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ABSTRACT

When viruses infect their host cells, they can make defective virus-like particles along with intact virus. Cells coinfected with vi-
rus and defective particles often exhibit interference with virus growth caused by the competition for resources by defective ge-
nomes. Recent reports of the coexistence and cotransmission of such defective interfering particles (DIPs) in vivo, across epide-
miological length and time scales, suggest a role in viral pathogenesis, but it is not known how DIPs impact infection spread,
even under controlled culture conditions. Using fluorescence microscopy, we quantified coinfections of vesicular stomatitis vi-
rus (VSV) expressing a fluorescent reporter protein and its DIPs on BHK-21 host cell monolayers. We found that viral gene ex-
pression was more delayed, infections spread more slowly, and patterns of spread became more “patchy” with higher DIP inputs
to the initial cell. To examine how infection spread might depend on the behavior of the initial coinfected cell, we built a compu-
tational model, adapting a cellular automaton (CA) approach to incorporate kinetic data on virus growth for the first time. Spe-
cifically, changes in observed patterns of infection spread could be directly linked to previous high-throughput single-cell mea-
sures of virus-DIP coinfection. The CA model also provided testable hypotheses on the spatial-temporal distribution of the
DIPs, which remain governed by their predator-prey interaction. More generally, this work offers a data-driven computational
modeling approach for better understanding of how single infected cells impact the multiround spread of virus infections across
cell populations.

IMPORTANCE

Defective interfering particles (DIPs) compete with intact virus, depleting host cell resources that are essential for virus growth
and infection spread. However, it is not known how such competition, strong or weak, ultimately affects the way in which infec-
tions spread and cause disease. In this study, we address this unmet need by developing an integrated experimental-computa-
tional approach, which sheds new light on how infections spread. We anticipate that our approach will also be useful in the de-
velopment of DIPs as therapeutic agents to manage the spread of viral infections.

Viruses cause diseases by interacting with their hosts across
multiple length scales. Interactions within a single cell be-

tween an invading viral genome and the host cell resources lead to
the expression of viral genes, replication of progeny genomes, and
assembly of viral progeny particles. Upon release from their host
cell, progeny particles are transported by diffusion or convection
to nearby or distant susceptible cells and initiate new rounds of
infection, often triggering or engaging with innate cellular im-
mune responses or systemic adaptive immune responses that in-
fluence the progression of disease in a complex living host. While
the study of the interactions at each scale can provide valuable data
about virus infections, it is becoming increasingly clear that a
comprehensive picture of virus infections that accounts for and
incorporates virus-host interactions across multiple length scales
(from the molecular to the cell and tissue levels, as well as the
systemic level) and across multiple time scales (from minutes to
hours to days) will be needed to frame in an appropriate context
the major challenges facing molecular and cell scientists, clinical
virologists, and epidemiologists (1–3). Moreover, such perspec-
tives may enable the identification and development of new ap-
proaches toward the design of antiviral strategies, particularly
strategies for preventing viral escape (4–7).

A majority of the existing multiscale studies linking intracellu-
lar virus growth to cell-to-cell infection spread features are based
on computational models that describe basic interactions between

replicating viruses and immune responses (3, 8, 9). However, the
differential equations that define such models assume well-mixed
conditions and do not account for the inevitable spatial heteroge-
neities that contribute to within- and between-host dynamics in
natural infections. Spatial variation can be incorporated by recog-
nizing that virus particle movement by physical processes such as
diffusion or fluid flow may combine with biological processes of
particle amplification, leading one to write and solve sets of cou-
pled partial differential equations (PDE) or population balance
models (3, 10, 11), which can be challenging to implement. Hence,
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simpler agent-based cellular automaton (CA) models that enable
the reproduction of the discrete nature of biological systems and
link intracellular and extracellular components of virus infections
have been developed (12–16). However, CA models generally
have tenuous links to experiments; their model parameters have
little connection to molecular or cellular wet-lab measurements.
Moreover, single cells exhibit extremely heterogeneous behavior
associated with the production of virus progeny (17–21), which
likely influences how infections spread. However, such behaviors
have yet to inform PDE or CA models of infection spread.

To date, multiscale studies of infections have focused on the
dynamics of viable virus particles while avoiding consideration of
the plethora of nonviable or defective particles that accompany
the production of most viable particles (22–24). Noteworthy are
defective interfering particles (DIPs), virus-like particles that
carry genomes lacking one or more viral genes that are essential
for growth. When viable virus and their DIPs coinfect the same
host cell, the defective genomes compete with the intact genomes
for viral proteins, resulting in a reduction and delay in infectious
virus production. Further, DIPs activate host immune responses
both in vitro (25–30) and in vivo (31–33), motivating the use of
natural or engineered DIPs in antiviral formulation studies (33–
35). DIPs not only influence virus infections when administered
externally but have also been detected during natural infections of
human hosts by influenza A virus (36, 37) and dengue virus (38,
39), as well as in avian hosts infected by West Nile virus (40). The
presence of DIPs in multiple virus populations in nature and re-
cent findings suggesting the cotransmissibility of DIPs among in-
dividuals (37, 39) indicate the potential impact of DIPs on the
multiscale progression of acute in vivo infections.

Coinfections of host cells with DIPs and their viable intact
viruses have provided evidence that DIPs inhibit the synthesis of
viral genomes, protein, and infectious progeny virions (41–46).
Further, we have recently elucidated the effects of the DIP dose at
the single-cell level, quantifying both the extent and the extreme
variability of the interfering effects of DIPs on intracellular viral
gene expression and viable particle production (47). However,
little is known about the effects of DIPs on virus spread. Theoret-
ical models, in the absence of experimental observations or pa-
rameters, suggest that infections can fluctuate or persist (48). In
the only experimental study of the impact of DIPs on infection
spread, Clark et al. (49) observed that the addition of DIPs leads to
a delay in infection spread in vitro, but they did not characterize or
quantify the spread features.

Here we consider the spread of a recombinant vesicular stoma-
titis virus (VSV) that has been engineered to express red fluores-
cent protein (RFP) (50). We monitor its plaque growth on cell
monolayers in the presence of DIPs, and we observe a diversity of
dose-dependent infection spread patterns. These observations
provide the first experimental evidence for long-range temporal
and spatial effects of DIPs in their intracellular interference with
virus growth kinetics. Moreover, to extend our experimental ob-
servations, we combine them with CA modeling and examine the
impact of extracellular processes (i.e., diffusion and virus adsorp-
tion) on predicted patterns of coinfection spread. The model in-
corporates our experimentally determined correlations between
the DIP multiplicity and the distributions of kinetic parameters of
infection measured at the single-cell level (47). This work is the
first data-driven model to show that stochastic gene expression at
the single-cell level can amplify and propagate over multiple cycles

of virus growth and infection spread. Moreover, by explicitly ac-
counting for DIPs, the model enables us to simulate spatial pat-
terns of both virus and DIP spread and to explore diverse coinfec-
tion scenarios, including those needed for full inhibition of the
spread of virus infection. Overall, this work sets the foundation for
predictive multiscale models for other virus-host systems. Finally,
insights from this approach will advance our understanding and
application of natural or engineered virus infection spread in the
presence of DIPs.

MATERIALS AND METHODS
Cell type and virus strain. Baby hamster kidney cells (BHK-21 cells) were
grown in minimal essential medium (MEM; Corning) with 10% fetal
bovine serum (FBS; Atlanta Biologicals) and 2 mM GlutaMAX I (Gibco).
The cell line was cultured in a humidified incubator at 37°C under 5%
CO2. The infections were carried out using a recombinant vesicular sto-
matitis virus strain (VSV-rWT-DsRed-Ex) engineered to carry and ex-
press a DsRed-Express-DR gene (Clontech) (RFP) as a by-product of
infection (50). DIPs were produced by fixed-multiplicity serial infections
using VSV-rWT-DsRed-Ex at a multiplicity of infection (MOI) of 10, and
the passage with the highest DIP concentration (determined by a yield
reduction assay) (45) was stored at �80°C for later infections (47). No
RFP expression was observed in cells infected with purified DIPs, re-
flecting a loss of functional RFP during DIP generation; such DIPs,
generated by high-MOI passage, may well exist as a mixture of DIPs
carrying genomes of different lengths and exhibiting different extents
of interference (51).

Solution-phase coinfection and plating of cells. Coinfections were
carried out in solution as described previously (18, 47). Monolayers of
BHK-21 cells grown in T75 cell culture flasks (BD Falcon) were released by
treatment with trypsin (Cellgro) after washing with Dulbecco’s phos-
phate-buffered saline (DPBS; Gibco). The cell suspension was diluted to
105 cells/ml in MEM, cooled on ice, and mixed with VSV-rWT-DsRed-Ex
(MOI, 30) and with DIP (multiplicity of DIP [MODIP], 10, 1, 0.1, or 0) in
the cold for 30 min, to minimize cell aggregation and allow for virus
attachment without entry; a high MOI (MOI, 30 to 50) ensures that vir-
tually all cells, even resistant ones, become productively infected with
viable virus (50). The temperature of the virus-cell solutions was raised to
37°C in a water bath for 5 min to allow for internalization of the attached
virus and DIPs. The infected-cell suspension was then centrifuged at 1,000
rpm for 4 min at 4°C, the medium was discarded, and the pellet was
resuspended. This procedure was repeated three times to minimize the
carryover of unbound virus and DIPs from the infected-cell suspension,
which was then diluted to a final concentration of 30 infected cells/ml in a
suspension of 5 � 105 noninfected cells/ml. The solution containing in-
fected and noninfected cells was added to 12-well plates (1 ml/well). The
cells were allowed to attach to the plate for 1 h, and the medium was then
replaced with an overlay of semisolid 2% FBS in MEM containing 0.6%
(wt/vol) agar. Infection was allowed to proceed in a humidified incubator
at 37°C under 5% CO2.

Live-cell time lapse imaging. Time lapse microscopy of plaque for-
mation was performed using a Nikon Eclipse Ti microscope with a
QICAM Fast 1394 digital camera (QImaging). The plate was placed in a
stage-top incubation chamber at 37°C, 5% CO2, and 85% relative humid-
ity, and the temperature was maintained by an outer warming chamber
encompassing the microscope (InVivo Scientific). Starting at 3 h postin-
fection, each well was imaged at a magnification of �4, capturing �75%
of the well area every 2 h for 28 h, after which the single plaques started to
merge under low-MODIP conditions. Only the plaques initiated with a
MODIP of 10 (highly inhibited) could be imaged for as long as 37 h. At the
end of the experiment, the plates were scanned with a GE Typhoon FLA
9000 biomolecular imager (555/580 nm) to obtain the total plaque counts
for each well. Overall, 17, 8, 24, or 48 plaques were obtained and examined
in the wells with cells infected at a MODIP of 0, 0.1, 1, or 10, respectively.
By normalizing the number of emerged plaques to the number of plated
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infected cells, the fraction of fully inhibited spread was estimated for each
MODIP condition. Imaging through the course of infection did not affect
the size of the plaques, as revealed by comparison of the areas of imaged
and nonimaged VSV-rWT-DsRed-Ex plaques in the absence of DIPs
(data not shown).

Prior to the initiation of each time lapse run, images were taken to
correct for uneven light intensities. A red fluorescence reference slide (Ted
Pella, Inc.) was used for illumination and dark-field correction images.

Image processing and quantification. The initial batch image organi-
zation and processing were done using Je’Xperiment (JEX-0.0.1; source

FIG 1 Determination of concentric ring radii. (A) Concentric rings with increments in radial distance (�r) of 1, 4, and 10 cell diameters (30 �m/cell) are shown
with a maximum-intensity z-stack projection of the time course images of a normal plaque. The outer radii of analyzed rings (ORAR) are marked as yellow circles.
(B) The time at which the maximum mean RFP fluorescence is reached (i.e., one round of infection is completed) at each ring (ordinate) is plotted with respect
to the ORAR (abscissa). When �r is 1 cell, the RFP intensities in multiple adjacent rings reach the maximum level at the same time, indicating that the infections
occur with close timing in the cells of the adjacent rings. On the other hand, increasing �r to 10 cells masks the complete infection events that could be tracked
using a �r of 4 cells. In our selected case of a �r of 4 cells, each ring represents a separate single round of infection spread.

FIG 2 Spread patterns in the presence and absence of DIPs. Representative time lapse images of three major spread patterns on BHK-21 cells infected with
reporter VSV at an MOI of 30 and their DIPs at various multiplicities are shown. Bars, 200 �m. Normal plaques (top) emerged from cells infected at all MODIP
levels, but primarily at a MODIP of 0 or a low MODIP (0.1 or 1). Slow-growing (center) and patchy (bottom) plaques were observed only in the presence of DIPs
(MODIP levels, 1 and 10). Time points are shown above the panels. Since the patchy plaques developed more slowly than the others, an additional image at 35
hpi is shown. See also Movies S1 to S3 in the supplemental material.
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code available at http://sourceforge.net/projects/jextools), a Java-based
image-processing and quantification interface (20). Briefly, the images
were first sorted according to the experimental condition, location in the
array, and time. After correction of the image background using calibra-
tion images, individual plaques in corrected images were cropped and
were analyzed using custom-written macros in Fiji (52). The locations of
plaque centers (P.C.) were determined automatically based on early time

images of the plaques using detection of maxima. The area of each plaque
was quantified at each time point based on the fluorescence-positive area.
The area equivalent radius (AER) of the measured area was calculated by
determining the radius of the circle that would have the same area as the
measured area. Plaques were categorized according to their expansion
rates. Plaques growing at a spread rate that was within the measured range
of plaques initiated at a MODIP of 0 were counted as normal plaques. On

FIG 3 Quantitative analysis of infection spread. Features extracted from spread patterns initiated by single cells coinfected with different DIP levels (given at the
top) are shown. A total of 17, 8, 24, and 48 plaques were imaged in three experimental trials at MODIP levels of 0, 0.1, 1, and 10, respectively. (A) Spread
phenotype distributions are shown in pie charts. Upper pie charts show the percentages of spreading infections (black) and fully inhibited spread (white), while
lower pie charts show the percentages of normal spread (black) and slow/patchy spread (gray) as subsets of the spreading infections. (B) The expansion profiles
of each plaque at each MODIP are shown as gray lines; the means and standard deviations of these profiles are shown as solid and dashed black lines, respectively.
The ordinate is the area equivalent radius (AER), calculated from the circle that has the same area as the plaque, and the abscissa is time. (C) Infected fraction
(ordinate) calculated based on the fraction of the fluorescence-positive area in concentric rings around the initially infected plaques with different outer radii of
analyzed rings (ORAR) (abscissa). As in panel B, individual plaque trajectories are indicated by gray lines, while means and standard deviations are shown as solid
and dashed black lines, respectively. (D) The relative fluorescence in the fluorescence-positive area (ordinate) is plotted against the ORAR (abscissa). Relative
fluorescence is calculated by normalizing mean fluorescence readouts to the mean fluorescence at the plaque center at a MODIP of 0.
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the other hand, plaques growing at a spread rate below this range were
considered slow-growing or patchy plaques, depending on their spatial
characteristics. The determination of further measures, including the per-
centage of the fluorescence-positive area and the mean fluorescence in-
tensity over the area of each plaque, is presented below.

Concentric ring quantification of plaque characteristics. Once the
spatial locations of plaque centers were defined, the time point images
were stacked to create the maximum-intensity Z-projections of each
plaque, on which concentric circles around the plaque center with radial
interval distances of approximately 4 cell diameters (30 �m/cell) were
drawn to form rings representing the rounds of infection spread (Fig. 1).
After the background for each image was set at zero, the percentage of the
area that was positive for fluorescence and the mean fluorescence intensity
on each ring were extracted using Fiji, and the measurement data tables
were analyzed using MATLAB, release 2012a (MathWorks, Natick, MA).
The mean intensity values were normalized to the average mean intensity
at the centers of plaques formed in the absence of DIPs (at a MODIP of 0).
The data extracted from each ring were plotted with respect to the outer
radius of the ring.

Quantification of spatial and temporal features of spread. Temporal
features of spread, including the spread rate, delay, and fold decrease in
spread rate, were extracted from plaque expansion (area equivalent radius
over time) profiles using MATLAB. Spread rate was calculated as the slope
of linear approximation of plaque expansion profiles, while delay in
spread was the interval between the time of virus adsorption and the time
when fluorescence expression at the plaque center first became detectable.
Because the spread rates of some plaques were not linear, the fold decrease
in the spread rate was estimated as the ratio of the average spread rate for
the final three time points to the average postdelay spread rate for the

earliest three time points. Spatial features of spread were obtained from
viral activity profiles over concentric rings. First, the normalized percent-
age of the area that was fluorescence positive and the mean fluorescence
intensity of this area in the 4-cell-diameter circle around the plaque center
were quantified. Second, the reductions in these two viral activity mea-
sures within the 8-cell-diameter distance were calculated.

Cell automaton model. The cell automaton model was developed
using MATLAB 2012a, and as described in Results, the model was guided
by experimentally determined intracellular probabilistic rules (47) and
equations 1 to 6, governing extracellular events. The simulation of each
plaque was run with a time step of 6 min, typically over a full duration of
30 to 70 h. Distributions of spread features for each condition were ex-
tracted from 200 simulation runs. The parameters of the model were
optimized by minimizing the least-square error between measured and
modeled spread features, summed over all MODIP conditions. Optimi-
zation was performed to match either the spread rate or spatial features,
such as the normalized percentage of the area that was fluorescence pos-
itive and the relative mean fluorescence intensity around the plaque cen-
ter, and their decrease. Since spatial features were multiple, the least-
square errors of all spatial features were summed.

The sensitivities of the model parameters were calculated by compar-
ing the optimum model results to the distributions generated after per-
turbing one parameter in each optimum parameter set, while fixing all
other parameters at their optimum values. The adsorption efficiency, dif-
fusion constant, and clearance rate were perturbed by 0.1, and the super-
infection period was perturbed by 0.5 h. For comparison, the Mann-
Whitney U test was used, and P values were evaluated to score the
significance of change. A P value of �0.01 was assumed to be a statistically
significant change.

RESULTS
Spread patterns in the presence and absence of DIPs. To inves-
tigate the effect of DIPs on infection spread, we tracked infectious
virus propagation on BHK-21 cell monolayers using a recombi-
nant vesicular stomatitis virus (VSV) strain expressing red fluo-
rescent protein (RFP). RFP provides a near-real-time report of
viral gene expression, correlating with the timing of viral progeny
release from infected cells, and is also a useful tool for probing the
effects of DIPs on viral activity at the single-cell level (47). To
avoid potentially confounding the immune activation functions
of DIPs, we used BHK-21 cells, which exhibit minimal antiviral
activity (53, 54). Each well contained at most 30 infected or coin-
fected cells along with a large population of healthy cells. The
spatial propagation of infection was tracked by fluorescence mi-
croscopy for as long as 37 h postinfection (hpi) using conditions
set to minimize cell death due to phototoxicity or cell aging.

Time lapse imaging of plaque formation at different MODIP
levels revealed three patterns of virus spread: normal, slow grow-
ing, and patchy (Fig. 2). Normal plaques expanded symmetrically
and homogeneously with the initial infection and became visible
around 9 hpi. Similarly, slow-growing plaques were symmetric and
homogeneous, but their initial appearance was delayed relative to
that of normal plaques. In contrast, patchy plaques appeared after still
longer delays and exhibited highly irregular shapes.

Patterns of infection spread depend on the initial DIP dose.
Analysis of infection spread initiated from single cells coinfected
with virus and DIPs showed a monotonic relationship between
the MODIP of the initially infected cell and phenotype distribu-
tions (Fig. 3A). As more DIPs were added in the initial infection of
cells, fewer cells were able to produce sufficient viral progeny to
trigger the infection of neighboring cells (Fig. 3A, upper pie
charts). At a MODIP of 10, only 12% of initially infected cells were

FIG 4 Interfering effects of initial DIPs on initial delay and the subsequent rate
of infection spread. (A) Schematic illustration of how parameters are extracted
from distance-versus-time data (solid line). Delay in spread, spread rate, and
fold decrease in spread rate were extracted from plaque expansion profiles,
shown as the area equivalent radius (AER) versus time. (B to D) The distribu-
tions of extracted features at each MODIP (abscissa) are shown as box plots.
The gray boxes cover 25%-to-75% confidence intervals, while whiskers span
5% to 95%. The horizontal lines in the boxes represent medians, and each
outlier is indicated by a lowercase letter x. (B) Delay is the first time point at
which the fluorescence intensity exceeds the lower detection limit in the ini-
tially infected cell. (C) The spread rate is calculated by linear approximation of
expansion profiles. (D) The fold decrease in the spread rate is the ratio of the
instantaneous spread rate (slope of line [D] in panel A) at the last three time
points to that at the earliest three time points.

Akpinar et al.

7556 jvi.asm.org August 2016 Volume 90 Number 16Journal of Virology

http://jvi.asm.org


able to initiate spreading infections, and only 2% of the resulting
plaques expanded normally. Moreover, slow-growing and patchy
plaques were not observed in the absence of DIPs, but they out-
numbered normal plaques for coinfections at a MODIP of 1 or 10
(Fig. 3A, lower pie charts).

We further analyzed the infection spread patterns of each
plaque for expansion profile and viral activity. By use of the flo-
rescence signal as an indicator of the progress of infection, the area
covered by infected cells was quantified during the course of the
experiment for each plaque at different DIP levels, and a circle
with the same area was drawn; the radius of that circle was defined
as the area equivalent radius (AER) (Fig. 3B). In the absence of
DIPs (MODIP, 0), all plaque infections spread with a constant
radial velocity, as observed previously (55, 56). Increasing the
MODIP led to a decrease in the average plaque expansion rate
(Fig. 3B) and an increase in the variability of expansion profiles
(Fig. 3B, dashed black lines), especially at a MODIP of 1 or 10.

To quantify viral activity during infection spread, we measured

the mean fluorescence intensity averaged over the concentric rings
centered on the initially infected cell (plaque center). Based on
these measurements, we determined the fraction of cells with de-
tectable viral activity (producer cells) within each concentric ring
(Fig. 3C). We also determined the fluorescence intensity in these
infected cells in each concentric ring, normalized to the fluores-
cence at the P.C. in the absence of interference, or a MODIP of 0
(Fig. 3D). At a MODIP of 0, the infected fraction and the relative
fluorescence remained relatively constant over the course of 28
hpi, up to a radius of 800 �m (Fig. 3C and D, leftmost graphs).
Beyond this distance, both measures decreased, indicating the ear-
liest stages of infection initiation at the largest radii, correspond-
ing to the dynamic leading edge of the infection front (57). As the
MODIP of the initially infected cell increased, the active infection
front was confined to an area closer to the plaque center, and viral
activity was notably reduced (Fig. 3C and D), owing to a lower rate
of spread and greater patchiness of the plaques. These changes
accompanied an increase in variability that peaked at a MODIP of

FIG 5 Interfering effects of DIPs on viral activity during infection spread. (A) Schematic illustration of how parameters are extracted from data depicting the
infection measure (Y) versus the outer radius of each analyzed ring (ORAR). (B to E) Distributions of extracted features at each MODIP (abscissa) are shown as
box plots. The gray boxes cover 25%-to-75% confidence intervals, while the whiskers span 5% to 95%. The horizontal lines in the boxes represent medians, and
each outlier is indicated by a lowercase letter x. The infected fraction (B) and relative fluorescence (C) around the plaque center (P.C.), as well as the interference
with these values within �8 cell diameters in early rounds of spread (E.R.) (D and E), were extracted from the infected fraction and relative fluorescence over the
ORAR trajectories of the individual plaques shown in Fig. 3C and D.
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1 (Fig. 3C and D, dashed lines). We did not observe any further
increase in variability at a MODIP of 10, potentially reflecting the
exclusion of the fully inhibited spread patterns, which were high-
est at this MODIP.

The initial DIP level reduces the rate of infection spread. The
delay in spread initiation, defined as the time elapsed from virus
adsorption to the initial detection of RFP expression at the plaque
center, could be estimated from AER-versus-time plots for each
plaque (Fig. 4A). In the absence of DIPs, the shortest delays were 6
hpi (Fig. 4B), in agreement with previously observed virus pro-
duction and RFP maturation rates (50). At higher initial DIP
doses, delays increased to a maximum of 35 hpi (at a MODIP of
10) (Fig. 4B). After the initial delay, the rates of infection spread
during subsequent infection cycles also reflected the DIP dose of
the initial cell. Specifically, spread rates of 55 �m/h in the absence
of DIPs dropped to �15 �m/h when the cell was initially coin-
fected at a MODIP of 10 (Fig. 4C). Moreover, the relatively con-
stant spread rates in the absence of DIPs during the expansion of
individual plaques gave way to changing (decreasing) spread rates
at higher initial DIP levels (Fig. 4D).

DIPs reduce the level of viral gene expression and the prob-
ability of plaque formation. Since the intensity of reporter fluo-

rescence reflects the level of viral gene expression (47), we exam-
ined in greater depth the fluorescence intensity profiles shown in
Fig. 3C and D. First, we quantified the fraction of successful infec-
tions and the viral activity levels in the proximity of the initially
infected cell (within 4 cell diameters of the plaque center), as
shown in Fig. 5A to C. When the initial infection was initiated at a
low MODIP, �90% of the cells in this center region were reporter
positive, corresponding to virus production (Fig. 5B). However, at
high DIP levels, the fraction of reporter-positive cells decreased
(Fig. 5B and C), and at a MODIP of 10, only �50% of cells were
reporter positive, and the maximum level of gene expression was
less than 80% of the level in normal (no-DIP) infections.

We further calculated the drop in successful infections and
gene expression within 8 cell diameters of the initially infected cell
(Fig. 5D and E), which would be directly affected by the virus
released from the initially infected cell, and plausibly more under
the influence of the initial DIP level than later, more spatially
segregated rounds of infection. In the absence of DIPs, the drop in
viral reporter activity was negligible, but it became significant with
increasing DIP levels (Fig. 5E). Similarly, the fraction of success-
ful infections fell by as much as �0.3 (MODIP, 10) near the

FIG 6 Data-driven cellular automaton model of virus-DIP interactions during infection spread. Infection starts at the center of a square grid at a given initial
MODIP and MOI. As described in the shaded box, the experimentally determined mathematical relationships linking the MODIP to distributions of virus
growth kinetics (virus yield, delay, and rise time) (47) are used to generate virus growth profiles. DIP yields from single cells are calculated as the difference
between the infectious virus yield and maximum virus production from a cell. Virus growth is assumed to be linear and continuous. Once the virus and DIPs are
released to the extracellular pool at a specific cell location, they can diffuse to neighboring cells at a particular diffusion constant (D), adsorb onto uninfected cells
at a certain adsorption efficiency (kad) during the superinfection period (tsup) of cells, or clear at a particular clearance rate (kc). The model runs for the desired
period (e.g., 30 hpi) with time steps of 6 min, satisfying forward Euler stability criteria. By 200 iterations of the model, a distribution of infection spread patterns
at a given set of model parameters and a given initial MODIP can be obtained and compared with experimental results.

TABLE 1 Variables and parameters of the modela

Parameter Definition

xi Current cell position
xn Neighboring cell position
t Time
dt Time step
D Diffusion coefficient
nc No. of neighboring cells
kc Clearance rate
kad Adsorption efficiency
V Extracellular virus or DIPs
a V*, extracellular virus or DIPs; V, intracellular virus or DIPs.

TABLE 2 Parameter values of the modela

Parameter Range

Value with:

Parameter
set 1b

Parameter
set 2c

Adsorption efficiency (kad) 0.5–1 0.8 0.5
Diffusion constant (D) (�m2/s) 10�4–10d 5 0.025
Superinfection period (tsup) (h) 0.5–4e 3 1.5
Clearance rate (kc) 0–0.5 0 0.1
a Model parameters for infectious virus and DIPs were identical.
b With a high diffusion constant.
c To capture spatial patterns.
d See reference 15.
e See reference 60.
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plaque center, providing evidence of DIP production, release,
coinfection, and escalation of interference during infection
spread (Fig. 5D).

The CA model incorporates biological and physical contri-
butions to infection spread. When virus and DIPs coinfect a cell,
the cell produces virus and DIP progeny, which may then move by
diffusion to nearby cells and initiate new rounds of coinfection,
ultimately generating patterns of infection spread in space and
time. To examine how these processes together contribute to the
pattern of infection spread, we developed a cellular automaton
(CA) model (Fig. 6).

In the model, the cell monolayer is represented as a square grid
in which each square is occupied by a cell (diameter, 30 �m). In
this way, we represent the uniformly high cell density that we
observe in experiments. Cell proliferation, death, and aging are
assumed to be negligible, since no significant effect of these phe-
nomena was observed within the relatively short duration of our
experiments. Also, antiviral host responses are not included in the
model, reflecting the lack of an intact immune response in
BHK-21 cells (53, 54).

Initially, all the cells on the grid are healthy and susceptible to
infection, except for the center cell, where the initial infection
starts at a given MOI and MODIP, leading to the local production
of virus and DIPs. The production profiles are generated approx-
imating linear and continuous growth, with inputs of latent time,
yield, and rise time picked randomly from previously measured
distributions of these parameters (47). Although RFP expression
is an intracellular measure, its correlation with infectious virus
production is used to estimate the release of extracellular in-
fectious virus. Further, DIP yields from single cells are calcu-
lated as the difference between the maximum virus production

from a cell (no DIPs) and the reduced infectious virus yield
owing to DIP coinfection, assuming a conservation of total
particle production in DIP coinfections (51). In short, an in-
crease in DIP production corresponds with a decrease in infec-
tious virus yield.

As the experimental distributions of virus growth kinetics set
the intracellular probabilistic rules of our model, extracellular
processes determine the propagation of the viruses and DIPs pro-
duced to neighboring cells. These extracellular processes, de-
scribed by equations 1 to 6, include (i) diffusion, (ii) adsorption of
virus to the cell surface, and (iii) virus clearance (Fig. 6). The terms
in equations 1 to 6 are defined in Table 1.

V��xi, t� � V�xi, t � dt� � Virus generation � Diffusion
(1)

V�xi, t� � V��xi, t� � Clearance � Adsorption (2)

Diffusion � D · �
xn

�V�xn, t � dt� � V�xi, t � dt��
nc

(3)

Virus generation � �
t�dt

t Yield�xi, t � dt�
nc

(4)

Clearance � kc · V��xi, t� (5)

Adsorption � ��1 � kc� · V��xi, t��kad (6)

(i) Diffusion. Virus particles and DIPs are released from
each cell, creating extracellular pools of virus and DIP associ-
ated with the infected-cell location (equations 1 and 4), and
these particles diffuse to the nearest four orthogonally neigh-
boring cells, a pattern known as the von Neumann configura-
tion. Diffusion is governed by an estimate of the concentration
gradient and the diffusion constant (D) (equation 3), which is

FIG 7 Simulated spread phenotypes using the optimum parameter set 1. The model parameters are the set optimized to match a spread rate with a high diffusion
constant (kad � 0.8; D � 5 �m2/s; tsup � 3 h; kc � 0). (A) A simulated plaque expansion pattern in the absence of DIPs successfully mimics the pattern observed,
as shown in the plaque representing the major phenotype observed in 200 simulations. Red areas represent infectious-virus-producing (RFP-positive) cells. Bars,
500 �m. The time points are shown at the top right of each image. (B) Hollow rings emerge during 20% of the simulations in the presence of DIPs (at a MODIP
of 1 or higher). The first three images, at 9, 21, and 30 h, show infectious-virus-producing cells (red), and the final image shows DIP-producing cells (green) at
30 h.
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assumed to be less than 10 �m2/s, in accordance with previous
measures (15).

(ii) Virus adsorption to susceptible cell surfaces. If extracel-
lular virus and DIPs colocalize with an uninfected cell, they can
adsorb to receptors on the cell surface. Experimentally, virus ad-
sorption is not fully efficient, so only a fraction of virus and DIPs
are internalized into a cell (58). The extent of virus adsorption is
described by equation 6, in which kad, the efficiency of virus ad-
sorption, is less than 1 and is assumed to be the same for both
infectious virus and DIP, reflecting their similar cell entry behav-
iors (59). Virus adsorption onto the same cell can continue up to
�3 h, a superinfection period (tsup), following initial virus expo-
sure, based on previous observations (60). In the model, MOI and
MODIP values are calculated based on the accumulated extracel-
lular virus and DIPs during this superinfection period.

(iii) Virus clearance. A fraction of extracellular viruses and
DIPs is assumed to be cleared at each time step (calculated by use
of the clearance rate [kc] in equation 5), to account for the loss of
virus due to degradation or potential immobilization of virus par-
ticles and DIPs in the agar overlay.

The CA model replicates observed DIP-mediated reduction

of infection spread. We cut the complexity of our CA model to
four parameters (Table 2), which were adjusted to match observed
features of infection spread. First, we kept the diffusion constant at
5 �m2/s, within the range observed previously (15, 61, 62), and fit
the model to the measured spread features by optimizing the other
three parameters. At the optimum model parameters (Table 2,
parameter set 1), the model was able to reproduce well the spread
patterns in the absence of DIPs (Fig. 7A), including the key aspects
of infection spread, such as the spread rate (Fig. 8A, MODIP 0)
and the decrease in fluorescence at the infection front (Fig. 8F,
MODIP 0), comparably to the performance of previous spread
models (15, 62). However, in the presence of DIPs, this model
failed to exhibit complete inhibition of spread at any MODIP and
caused gaps in the infection front, resulting in the formation of
hollow rings (Fig. 7B), which emerged in 	40% of the simulations
at MODIP levels of 1 and 10. Despite its high frequency in simu-
lations, the hollow-ring structure was not observed in the experi-
ments, suggesting that this pattern may be unrealistic. Also, be-
cause of the discontinuity in the hollow-ring patterns, the spread
features could not be precisely extracted.

The mismatches between the experimental observations and

FIG 8 Simulated spread features using optimum parameter set 1. The spread rate (A), delay in spread (B), infected fraction (C), and fluorescence (D) around the
plaque center, interference of infected fraction (E), and interference of fluorescence (F) in early rounds of spread at each MODIP (abscissa) are simulated with
a model parameter set optimized for the spread rate (kad � 0.8; D � 5 �m2/s; tsup � 3 h; kc � 0). Modeled distributions are shown in dark gray box plots along
with the measured distributions (light gray box plots).
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the spatial spread features estimated by the model with a high
diffusion constant led us to optimize the model parameters based
on spatial patterns (optimum parameter set 2 in Table 2). The fit
resulted in a low diffusion constant and low spread rates (Fig. 9A),
but the distributions of delay in spread (Fig. 9B) and spatial fea-
tures (Fig. 9C to G) were captured well. Particularly, the changes
observed in the infected fraction around the plaque center
(Fig. 9C), and its drop in neighboring cells (Fig. 9E and 10), as the

MODIP increased matched the model results very well. Similarly,
in the model, the complete inhibition of spread occurred at a
frequency comparable to that in the experiments (Fig. 9G). Ex-
trapolation of the DIP levels to an experimentally untested range
using the model suggested that the probability of complete inhi-
bition of infection spread increases further with an increasing
MODIP, but the possibility of virus propagation cannot be fully
prevented, even at a MODIP of 250. Moreover, the model success-

FIG 9 Simulated spread features obtained using optimum parameter set 2. (A to F) Spread rate (A), delay in spread (B), infected fraction (C), relative
fluorescence around the plaque center (D), interference in the infected fraction (E), and interference in relative fluorescence in early rounds of spread (E.R.) (F)
at each MODIP (abscissa) are simulated with a model parameter set optimized to capture spatial patterns (kad � 0.5; D � 0.025 �m2/s; tsup � 1.5 h; kc � 0.1).
Modeled distributions are shown in dark gray box plots along with the measured distributions (light gray box plots). A star next to a MODIP label indicates a
significant difference (P � 0.01) between the measured and modeled distributions of the associated feature. (G) The fraction of fully inhibited spread observed
in experiments (gray bars) is compared with that estimated by the model (black bars) under tested (MODIP, 0 to 10) and untested (MODIP, 90 or 250) MODIP
conditions.
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fully reproduced the fraction of fluorescence-positive cells and the
relative fluorescence in these cells at each concentric ring centered
on the initially infected cell (Fig. 9). In other words, the effects of
MODIP and DIP/virus production from a cell on the progression
of infection spread were well represented by the model, allowing
us to reproduce the observed spread phenotypes (Fig. 11; see also
Movies S4 to S6 in the supplemental material). Although the esti-
mates of delay in spread (Fig. 9B) and relative fluorescence around
the plaque center (Fig. 9C) under high MODIP conditions (1 and
10) were lower than the actual values (P � 0.01), considering the
richness of the experimental data, the model provided a good fit to
the majority of the experimental observations overall and pro-
vided a platform on which to test the effects of different aspects of
virus infection and spread.

Simulated infection spread is sensitive to parameters of ex-
tracellular processes. To probe the sensitivity of infection spread
to each model parameter, we perturbed one parameter at a time,
while holding all other parameters at their optimum values (Table
2), and we scored the significance of change in the distributions of
different spread features using the Mann-Whitney U test. As sum-
marized in Table 3, increasing the adsorption efficiency and clear-
ance rate reduced the frequency of successful infections, as re-
flected by the drop in reporter-positive cells and the rise in fully
inhibited spread. While higher adsorption efficiencies enhanced
DIP input into cells, increasing the clearance rate reduced the
level of extracellular infectious virus, and both conditions re-
duced the probability of successful infection. Interestingly, the
effects of these two model parameters on relative mean fluo-
rescence were opposite, potentially because of the exclusion of
fully inhibited spread patterns from the quantification of mean
fluorescence distributions. Overall, the spread rate and the de-
lay in spread were most sensitive to the diffusion constant. In
contrast, these properties of spread, as well as the fraction of

fully inhibited plaques, were insensitive to the superinfection
period. Increasing the superinfection period led to a higher
number of successful infections, since a longer superinfection
time enables the accumulation of additional infectious virus
and thus increases the chance for a successful infection.

DISCUSSION

The spread of infection in a human host is a complex process,
linking biology and physics. Viral gene expression, activation of
innate defensive cytokine production, and stimulation of cell-me-
diated adaptive immune responses combine with physical move-
ment of virus particles and cytokines released from their initial
infected cellular sources to naïve cells and tissues. The process
becomes still more complex when defective interfering particles
enter the mix, coinfecting susceptible cells, perturbing normal vi-
ral replication, triggering cellular responses and signaling, and
spreading to near or distant naïve cells and tissues. Here we have
taken initial steps to dissect and reconstruct parts of virus-DIP
interactions within cells and the subsequent impacts on infection
spread in a plaque growth system, neglecting, for now, contribu-
tions from host immunity or physical transport by processes other
than free diffusion, factors that have been considered elsewhere
(10, 50, 55, 56, 63–67).

In the absence of DIPs, infectious virus propagated uniformly
at a constant rate (Fig. 2 and 3), as in previous studies (15, 55).
Plaques initiated by a cell coinfected with a low DIP level limited
viral gene expression, reducing the rate of infection spread (Fig. 2,
slow growth). When a cell coinfected with a high DIP level initi-
ated plaque growth, not only was the rate of spread reduced, but
the spread was also asymmetric (Fig. 2, patchy plaque). In both
cases, the inhibitory effects of DIPs on the frequency and yield of
successful infections (Fig. 3C and D and 5D and E) and the spread
rate (Fig. 3B and 4C) provide evidence that DIPs within the pop-

FIG 10 Comparison of experimental and computational (CA model) patterns of coinfection spread. The infected fraction (ordinate) (top) and relative
fluorescence (ordinate) (bottom) over concentric rings around the plaque center (ORAR [abscissa]) from experiments (gray lines) and models (red lines) are
shown. The thick and thin solid lines represent means and standard deviations, respectively. Green dashed lines represent the fractions of DIP-producing cells
and relative DIP yields from the CA model. All CA models employed parameter set 2.
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ulation become enriched relative to viable virus as the infection
propagates. Thus, at larger radii, cells may be coinfected with
higher input DIPs (MODIP) and lower infectious virus (MOI)
than cells closer to the plaque center. Lower MOI correlates with
greater cell-to-cell variation in virus production (18, 19, 68, 69),
which may have contributed to the spatial heterogeneity in viral
activity that we observed in early infected cells near the center of
patchy plaques or in the later infected cells at the outer edges of
slowly expanding plaques (Fig. 2; Movies S2 and S3). Moreover,
the heterogeneity in viral activity was also apparent within indi-
vidual plaques (standard deviations in Fig. 4 and 5), reflecting the
variability of growth in the initial coinfected cells as well as in early
rounds following spread to neighboring cells. Despite such heter-

ogeneity, the correlation between patterns of infection over mul-
tiple cycles and the DIP level of the initial coinfected cell (Fig. 4
and 5) highlights a potential key sensitivity to initial conditions.
Specifically, the timing and level of DIP production from the ini-
tial coinfected cell guides how subsequent rounds of infection
behave. Ultimately, the sensitivity of within-host spread to initial
conditions may impact the probability of infection transmission
to a new susceptible host.

The patchy appearance of plaques initiated by individual cells
coinfected with higher levels of DIPs suggests that the regions
immediately adjacent to the patch (of viral reporter expression)
contain cells that do not express enough fluorescent protein to be
detected. Such a situation could arise if the cells were enriched in

FIG 11 Simulated spread of virus-DIP coinfection using optimum parameter set 2. Infectious virus (RFP) and DIP yields from cells are shown in red and green,
respectively. The intensity of the color indicates the extent of yield. Bars, 500 �m. Each phenotype was selected from 200 simulations to represent major spread
patterns. (A) Simulated spread of a normal plaque spreading in the absence of DIPs (MODIP, 0). (B) Simulated spread of a slow-growing plaque (MODIP, 1).
(C) Simulated spread of a patchy plaque (MODIP, 10). (D) Simulated fully inhibited spread. See also Movies S4 to S6 in the supplemental material. All CA models
employed parameter set 2.
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DIPs at a level sufficiently high to suppress amplification of the
viable viral genome and its associated expression of the reporter
protein. Thus, dark regions near patches may be DIP rich and
virus poor. Because the initiating population of DIPs is potentially
quite heterogeneous with respect to DIP species and their corre-
sponding interfering activities (51), different DIP species might be
enriched along different directions of plaque expansion, giving
rise to unpredictable patch-like patterns. Moreover, if DIPs reach
very high levels within cells, they can interfere with their own
replication (45), thereby enabling wild-type virus to “escape” and
be enriched, which might provide a mechanism for new patches to
arise at positions distant from the initial coinfected cell.

The presence of DIPs expanded the variability in the range of
gene expression within cells and infection spatial spread across cell
populations. To probe the link between intracellular gene expres-
sion and extracellular infection spread, we used a cellular autom-
aton (CA) model. Past CA models have tested the sensitivity of
simulated spatial spread on various simulation parameters (13–
16, 70). In contrast, our approach, summarized in Fig. 6, em-
ployed measured single-cell distributions of virus and DIP pro-
duction to inform the amplification and subsequent spatial spread
of virus-DIP coinfections. The model successfully captured the
DIP-induced changes in spread patterns and the variability in
these patterns (Fig. 8 to 10), in agreement with a mechanism
where patterns of infection spread reflect the coupling between
cell-to-cell variation, prevalent in the absence of DIPs, and the
interfering effects of DIPs on virus intracellular growth.

Key parameters of previous models of infection spread (13, 14)
have lacked an experimental basis. In contrast, the incorporation
of experimentally observed distributions based on single-cell
measures has enabled our model to define four key biophysical
parameters that may be estimated from independent experiments:
virus diffusivity, virus adsorption on cells, superinfection period,
and virus clearance, accounting for virus degradation and immo-
bilization of virus or DIPs by the agar overlay. By using these
parameters and keeping the diffusion constant high, the model
successfully captured the temporal and spatial features of spread
in the absence of DIPs (Fig. 7A; Fig. 8, MODIP 0), showing that
the model performed as well as previous CA models of infection
spread (15). However, the high diffusion constant contributed to
large gaps in simulated virus propagation, apparent in the pres-
ence of DIPs as hollow rings (Fig. 7B), leading to underestimates
of the interference during plaque propagation (Fig. 8E and F).
These results suggest that the high diffusion constant estimated by
earlier models (15) does not apply to all coinfection conditions. It
is possible that spatial gaps arise owing to the oscillatory dynamics
between virus and DIPs (48, 71–73); however, the large size of the

gaps that arose in our simulations highlights a need for further
investigation. The simplest refinement to our model was achieved
by using a smaller diffusion constant (Table 2; Fig. 9 and 11). In
this case, increasing the rate of diffusion enhances the virus prop-
agation rate, while the adsorption efficiency and the superinfec-
tion period determine the extent to which the propagating virus
can successfully enter a susceptible cell and influence the infection
outcome at the cell level. Our model indicates that a low adsorp-
tion efficiency and a short superinfection time reduce infectious
virus inputs into cells, but they also maintain a moderate number
of virus particles in the extracellular virus pool, which enables the
virus and DIPs to propagate further across the cell monolayer
(Table 3). Otherwise, cells can serve as an adsorption sink for all
particles and thereby slow the spread rate.

Moreover, all spread patterns that exhibited interference also
showed the coexistence of infectious virus and DIPs in most of the
cells (Fig. 10). However, even in spread patterns initiated at a high
DIP level, the fraction of DIP-producing cells did not exceed that
of infectious virus (RFP)-producing cells (Fig. 9), suggesting that
the production and enrichment of DIPs remains limited to cells
also infected with intact virus.

The model enabled the extrapolation of experimental results to
untested conditions, as well as the visualization of DIP coinfec-
tions. Simulations initiated with high DIP levels showed a com-
plete inhibition of spread and a high level of DIP generation in an
initially infected cell (Fig. 9D). Specifically, our model indicates
that the probability of spreading infection can be reduced to �1%
for an input of at least 90 DIPs per cell. However, complete termi-
nation of infection spread was not possible, even up to a MODIP
of 250 (Fig. 9G). It should be noted that no implementations of
our model include DIP-mediated interference with DIP produc-
tion, which enables recovery of infectious virus titers at high levels
of coinfecting DIPs (45, 74). The incorporation of such mecha-
nisms would be expected to contribute to the persistence of infec-
tion spread in the presence of DIPs.

Conclusion. The extent of DIP and virus particle production
from individual coinfected cells depends on the input levels of
DIPs and virus particles. Further, individual cells exhibit extreme
heterogeneity in the production of DIPs and virus particles. These
effects of the initial dose and stochastic particle production con-
tribute to dynamic patterns of infection spatial spread, which we
have characterized and elucidated by quantitative image process-
ing and model building. More importantly, we have established a
framework with which to study multiscale characteristics of virus
infections that may be extended to other cell-virus systems and
host environments, including viral infection dynamics in vivo (68,
75, 76).

TABLE 3 Effects of model parameters on simulated infection spread

Parameter

Effecta on:

Adsorption efficiency (kad) Clearance rate (kc) Superinfection period (tsup) Diffusion constant (D)

Spread rate 2 2 2 1 for D of 	0.1
Delay in spread ↔ ↔ ↔ 2
Relative fluorescence around P.C. 1 1 2 2 for D of �0.1,1

for D of 	0.1
Infected fraction around P.C. 2 2 1 1
Fraction of fully inhibited spread 1 1 ↔ 2 for D of �0.1
a1, increasing with an increase in the parameter (P � 0.01);2, decreasing with an increase in the parameter (P � 0.01); ↔, no significant change (P 	 0.01).
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