in ex-
pression levels of these genes, it is not possible to rule out the
possibility that another factor (correlated with solar radiation) is
the agent of selection.

Scan for selection on expression levels of gene sets using eSNP
directionality

To leverage the additional specificity gained by searching for gene
sets that show coordinated changes in their gene expression levels
between human populations, I carried out the following test. For
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five of the published eSNP sets listed above, information about the
directionality of allelic effects (i.e., which allele was up-regulating)
could be extracted from the supplemental data or obtained
from the authors. These five sets were from four tissues: LCLs
(Montgomery et al. 2010; Stranger et al. 2012), whole blood
(Fehrmann et al. 2011), brain (Myers et al. 2007), and liver
(Innocenti et al. 2011). Because the goal of this approach is
identifying polygenic gene expression adaptations, regardless of
whether those are cis- or trans-acting (unlike the analyses described
above where the focus was on cis-regulation), both cis- and trans-
acting eSNPs were included but analyzed separately when avail-
able. Since the effects of splicing changes are not easily inferred
(e.g., inclusion of an exon may either increase or decrease a par-
ticular activity of a protein), splicing-related eSNPs were not in-
cluded in this analysis.

For each eSNP set, all eSNPs not in LD (r 2 > 0.9 in the HapMap
YRI population) with an Illumina 650Y SNP were excluded, so
that the up-regulating allele (or proxy allele) frequency in 60
populations could be calculated. YRI was chosen for the LD
mapping since this shows less LD than non-African populations
and therefore tends to lead to a conservative mapping; cases in
which SNPs in LD in YRI are not in LD in other populations will
add noise and make the present results conservative. If multiple
eSNPs from the same study were regulating a single gene and were
in LD with 650Y SNPs, the one with the most significant eSNP was
chosen.

The set of eSNPs with worldwide up-regulating allele fre-
quency data was then grouped by gene sets. (Although eSNPs could
be analyzed individually, this would simply identify empirical
outliers [as described for previous ‘‘selection scans’’ by Akey 2009],
with no indication of how likely they are to be evolving neutrally
or non-neutrally.) Gene sets were downloaded from the GSEA
website (http://www.broadinstitute.org/gsea/msigdb/collections.
jsp), using all GO, Reactome, and KEGG gene sets, as well as all
chemical/genetic perturbation gene sets containing ‘‘UV’’ in the
description (since UV exposure is a plausible selection pressure
correlated with climate/geography). Only gene sets regulated by at
least 10 distinct eSNPs from a single eSNP data set were considered
for analysis in conjunction with that eSNP set (i.e., a gene set could
be analyzed with one eSNP set but not with another). Furthermore,
one out of any pair of eSNPs within 1 Mb of each other was ex-
cluded, to ensure that each eSNP represents an independent signal.
(This filter also applied to cases in which a single eSNP regulated
multiple genes within a single gene set.) For gene sets with at least
10 eSNPs passing this filter, the mean up-regulating allele fre-
quency in each population (‘‘Expression score’’) was calculated and
compared (using Pearson correlation) with 10 variables: the nine
used by Hancock et al. (2011), plus absolute latitude.

These correlation values represent the effects of both natural
selection and neutral demographic processes. To correct for the
latter, I reasoned that the demographic effects in a gene set of size
N eSNPs would be well-captured by N eSNPs randomly chosen
from the same eSNP data set (and subjected to the same process of
mapping proxies to the Illumina 650Y microarray; see above).
These are expected to reflect not only the varying relatedness of the
60 human populations, but also any effects of ascertainment bias
in the original eSNP study (e.g., due to the genotyping platform
used, bias toward high MAF, etc.). Therefore, because multiple
eSNPs are present in each gene set, the effects of demography and
other confounders can be accounted for, without resorting to
complex/questionable models of human demographic history. To
achieve this, up to 107 randomly drawn sets of eSNPs were com-
pared with each real set (only sets that were significant with
smaller numbers of randomizations were tested with the full 107,
to increase computational efficiency). The number of random sets

with an association to a climate variable that was at least as strong
as that of the real set, divided by the number of random sets tested,
represented the P-value estimate. Absolute values of correlation
coefficients were used, to make the test two-sided.

Within most gene sets, it is likely that not every eSNP has
been subject to the same selective pressures; in particular, some
may be effectively neutral. To enrich eSNPs in the analysis for those
that are subject to selection, I re-ran the analysis using only eSNPs
with global FST > 0.1. Although this reduced the number of eSNPs
being analyzed, those remaining were specifically those showing
at least moderate population differentiation.

It is critical to correct for the number of statistical tests per-
formed in this analysis. Across all five eSNP sets, a total of 2201
gene sets were tested in the all-FST analysis, and 837 in the FST > 0.1
analysis (fewer were tested at FST > 0.1 because fewer gene sets had
more than 10 eSNPs with FST > 0.1). With 10 climate variables
being compared, there were nominally 10 3 (2201 + 837) = 30,380
tests performed; however, because of the highly redundant nature
of many gene sets and climate variables, a simple Bonferroni cor-
rection is not appropriate. To estimate more accurately the effect of
these nonindependent tests, I recorded how often any gene set
(out of all tested) reached a given significance level when gene
labels were randomly shuffled, so that all of the gene set as-
signments for gene X were assigned to the same randomly
chosen gene. Among 1000 of these randomizations (each in-
volving the complete collection of gene sets used in the real
analysis), nine yielded a single gene set/climate variable pair
with P = 2 3 10�6 or lower, yielding a multiple test-corrected P =

9/1000 = 0.009 for the UV-down-regulated gene set. Analogous
calculations yielded a corrected P = 0.035 for the ‘‘Diabetes
pathways’’ gene set, and P = 0.002 for the ‘‘Positive regulation of
cell proliferation’’ gene set. No other gene sets were significant at
a corrected P < 0.05.

Correlation between type 2 diabetes risk allele frequencies
and distance from the equator

This result was calculated using the SNPs reported to be associated
with T2D in the NHGRI GWAS Database (http://www.genome.
gov/26525384; downloaded in September 2012). For the 20 T2D-
associated SNPs with non-negligible population differentiation
(FST > 0.1) present on (or in r2 > 0.9 with a SNP on) the Illumina
650Y microarray, risk-allele frequency was calculated in each of the
60 populations, and the mean of these frequencies was compared
with the absolute latitude of each population. This approach is
justified by the observation that T2D-associated SNPs discovered
in European cohorts are nearly all replicated in diverse worldwide
populations (Waters et al. 2010). Since GWAS power increases
with MAF, the T2D SNPs could potentially be biased toward
high MAF in Europeans (the study population for nearly all of
the T2D GWAS); however, this would not be expected to in-
troduce any correlation between the risk allele (which is about
evenly split between major and minor) frequency and latitude.
The association between mean risk allele frequency and abso-
lute latitude is consistent with the known population differ-
entiation of T2D-associated variants (Pickrell et al. 2009; Chen
et al. 2012).
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