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P H Y S I C S

Spin Hall effect of transversely spinning light
Liang Peng1,2*†, Hang Ren3†, Ya-Chao Liu4†, Tian-Wei Lan2, Kui-Wen Xu2, De-Xin Ye5,  
Hong-Bo Sun3,6, Su Xu3*, Hong-Sheng Chen7, Shuang Zhang8,9*

Light carries spin angular momentum, which, in the free space, is aligned to the direction of propagation and 
leads to intriguing spin Hall phenomena at an interface. Recently, it was shown that a transverse-spin (T-spin) 
state could exist for surface waves at an interface or for bulk waves inside a judiciously engineered metamaterial, 
with the spin oriented perpendicular to the propagation direction. Here, we demonstrate the spin Hall effect for 
transversely spinning light—a T-spin–induced beam shift at the interface of a metamaterial. It is found that the 
beam shift takes place in the plane of incidence, in contrast to the well-known Imbert-Fedorov shifts. The ob-
served T-spin–induced beam shift is of geometrodynamical nature, which can be rendered positive or negative 
controlled by the orientation of T-spin of the photons. The unconventional spin Hall effect of light found here 
provides a previously unexplored mechanism for manipulating light-matter interactions at interfaces.

INTRODUCTION
Spin-orbit interaction (SOI) is a universal phenomenon that is 
prevalent in various research areas including condensed matter 
physics (1,  2) and photonics (3–5). Because of SOI of light, the 
spatial degrees of freedom of a light beam couple with its circular 
polarization, i.e., optical spin (6–8). Besides its fundamental impor-
t ance (9–11), optical SOI has triggered many novel applications, 
with some representative examples including spin-to-orbital angular 
momentum conversion (6,  12,  13), spin-to-vortex conversion 
(14,  15), photonic topological insulators (16–18), spin-controlled 
unidirectional propagation of electromagnetic (EM) modes (19–22), 
and spin Hall effect of light (SHEL) (23–28).

SHEL, spin-dependent shift of the reflected or refracted beam 
for a circularly polarized incident laser beam, is one of the most 
fundamental optical processes universally present in various optical 
systems (23–28). In conventional media, light has a longitudinal 
angular momentum, i.e., it is aligned with its linear momentum (   

_
 k   ) 

(3, 5). SHEL refers to a spin-dependent lateral shift of the refracted/
reflected beam in a direction normal to the plane of incidence (27–29). 
This effect, named the Imbert-Fedorov (I-F) shift (Fig. 1, A and B), 
can be attributed to the internal Berry phase associated with the re-
flection and refraction processes (5). It was recently demonstrated 
that the spin angular momentum (SAM) of light can be transverse 
to its propagation, i.e., the rotation of electric or magnetic field can 
take place in a plane that contains the propagation direction [i.e., 
the transverse-spin (T-spin)] (30–32). The T-spin of light has been 

observed in diverse systems, including evanescent waves near optical 
interfaces (30) and inside carefully designed inhomogeneous struc-
tures (31, 32), spatially structured propagating waves (33, 34), and 
bulk modes inside a judiciously engineered metamaterial (MM) 
with magnetoelectric (ME) coupling (35). T-spin light shows some 
markedly different behaviors from light with conventional longitu-
dinal spin, such as wheel-like dynamics of optical fields (4), twisting 
of Mie particle in evanescent field (21, 36), and extraordinary opti-
cal momentum and force upon internal total reflection (31). Here, 
we demonstrate spin Hall effect for bulk optical mode with T-spin, 
which is manifested as a beam shift in the plane of incidence (equiv-
alently, in the plane of the rotating electric or magnetic field). Unlike 
the well-studied Goos-Hänchen (G-H) shift for linearly polarized 
waves that rely on the evanescent wave penetration (27, 28), the beam 
shift studied here is of purely geometrodynamical nature, whose 
direction and amplitude are solely determined by the SAM of the 
beam (Fig. 1, C and D).
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Fig. 1. Spatial shifting of spin polarized light beams. (A and B) I-F shifts perpendic-
ular to the plane of incidence, for right-handed circular polarization (RCP) (A) 
and left-handed circular polarization (B) incident beam. (C and D) Illustration of 
beam shifts in the plane of incidence for light with transverse SAM, (C) negative shift 
for    ̂ z  ⋅  

_
 S   < 0  and (D) positive shift for    ̂ z  ⋅  

_
 S   > 0 .
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RESULTS
The T-spin Hall effect
Without losing generality, we consider the total reflection in a me-
dium supporting bulk optical mode with a T-spin. The basic config-
uration of the system being studied is shown in Fig. 2A, in which the 
upper half space (y > 0) is filled with a bianisotropic medium, while 
a perfect magnetic conductor (PMC) is assumed for the lower half 
space (y < 0). The bianisotropic medium is described by the consti-
tutive relations of    

_
 B   =  

_
  _    ⋅   

_
 H   + i 

_
  _    ⋅   

_
 E    and    

_
 D   =  

_
  _    ⋅   

_
 E   − i   

_
  _      T  ⋅   

_
 H   , with  
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For simplicity, the wave propagation is assumed to take place 
in the x-y plane, and, hence, we have kz = 0. The EM medium 

described above has a broken mirror symmetry in y direction (the 
normal of the reflector surface), and it supports bulk mode propa-
gating in the x-y plane with a rotating magnetic field lying in the 
same plane, corresponding to a transverse SAM in z direction 
(30,  35,  36). For the interface formed between the bianisotropic 
MM and PMC, the incident and reflected waves are linked through 
the boundary condition of PMC, i.e., zero tangential magnetic field 
at the interface (36, 37), which leads to the following expression for 
the reflection coefficient (see Materials and Methods)

  R =   kcos    i   +  ik  0     ─  kcos    r   −  ik  0       (1)

with i and r being the incident and reflection angles, respectively 
(Fig. 2A). In Eq. 1,  k =  √ 

_
  k x  2  +  k y  2     and k0 is the wave number in the 

free space. Because total reflection is guaranteed by the PMC surface, 
∣R∣ ≡ 1 and R can be simply written as R = eiP(i,r).

The elliptically polarized incident and reflected waves can be ex-
pressed as     

_
 H    i   =  U  i  (  ̂  x   +   ̂  y    A  i    e    iQ  i    )  e   i   

_
 k    i  ⋅  

_ r     and     
_

 H    r   =  U  r  (  ̂  x   +   ̂  y    A  r    e    iQ  r    )  e   i   
_

 k    r  ⋅  
_ r    , re-

spectively, wherein Ai(r) and Qi(r) are real numbers accounting for 
the spinning of EM fields (5, 30). After some derivation, we have 
R = −ei(Qr − Qi), which indicates that the phase of reflectance arises 
from the variation of the polarization state (i.e., exhibiting geomet-
rical nature). Consequently, a spatial shift for a light beam is in-
duced in the plane of incidence, which strongly depends on the 
SAM of the operation photons, as elaborated below.

For an incident Gaussian beam, the shift of beam center in the 
x direction can be numerically calculated by   D  x   =   dP _  dk  x    , i.e., the well-
known approach in evaluating the shift of light beams (the Artmann 
formula) (5,  27–29). It is straightforward to obtain    dP _  dk  x    =   dQ  r   _  dk  x     −   dQ  i   _  dk  x     , 
and then Dx can be expressed explicitly in terms of i, which yields

   D  x   = 2    k  0   ─ cos    i  
        1   ─    2       

sin    i   ─  
 k   2   cos   2     i   +  k 0  2      2 

    (2)

Note that the beam shift Dx is induced by a nonzero bianisotropy 
term , and its sign can be flipped by reversing the bianisotropy 
( → −), which also leads to the flipping of the SAM of the incident 
beam for a given incident angle (35). Thus, a link is established 
between the beam shift [as schematically depicted in Fig. 1 (C and D)] 
upon reflection and the SAM of the incident beam, which is expressed 
as    

_
 S   = Im [    0      

_
 H     *  ×   

_
 H   ] / 4  (4). We further define a normalized SAM, 

which is expressed as

      
_

 S   i(r)  
n   =   

   
_

 S    i(r)   ─ 
 ∣ H  x  ∣   2 

   =   ̂  z     −    0   ─ 2c        1   ─    2       
ksin    i(r)    ───────────  

 k   2   cos   2     i(r)   +  k 0  2      2 
    (3)

with c being the velocity of light in vacuum. For the configura-
tion studied here, we have i = r,   H x  i   =  H x  r   ≠ 0 , and thus     

_
 S    i   =    

_
 S    r   ,  

    
_

 S   i  
n  =    

_
 S   r  
n  =    

_
 S     n  . Thus, a simple relationship between the beam shift 

and normalized SAM can be established

   D  x   = 4c   −  k  0   ─    0   kcos    i   
  (  ̂  z   ⋅    

_
 S     n )  (4)

Note that Dx diverges if cosi is sufficiently small, i.e., in the limit 
of grazing incidence. On the other hand, it is more convenient to ex-
perimentally characterize the lateral shift of the beam perpendicular 
to     

_
 k    r    (Dt in Fig. 2A), which is given by

Fig. 2. Spatial shift of transversely spinning beams. (A) Systematic configuration 
of a beam with T-spin reflected by a PMC surface. (B) The photon’s SAM remains 
unchanged before and after the interaction with the PMC boundary. (C) Full-wave 
simulations of the beam shift based on the effective medium description. Ez field 
distribution is plotted, for opposite T-spin cases, in which the light beam experiences 
a shift in positive or negative directions. In the simulations, 3 = 2, 1 = 2 = 0.6, and 
 = ±0.4, for top and bottom panels. The two insets exhibit the field distribution in 
the enlarged areas. (D) Simulated positive and negative beam shifts for incident 
light with opposite T-spin feature. In (D), 0 is the free space wavelength.
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    D  t   =  D  x   cos    r   = − 4c    k  0   ─    0   k  (  ̂  z   ⋅    
_

 S     n )  (5)

Given that the host medium has isotropic dispersion in the x-y 
plane (i.e., 1 = 2), Dt would be linearly proportional to     

_
 S     n   regardless 

of the incident angle, i.e., the spin Hall effect is solely determined by 
the normalized SAM of the incident beam.

To confirm the theoretical predictions, we perform numerical 
simulations for the beam reflection, using an effective medium de-
scription. In Fig. 2C, we plot the electric field (Ez) distributions for 
the reflection of incident beams with opposite SAMs, wherein the 
beam centers are indicated by the arrowed lines. In the insets of 
these two panels, we show the enlarged view of the standing waves 
close to the PMC surface, which reveals the T-spin–dependent 
interference pattern upon reflection. We further retrieve the beam 
shift for different incident angles, and the dependence is plotted in 
Fig. 2D. It is shown that the beam shift is zero at normal incidence, 
and it increases with the incident angle because of the increase of 
the SAM of the beam (the limit at grazing angle is   D  t   =      0   _   ). For  of 
opposite sign (so the SAM of the incident beam is also flipped), the 
beam shift is reversed, agreeing with the theoretical prediction.

Note that the underlying mechanism of the spin Hall effect of 
transversely spinning light is very different from the I-F shift. The 
spin Hall effect of transversely spinning light discussed here is purely 
induced by the intrinsic property of the bulk optical mode, and it 
can occur without involving any evanescent waves at the interface. 
However, the I-F shifts cannot occur in a total reflection if the 
evanescent wave is absent. As an example, for a beam reflected by a 
PMC [or perfect electric conductor (PEC)], the reflectance is con-
stant (1 or −1) for both the transverse electric (TE) and transverse 
magnetic (TM) polarizations, regardless of the incident angle. In addi-
tion, in the I-F shifts, the total optical angular momentum around 
the surface normal (y axis) is conserved because of rotational sym-
metry. However, in the present case, the optical angular momentum 
around the z axis is not conserved, because there exists a torque on 
the reflective surface, transferring angular momentum between light 
and the bulk material.

Experiments
The structural design of the MM used in the experiments is shown 
in Fig. 3A. The detailed information can be found in Materials and 
Methods. The MM behaves as a homogeneous bianisotropic effec-
tive medium away from its resonance frequencies. From full-wave 
simulations, we can obtain the equifrequency contours for the TE 
mode in the x-y plane, as shown in Fig. 3B. The MM exhibits isotro-
pic EM responses in the frequency range from 9.5 to 10.5 GHz. Because 
the periodicity of the MM (3 mm) is much smaller than the free 
space wavelength (typically 30 mm at 10 GHz), the effective consti-
tutive parameters (for the TE mode) are well defined (Fig. 3C).

In the experiments, a large area sample in the shape of two quarter 
disks of different radii (R1 = 60 cm and R2 = 90 cm) joined together 
is fabricated (Fig. 4, A and B). The EM wave is launched from the 
smaller quarter circle and detected at the edge of the bigger one, 
with the blue and green arrows indicating the propagation path of 
the light beams. Here, the small radius of the quarter circle on the 
incident side can help minimize the broadening of incident EM 
beam, while the large radius of the quarter circle on the receiving 
side can effectively reduce the edge effect.

To provide the PMC-like boundary condition in the experiments, an 
auxiliary MM [artificial magnetic reflector (AMR)] having ultrastrong 

magnetic resonance around 9.75 GHz is designed. The details of 
the design and effective parameters of the AMR are provided in Mate-
rials and Methods. Such an MM behaves nearly the same as an ideal 
PMC in the frequency range from 9.65 to 9.85 GHz, which falls in 
the working band of the bianisotropic MM (9.5 to 10.5 GHz), fa-
cilitating the observation of the pronounced beam shift. On the basis 
of the retrieved effective parameters of the designed MM sample 
(Fig. 3C), we can numerically evaluate the normalized beam shift, 
which is shown in Fig. 4C.

For the experimental investigation, the measured Dt shows 
sensitivity to some experimental imperfections such as systematic 
uncertainties and material defects and is disturbed. Fortunately, the 
difference in the beam shifts between incident beams with opposite 
SAMs, i.e.,     t   =  D t  

  −  D t  
−  , performs much more stable than   D t  

   (or   D t  
−  ) 

alone, even with some inevitable imperfections. Proofs can be found 
in Materials and Methods. As an effective parameter in confirming 
the beam shifting phenomenon, t is extracted from the measured 
data and shown in Fig. 4D. Here, only the results in the frequency 
range between 9.7 and 9.8 GHz are presented, with fully considering 
the limited bandwidth of the auxiliary AMR. It is found that the 
envelope of measured t grows as the incident angle increases, con-
sistent with the theoretical prediction. However, the measured data 
do not show sufficient smoothness to finely fit the theoretically cal-
culated results, because of the limited samples in the measurements. 
For the purpose of interpretation, the measured data points of t are 
fitted by a polynomial equation of two variables, incident angle and 

Fig. 3. The design of bianisotropic MM supporting T-spin states. (A) Structural 
configuration of the unit cell with geometric parameters being indicated. (B) Nu-
merically calculated equifrequency contours in the kx-ky plane. (C) Effective consti-
tutive parameters of the MM, which are obtained through the medium parameter 
retrieval method (43–46), with applying reflection/transmission coefficients. Real: 
real part; Imag: imaginary part. The equifrequency contour (B) is calculated with 
using these parameters.
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frequency, to illustrate the wideband and wide-angle profile of the 
beam shifting effect. The fitted surface in Fig.  4D shows good 
agreement with the simulation results in Fig. 4C. Hence, our mea-
surement provides a direct observation of T-spin–induced SHEL.

DISCUSSION
The observed SHEL by T-spin waves is induced by the evolution of 
the polarization states (photon spin) inside bianisotropic MMs, 
which is of purely geometrodynamical nature. The beam shifting is 
directly determined by the intrinsic SAM of the light beam, i.e., a 
simple yet elegant link between the beam shift and the light’s SAM 
has been theoretically established. Positive and/or negative beam 
shifting can be uniquely driven and/or enhanced by the T-spin 

profile of the bulk’s optical mode. The observed phenomenon is 
physically distinct from the conventional G-H shift for linearly po-
larized waves (27, 28), which relies on evanescent penetration of the 
wave into the transmitting medium. The unconventional SHEL 
found here provides new degrees of freedom for wave manipula-
tion, such as interface optical trapping and particle manipulation 
(38), light position retrieving (8), optical sensors (39), and edge de-
tectors for imaging (40, 41).

MATERIALS AND METHODS
Reflection of bulk T-spin mode from a PMC surface
We consider the total reflection in a bianisotropic system support-
ing bulk mode with a T-spin associated with a rotating magnetic 
field. The basic configuration of the system can be found in Fig. 2A, 
wherein an infinitely large PMC is assumed in the lower half space, 
and the upper half space is filled with a bianisotropic medium. Both 
the eigenstates of the incident and reflected waves have T-spins (for 
magnetic field) because of the material bianisotropy, but they are 
generally different because the T-spin is    

_
 k    dependent. Here, we 

consider the reflection by a PMC surface because the transverse 
spin of the bulk mode inside the bianisotropic MM is associated 
with the rotating magnetic field.

The constitutive relation can be written in the most general form 
as    

_
 B   =  

_
  _    ⋅   

_
 H   + i 

_
  _    ⋅   

_
 E    and    

_
 D   =  

_
  _    ⋅   

_
 E   − i   

_
  _      T  ⋅   

_
 H   . The spinning bulk 

mode (magnetic T-spin mode) in the medium can be realized by setting 

   
_
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    , and    
_

  _    =  √ 
_

    0      0     
[

   
0

  
0

  


  0  0  0  
0

  
0

  
0

   
]

    . 

With such parameters, i.e., ME coupling occurs between Ez and Hx, purely 
magnetic T-spin mode can be excited (located in the x-y plane).

By solving the source-free Maxwell equations (42), we derive the eigen-

states of the TE mode (Ez ≠ 0, Hz = 0) as    
⎡
 ⎢ 

⎣
   
 h  x   

   h  y    
 e  z  

   
⎤
 ⎥ 

⎦
    e   i  

_
 k  ⋅  _ r    =  

⎡
 ⎢ 

⎣
   
  1 _    0      1   ( k  y   −  ik  0   )

      1 _    0      1    (  −    1   _    2     k  x   )     

1

   
⎤
 ⎥ 

⎦
   

  e   i  
_

 k  ⋅  _ r     , with      1   _    2     k x  2  +  k y  2  =  k 0  2 (   3      1   −     2 ) . Then, we can write    

⎡
 ⎢ 

⎣
   
 h x  i  

   h y  i    

 e z  
i  

   

⎤
 ⎥ 

⎦
    e   i   

_
 k    i  ⋅  

_ r    =  

 

⎡
 ⎢ 

⎣
   
  1 _    0      1   ( k y  i   −  ik  0   )

      1 _    0      1    (  −    1   _    2     k x  i   )     

1

   

⎤
 ⎥ 

⎦
    e   i   

_
 k    i  ⋅  

_ r      and    
⎡
 ⎢ 

⎣
   
 h x  r  

   h y  r    
 e z  

r  
   
⎤
 ⎥ 

⎦
    e   i   

_
 k    r  ⋅  

_ r    = R 
⎡
 ⎢ 

⎣
   
  1 _    0      1   ( k y  r   −  ik  0   )

      1 _    0      1    (  −    1   _    2     k x  r   )     

1

   
⎤
 ⎥ 

⎦
    e   i   

_
 k    r  ⋅  

_ r      

(    
_

 k    i   =   ̂  x   k x  i   +   ̂  y    k y  i   ,     
_

 k    r   =   ̂  x    k x  r   +   ̂  y    k y  r   , and R is the reflection coef-
ficient) for incident and reflected waves, respectively.

On the PMC surface, the tangential component of magnetic field 
vanishes, and then we get   H x  i    ∣    y=0   +  H x  r  ∣  

y=0
   = 0  or, in detail,  ( k y  i   −  

ik  0   )  e   i   
_

 k    i  ⋅  
_ r     ∣    y=0   = − R( k y  r   −  ik  0    )  e   i   

_
 k    r  ⋅  

_ r   ∣  
y=0

   . Phase matching on the 

surface requires   k x  i   =  k x  r   =  k  x   , and we get

  R = −   
 k y  i   −  ik  0   

 ─ 
 k y  r   −  ik  0   

    (6)

We emphasize that the incident and reflected T-spin beams are 
linked through their magnetic fields, as enforced by the boundary 
condition of the PMC that the tangential H field must vanish at the 
interface. As such, the reflection coefficient is related to the T-spin 

Fig. 4. Experimental demonstration of SHEL for T-spins. (A) Schematic configura-
tion of the experimental setup. The AMR layer provides the same boundary condi-
tion as a PMC in the frequency range of interest. (B) Photo of the experimental 
setup with light path being indicated. (C) Theoretically calculated transverse shift 
(i.e.,     t   =  D t  

  −  D t  
−  ) as a function of the incident angle and frequency. (D) Measured 

transverse shift (the stars) and the fitted curve. Please note that partial of the stars 
are hidden behind the fitted curve.
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formed by the magnetic field of the photons. On the other hand, if 
the reflector is replaced by a PEC, then R = −1 holds for arbitrary 
incidence. In such a case, there would be no shift in the center of the 
reflected beam because the magnetic T-spin is not involved in the 
boundary condition. Hence, we study the reflection from a PMC 
surface to guarantee the geometrodynamic nature of the problem.

To show the geometrical dynamics of the reflection, we assume 
that the elliptically polarized incident and reflected waves are writ-
ten as     

_
 H    i   =  U  i  (  ̂  x   +   ̂  y    A  i    e    iQ  i    )  e   i   

_
 k    i  ⋅  

_ r     and     
_

 H    r   =  U  r  (  ̂  x   +   ̂  y    A  r    e    iQ  r    )  e   i   
_

 k    r  ⋅  
_ r    , 

wherein A and Q are two real factors to handle the T-spinning, i.e., 
with nonzero A, Q is crucial in generating the spinning (5). For in-
cident and reflected waves, Ai (Qi) and Ar (Qr) generally differ and 
can be determined by consulting their wave vectors (    

_
 k    i    and     

_
 k    r   ). For 

instance, the magnetic field of incident and reflected waves can be 
simply expressed through their eigenstates, i.e.,     

_
 H    i   =  H  0      ̂  h    i    e   i   

_
 k    i  ⋅  

_ r     and  
    
_

 H    r   =  RH  0      ̂  h    r    e   i   
_

 k    r  ⋅  
_ r    , with     ̂  h    i    and     ̂  h    r    being the normalized magnetiza-

tions. It is straightforward to have   A  i    e    iQ  i    =    h  y,i   _  h  x,i     and   A  r    e    iQ  r    =    h  y,r   _  h  x,r    . By 
matching the tangential continuity on the PMC surface, we can 
simply establish the relationship between incident and reflected 
waves as  R = −    h  x,i   _  h  x,r  

  .
Physically, R plays the role of connection between incident and 

reflected waves, which contains all the information needed in de-
scribing the variation of the T-spin photon (TSP). To illustrate the 
change of T-spin states in the interaction, R is rewritten as

  R = −   
 h  x,i   ─  h  y,i  

   ⋅   
 h  y,r   ─  h  x,r  

   ⋅   
 h  y,i   ─  h  y,r  

   = −    A  r    e    iQ  r    ─ 
 A  i    e    iQ  i   

    (7)

It reveals that the transition of the T-spin state gives rise to an 
extra phase delay to the TSP’s propagation, i.e., Qr − Qi, which is of 
spinning nature and will be lifted for linearly magnetized waves.

T-spin induced beam shifts
From previous analysis, TSPs experience a phase delay, i.e., P(i,r), 
in the reflection because of the variation of T-spin states. With vary-
ing the incident angle, this phase changes. Numerically, the beam 
shift can be found out through calculating the directional derivative 
of the phase of reflectance. For instance,   D  x   =   dP _  dk  x     represents the 
spatial shift of light beams in    ̂  x    direction. For R = eiP(i,r), we get   
D  x   = −  iR   −1  ⋅   dR _  dk  x    . By using Eq. 6, we obtain

   D  x   = − i    
−   dk  y,i   _  dk  x     ─ −  k  y,i   +  ik  0      + i    

−   dk  y,r   _  dk  x     ─ −  k  y,r   +  ik  0       

For      1   _    2     k x  2  +  k y  2  =  k 0  2 (   3      1   −     2 ) , we have  −   dk  y,i(r)   _  dk  x     =     1   _    2      
 k  x   _  k  y,i(r)  

  . In addi-

tion, noticing that ky, i = −ky,r and   ( k  y,i  )   2  =  ( k  y,r  )   2  =  k y  2  , Dx can be re-
written as   D  x   = − 2    k  0   _  k  y,i  

      1   _    2      
  k  x   _ 

 k y  2  +  k 0  2      2 
  . It is obvious that Dx is induced by 

nonzero , and the shifting will be reversed if  takes an oppo-
site sign.

Now, we are ready to find out the inner connection between 
the SAM and the spin Hall–induced beam shift. The SAM of the 
bulk mode with magnetic T-spin can be worked out through  
   
_

 S   = Im [    0      
_

 H     *  ×   
_

 H   ] / 4  (4), which leads to    
_

 S   =   ̂  z    −    0   _ 2c    ∣ H  x  ∣   2      1   _    2      
  k  x   _ 

 k y  2  +  k 0  2      2 
  , 

where c is the speed of light in the free space. It is obvious that     
_

 S    i   =    
_

 S    r    

because Hx,i = Hx,r ≠ 0. For T-spin light with predefined Hx, we can 

define a normalized SAM as     
_

 S     n  =     
_

 S   _ 
 ∣ H  x  ∣   2 

  =   ̂  z    −    0   _ 2c    
   1   _    2      

  k  x   _ 
 k y  2  +  k 0  2      2 

  . Then, 

Dx can be expressed (in the form of     
_

 S     n  ) as   D  x   = 4c    k  0   _    0    k  y,i  
 (  ̂  z   ⋅    

_
 S     n ) .

Numerical estimation of the beam center
In the simulations, Ez distributions are obtained in the zone close to 
the PMC surface. To observe the spin Hall–induced beam shift, the 
position of the center of the reflected beam shall be extracted. To 
this end, we determine the intensity of Ez by extracting its absolute 
value, as shown in fig. S1 (A and B). Then, we obtain the ∣Ez∣ 
distribution in a cutting plane normal to the reflected wave vector 
(    

_
 k    r   ). The position of the cutting plane is highlighted in red in fig. S1 

(A and B). A typical ∣Ez∣ distribution in the cutting plane is exhibited 
in fig. S1C. The position of the beam center is obtained by evaluating 
 B  C =  ∫ ∣ E  z  ∣xdx _ 

∫ ∣ E  z  ∣dx
   , where the integral path is along the cutting plane. 

In simulations, if  = 0, i.e., no spin Hall shift is induced, then the 
beam center reference (BCref) is obtained. With nonzero , the beam 
center shifted by spin Hall effect is obtained as BC. Then, the shift 
distance is derived by comparing the beam centers for two cases, 
i.e.,   D t  

  = B  C    − B  C    ref  .

MM design
MMs consisting of single-gap split-ring resonators (SRRs) can be 
designed to have the required bianisotropic EM parameters, as shown 
in fig. S2A. To reduce the overall dimension of a single unit cell, the 
two arms of the SRR (SRR I) are bent into curved shape, as shown 
in fig. S2B. Thus, the size of the unit cell can be much smaller than 
the free space wavelength. However, such an MM is still anisotropic 
because of the lack of rotational symmetry, and hence, the refraction 
index in x and y directions would be different. It is highly desired 
that the MM exhibits isotropic spatial dispersion in the x-y plane, 
because material anisotropy would complicate the T-spin–induced 
phenomenon. To this end, a secondary SRR (SRR II; oriented per-
pendicular to SRR I) is introduced to provide an additional degree 
of freedom to tune x (or equivalently, y direction refractive index), 
as shown in fig. S2 (C and D). The overall unit cell of our MM is 
constructed by combining SRR I and SRR II, on a printed circuit 
board substrate (composed of poly tetra fluoroethylene and glass 
fibres, with r = 2.55 and loss tangent of 0.003), as the supporting 
substrate. Please refer to fig. S2 (E to G) for details.

Note that, by bending the metallic arms of both SRRs I and II, 
some unwanted ME effects would be induced. For instance, SRR I 
exhibits ME coupling not only between Ez and Hy but also between 
Ez and Hz. Similar ME coupling also exists in SRR II. Here, a single 
layer of the MM unit cells is sandwiched between two PEC plates 
along z direction, and the implementation of PEC boundary condi-
tion on both sides can suppress these unwanted effects. For the 
numerical calculation of the band dispersion, periodic boundary 
condition is applied in both x and y directions, and PEC (    

_
 E    t   = 0 ) 

bounds are set at Zmax and Zmin. The reason to have such boundary 
confinement in z direction is twofold. First, we are focusing on the 
TE polarization for which the electric field is z-polarized. Second, 
all the unwanted ME coupling brought by the bending arms of the 
SRRs are eliminated from a macroscopic view.

Last, by tuning the dimensions of SRRs I and II, a bianisotropic 
MM with nearly isotropic spatial dispersion (in the x-y plane) can 
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be obtained, as shown in fig. S3. For the detailed information about 
the structural parameters, please refer to the figure captions. Here, 
in fig. S3, we show the band structure and three equifrequency con-
tours of the MM. It is obvious that the MM exhibits near isotropic 
spatial dispersion in the range between 9.5 and 10.5 GHz. Further-
more, if we consider the small size of the unit cell, then it is evident 
that such an MM can behave as a homogeneous medium in the 
band of interest. Here, by using the reflection/transmission co-
efficients (the S parameters), the effective constitutive parameters 
(z, x, y, and ) relevant to the TE polarized waves are retrieved 
through the algorithm reported in (43–45), which are shown in Fig. 3.

In the experiments, we can obtain the transmission spectra for 
the fabricated MM in orthogonal directions, as shown in fig. S4. It 
shows that the fabricated MM has a transmission band of more than 
8.7 GHz in both the x and y directions, which confirms our design 
and fabrication. The fluctuation between the two transmittance 
curves is induced because of the distinct impedances of the MM 
along these two directions.

Experimental setup
To facilitate the experimental measurements, we combine two 
quarter circular-shaped samples, as shown in fig. S5. The radii of 
the two circles are R1 = 60 cm and R2 = 90 cm, respectively. The EM 
wave is excited from the small quarter circle and is detected at the 
edge of the big one, as indicated by the red and purple arrows in fig. 
S5, respectively. The incident beam is launched by a standard horn 
antenna, whose main lobe points to the origin of the quarter circle(s). 
We design the sample in such a configuration for two reasons. First, a 
smaller quarter circle in the incident side can help reduce the broad-
ening of EM beams. Second, a larger quarter circle in the receiving 
side can help minimize the edge effect that may affect the EM beams 
with a broad beam width. Because the beam shift (Dt) is much smaller 
than R2, we simply have Dt ≈ R2φs.

AMR design
The design of the AMR, as shown in fig. S6 (A to C), consists of two 
single-turn helices of different shapes combined together. The structure 
is embedded into an F4B substrate to form the final unit cell, as shown 
in fig. S6 (D to E). The helical structure of the unit cell can excite ME 
coupling between Hy and Ey, i.e., a chiral response, which is not desired 
by the AMR. To eliminate the unwanted ME coupling (chirality), PEC 
boundary condition (    

_
 E    t   = 0 ) is implemented at Zmax and Zmin.

Because of the strong magnetic response of the helical unit cell, 
the AMR is expected to have PMC-like reflection at frequencies 
where the internal magnetic resonance takes place, i.e., the frequency 
region with extremely large effective permeability. However, it is 
rather hard and almost impossible to make an accurate estimation 
of the permeability in the AMR’s resonance frequency region be-
cause complex coupling may exist and the spatial dispersion (non-
local effect) may dominate the macroscopic EM behaviors of the 
AMR. Nevertheless, we only need to focus on the AMR’s reflection 
behavior, so the AMR’s reflectance is sufficient to characterize its 
particular role as a magnetic reflector. Here, with full-wave simula-
tion, we obtain the phase of reflectance from the AMR for several 
oblique illumination angles, as shown in fig. S7A. It is obvious that 
the phases of reflectance at different incident angles from the AMR 
surface are almost identical to a value close to zero at around 9.75, 
and a PMC-like behavior is confirmed. This phenomenon occurs 
because of the enhanced magnetic permeability in the y direction, as 

expected. On the basis of the reflection/transmission coefficients 
and by applying the retrieval method proposed in (46), we make an 
estimation of the AMR’s effective parameters (by neglecting the 
spatial dispersion), which are shown in fig. S7 (B and C). It is con-
firmed that the magnetic permeability is substantially enhanced at 
around 9.75 GHz.

In the experiments, we measure the transmission and reflection 
from the AMR sample. The measurement configuration is shown in 
fig. S8A, wherein the reflection is measured by two horn antennas 
(a transmitter and a receiver) in an open environment. For the 
AMR, we find that the transmission is extremely weak (the trans-
mission power level cannot be identified from the environment 
noise) in the band above 9.5 GHz, so only the reflection spectrum is 
shown in fig. S8 (C and D). It is shown that, although the measured 
reflected power is lower than that of the simulation due to the 
collection loss, the spectral distribution can roughly match the 
simulated results.

Implementation of the PMC boundary
In previous discussion, we show that PMC is required for the 
demonstration of the T-spin–induced Hall effect. Here, we show 
that a PMC-like boundary can be provided by an anisotropic MM 
with extreme parameters. We consider the refraction from the 
interface between a bianisotropic medium and an anisotropic 
medium, as shown in fig. S9.

The incident and reflected waves in region I can be ex-

pressed by    
⎡
 ⎢ 

⎣
   
 h  x,i  

   h  y,i    
 e  z,i  

   
⎤
 ⎥ 

⎦
    e   i   

_
 k    i  ⋅  

_ r    =  
⎡
 ⎢ 

⎣
   
  1 _    0      1   ( k  y,i   −  ik  0   )

      1 _    0      1    (   −     1   _    2     k  x   )      

1

   
⎤
 ⎥ 

⎦
    e   i   

_
 k    i  ⋅  

_ r      and    
⎡
 ⎢ 

⎣
   
 h  x,r  

   h  y,r    
 e  z,r  

   
⎤
 ⎥ 

⎦
    e   i   

_
 k    r  ⋅  

_ r    = 

R 
⎡
 ⎢ 

⎣
   
  1 _    0      1   ( k  y,r   −  ik  0   )

      1 _    0      1    (   −     1   _    2     k  x   )     

1

   
⎤
 ⎥ 

⎦
    e   i   

_
 k    r  ⋅  

_ r     , with      1   _    2     k x  2  +  k y  2  =  k 0  2 (   3      1   −     2 ) . For the 

transmitted wave in region II, we have    
⎡
 ⎢ 

⎣
   
 h  x,t  

   h  y,t    
 e  z,t  

   
⎤
 ⎥ 

⎦
    e   i   

_
 k    t  ⋅  

_ r    = T  
⎡
 ⎢ 

⎣
    
  1 _    0      x     k  y,t  

    − 1 _    0      y     k  x,t    

1

   
⎤
 ⎥ 

⎦
    e   i   

_
 k    t  ⋅  

_ r      

with   k x  2  +      y   _    x     k y  2  =  k 0  2     z      y   .

The continuity of the tangential electric and magnetic fields 
leads to

   
1 + R = T

    1 ─    1    ( k  y,i   −  ik  0    ) +   R ─    1    ( k  y,r   −  ik  0    ) =   T ─    x      k  y,t  
   

Thus, it follows that

  R = −    
 (     k  y,i   _  k  0     − i )   −     1    k  y,t   _    x    k  0    

  ─  
 (     k  y,r   _  k  0     − i )   −     1    k  y,t   _    x    k  0    

    (8)

We note that Eq. 8 will return to Eq. 6 if region II is really filled 
by a PMC. Nevertheless, the PMC-like reflectance can still be 
achieved by      1    k  y,t   _    x    k  0     → 0 , even without a real PMC. This condition can 
be satisfied if x is sufficiently large and any other parameters are kept 

finite, i.e.,   ∣    1    k  y,t   _    x    k  0    ∣  
   x  →∞

   = ∣    1   _  k  0      √ 
_

   k 0  2     z      y   −  k x  2  _    x      y      ∣  
   x  →∞

   → 0 . For practical 
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implementations, medium of this kind may be designed on the basis 
of standard SRRs or helical structures. For instance, if  ∣    1    k  y,t   _    x    k  0    ∣  is 
small enough, then we can rewrite Eq. 8 as

   R = −    A  1   ─  A  2     ⋅   
1 −      1   _  A  1      x     k  y,t  

 ─ 
1 −      1   _  A  2      x     k  y,t  

    (9)

with A1 = ky,i − ik0 and A2 = ky,r − ik0. It is straightforward to 
obtain  R ≈ −   A  1   _  A  2    , provided by  ∣     1   _  A  j      x     k  y,t  ∣≪ 1  (j = 1,2). With ky,i = 
− ky,r, A1 = ky, i − ik0, and A2 = − ky,i − ik0, we get

   ∣     1   ─  A  j      x      k  y,t  ∣  
j=1,2

   =   1 ─ 
 √ 
_

   (     k  y,i   _  k  0     )     
2
  +     2   

  ∣  
   1    k  y,t   ─    x    k  0    ∣  (10)

Because    k  y,i   _  k  0      is always finite and real,  ∣     1   _  A  j      x     k  y,t  ∣≪ 1  could be en-

sured by  ∣    1    k  y,t   _    x    k  0    ∣≪∣∣ . We note that this condition can be fulfilled 
at frequencies close to the MM’s resonance.

On the other hand, the beam shift can be observed by measuring 
the relative difference between the beam shifts of optical modes with 
opposite T-spin feature, by using MMs with opposite bianisotropy, 
i.e.,  and −. For simplicity, we neglect the surface loss and assume 
R = eiP, then we have     x   =  D x    −  D x  −   with   D  x   =   dP _  dk  x    . The relative beam 

shift can be further derived as     x   =  d( P x    −  P x  − ) _  dk  x     =   − i _ ( R     /  R   − )   
d( R     /  R   − ) _  dk  x     . 

Thus, the key term in determining x is R = R/R−. In practice, the 
measurement of R is more robust than R (or R−), considering the 
systematic uncertainties. From Eq. 9, we obtain

  

 R  Δ   =    R   χ  ─ 
 R   −χ 

 

  

  

=   (      A  1   ─  A  2     )     
2
  ⋅   

1 −   
  (    k  y,i   _  k  0     + iχ )     

2
 
 _ 

 [     (    k  y,i   _  k  0     )     
2
  +  χ   2  ]  

   
  (    μ  1    k  y,t   _  μ  x    k  0     )     

2
 
 _ 

 [     (    k  y,i   _  k  0     )     
2
  +  χ   2  ]  

 

  ──────────────  

1 −   
  (    k  y,i   _  k  0     − iχ )     

2
 
 _ 

 [     (    k  y,i   _  k  0     )     
2
  +  χ   2  ]  

   
  (    μ  1    k  y,t   _  μ  x    k  0     )     

2
 
 _ 

 [     (    k  y,i   _  k  0     )     
2
  +  χ   2  ]  

 

  

     

 

  

=   (      A  1   ─  A  2     )     
2
  ⋅   

1 −   
  (    k  y,i   _  k  0     + iχ )     

2
 
 _ 

 [     (    k  y,i   _  k  0     )     
2
  +  χ   2  ]  

  ⋅  ∣    μ  1   _  A  1    μ  x     k  y,t   ∣   
2

 

   ────────────────   

1 −   
  (    k  y,i   _  k  0     − iχ )     

2
 
 _ 

 [     (    k  y,i   _  k  0     )     
2
  +  χ   2  ]  

  ⋅  ∣    μ  1   _  A  2    μ  x     k  y,t   ∣   
2
 

  

  

Because    |       (     k  y,i   _  k  0     ± i )     
2
 
 _ 

 [     (     k  y,i   _  k  0     )     
2
  +     2  ]  

  |   ≤ 1  , it is evident that R would be less per-

turbed than R (a numerical comparison can be found in fig. S10), pro-
vided  ∣     1   _  A  j      x     k  y,t  ∣  is sufficiently small, or equivalently  ∣    1    k  y,t   _    x    k  0    ∣≪∣∣ . 
Here, with the effective parameters of both the bianisotropic MM 
(Fig. 3) and the AMR (fig. S7), we can evaluate the ratio between 
∣∣ and  ∣    1    k  y,t   _    x    k  0    ∣ , as shown in fig. S9B. It is evident that around 
9.75 GHz, the ratio is enhanced ( ∣∣/ ∣    1    k  y,t   _    x    k  0    ∣> 10 ), and AMR can 
behave like a PMC regardless of the incident angle.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo6033

REFERENCES AND NOTES
 1. A. I. Akhiezer, V. B. Berestetskii, Quantum Electrodynamics (Interscience Publishers, 1965).
 2. A. Bérard, H. Mohrbach, Spin hall effect and Berry phase of spinning particles. Phys. Lett. A 

352, 190–195 (2006).
 3. K. Y. Bliokh, A. Aiello, M. A. Alonso, Quantum electrodynamics, angular momentum and 

chirality, The Angular Momentum of Light, D. L. Andrews, M. Babiker, Eds. (Cambridge 
Univ. Press, 2012).

 4. A. Aiello, P. Banzer, M. Neugebaueru, G. Leuchs, From transverse angular momentum 
to photonic wheels. Nat. Photon. 9, 789–795 (2015).

 5. K. Y. Bliokh, F. Nori, Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 
1–38 (2015).

 6. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, F. Sciarrino, 
Spin-to-orbital conversion of the angular momentum of light and its classical 
and quantum applications. J. Opt. 13, 064001 (2011).

 7. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, A. Aiello, Angular momenta and spin-orbit 
interaction of nonparaxial light in free space. Phys. Rev. A 82, 63825 (2010).

 8. K. Y. Bliokh, A. Niv, V. Kleiner, E. Hasman, Geometrodynamics of spinning light. Nat. Photon. 
2, 748–753 (2008).

 9. S. J. van Enk, G. Nienhuis, Spin and orbital angular momentum of photons. Europhys. Lett. 
25, 497–501 (1994).

 10. F. Alpeggiani, K. Y. Bliokh, F. Nori, L. Kuipers, Electromagnetic helicity in complex media. 
Phys. Rev. Lett. 120, 243605 (2018).

 11. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, A. V. Zayats, Spin–orbit interactions of light. 
Nat. Photon. 9, 796–808 (2015).

 12. K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, C. Dainty, 
Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging 
systems. Opt. Express 19, 26132–26149 (2011).

 13. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, Spin-to-orbital angular 
momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 
(2007).

 14. Y. Gorodetski, A. Niv, V. Kleiner, E. Hasman, Observation of the spin-based plasmonic 
effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

 15. A. Ciattoni, G. Cincotti, C. Palma, Angular momentum dynamics of a paraxial beam 
in a uniaxial crystal. Phys. Rev. E 67, 36618 (2003).

 16. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets, 
Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

 17. F. D. M. Haldane, S. Raghu, Possible realization of directional optical waveguides in 
photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

 18. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, 
M. Segev, A. Szameit, Photonic Floquet topological insulators. Nature 496, 196–200 
(2013).

 19. S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, L. Kuipers, Nanoscale chiral 
valley-photon interface through optical spin-orbit coupling. Science 359, 443–447 (2018).

 20. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, 
H. Pichler, P. Zoller, Chiral quantum optics. Nature 541, 473–480 (2017).

 21. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, Quantum 
state-controlled directional spontaneous emission of photons into a nanophotonic 
waveguide. Nat. Commun. 5, 5713 (2014).

 22. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, 
A. V. Zayats, Near-field interference for the unidirectional excitation of electromagnetic 
guided modes. Science 340, 328–330 (2013).

 23. M. Onoda, S. Murakami, N. Nagaosa, Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).
 24. O. Hosten, P. Kwiat, Observation of the spin Hall effect of light via weak measurements. 

Science 319, 787–790 (2008).
 25. X. Yin, Z. Ye, J. Rho, Y. Wang, X. Zhang, Photonic spin hall effect at metasurfaces. Science 

339, 1405–1407 (2013).
 26. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, E. Hasman, Coriolis effect in optics: Unified 

geometric phase and spin-Hall effect. Phys. Rev. Lett. 101, 030404 (2008).
 27. A. Aiello, J. P. Woerdman, Role of beam propagation in Goos–Hänchen and Imbert–Fedorov 

shifts. Opt. Lett. 33, 1437–1439 (2008).
 28. K. Y. Bliokh, A. Aiello, Goos–Hänchen and Imbert–Fedorov beam shifts: An overview. 

J. Opt. 15, 014001 (2013).
 29. F. I. Fedorov, To the theory of total reflection. J. Opt. 15, 014002 (2013).
 30. K. Y. Bliokh, D. Smirnova, F. Nori, Quantum spin Hall effect of light. Science 348, 

1448–1451 (2015).
 31. M. Antognozzi, C. R. Bermingham, R. L. Harniman, S. Simpson, J. Senior, R. Hayward, 

H. Hoerber, M. R. Dennis, A. Y. Bekshaev, K. Y. Bliokh, F. Nori, Direct measurements 
of the extraordinary optical momentum and transverse spin-dependent force using 
a nano-cantilever. Nat. Phys. 12, 731–735 (2016).

 32. M. Neugebauer, J. S. Eismann, T. Bauer, P. Banzer, Magnetic and electric transverse spin 
density of spatially confined light. Phys. Rev. X 8, 021042 (2018).

https://science.org/doi/10.1126/sciadv.abo6033
https://science.org/doi/10.1126/sciadv.abo6033


Peng et al., Sci. Adv. 8, eabo6033 (2022)     26 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 8

 33. A. Y. Bekshaev, K. Y. Bliokh, F. Nori, Transverse spin and momentum in two-wave 
interference. Phys. Rev. X 5, 011039 (2015).

 34. J. S. Eismann, L. H. Nicholls, D. J. Roth, M. A. Alonso, P. Banzer, F. J. Rodríguez-Fortuño, 
A. V. Zayats, F. Nori, K. Y. Bliokh, Transverse spinning of unpolarized light. Nat. Photon. 15, 
156–161 (2021).

 35. L. Peng, L. Duan, K. Wang, F. Gao, L. Zhang, G. Wang, Y. Yang, H. Chen, S. Zhang, 
Transverse photon spin of bulk electromagnetic waves in bianisotropic media. Nat. Photon. 
13, 878–882 (2019).

 36. K. Y. Bliokh, A. Y. Bekshaev, F. Nori, Extraordinary momentum and spin in evanescent 
waves. Nat. Commun. 5, 3300 (2014).

 37. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons Inc., 1975).
 38. P. Lodahl, S. Mahmoodian, S. Stobbe, Interfacing single photons and single quantum 

dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).
 39. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, Oscillating wave sensor based 

on the Goos-Hänchen effect. Appl. Phys. Lett. 92, 061117 (2008).
 40. D. Xu, S. He, J. Zhou, S. Chen, S. Wen, H. Luo, Goos–Hänchen effect enabled optical 

differential operation and image edge detection. Appl. Phys. Lett. 116, 211103 (2020).
 41. S. He, J. Zhou, S. Chen, W. Shu, H. Luo, S. Wen, Wavelength-independent optical fully differential 

operation based on the spin-orbit interaction of light. APL Photon. 5, 036105 (2020).
 42. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2005).
 43. L. Peng, X. Zheng, K. Wang, S. Sang, Y. Chen, G. Wang, Layer-by-layer design 

of bianisotropic metamaterial and its homogenization. Prog. Electromagn. Res. 159, 
39–47 (2017).

 44. Z. Li, K. Aydin, E. Ozbay, Determination of the effective constitutive parameters 
of bianisotropic metamaterials from reflection and transmission coefficients. Phys. Rev. E 
79, 026610 (2009).

 45. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, J. A. Kong, Robust method to retrieve 
the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004).

 46. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, Retrieving effective parameters 
for metamaterials at oblique incidence. Phys. Rev. B 77, 195328 (2008).

Acknowledgments 
Funding: This work is financially supported by the Natural Science Foundation of China 
(NSFC) under grants 61875051, 61805097, and 61935015; the Natural Science Foundation of 
Zhejiang Province (ZJNSF) under grant LR21F010002; and the Hong Kong RGC (AoE/P-502/20, 
17309021). Author contributions: Conceptualization: L.P. and S.Z. Methodology: L.P., H.R., 
Y.-C.L., S.X., H.-S.C., and S.Z. Data curation: L.P., H.R., T.-W.L., and K.-W.X. Validation: L.P., D.-X.Y., 
H.-B.S., and S.Z. Supervision: L.P., S.X., and S.Z. Writing—original draft: L.P. and S.X. Writing—
review and editing: L.P. and S.Z. Competing interests: The authors declare that they have no 
competing interests. Data and materials availability: All data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials.

Submitted 14 February 2022
Accepted 14 July 2022
Published 26 August 2022
10.1126/sciadv.abo6033


