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Identification of functional features 
underlying heat stress response 
in Sprague–Dawley rats using 
mixed linear models
Krzysztof Kotlarz1, Magda Mielczarek1,2, Yachun Wang3, Jinhuan Dou4, Tomasz Suchocki1,2 & 
Joanna Szyda1,2*

Since global temperature is expected to rise by 2 °C in 2050 heat stress may become the most severe 
environmental factor. In the study, we illustrate the application of mixed linear models for the analysis 
of whole transcriptome expression in livers and adrenal tissues of Sprague–Dawley rats obtained 
by a heat stress experiment. By applying those models, we considered four sources of variation in 
transcript expression, comprising transcripts (1), genes (2), Gene Ontology terms (3), and Reactome 
pathways (4) and focussed on accounting for the similarity within each source, which was expressed 
as a covariance matrix. Models based on transcripts or genes levels explained a larger proportion of 
log2 fold change than models fitting the functional components of Gene Ontology terms or Reactome 
pathways. In the liver, among the most significant genes were PNKD and TRIP12. In the adrenal 
tissue, one transcript of the SUCO gene was expressed more strongly in the control group than in the 
heat-stress group. PLEC had two transcripts, which were significantly overexpressed in the heat-stress 
group. PER3 was significant only on gene level. Moving to the functional scale, five Gene Ontologies 
and one Reactome pathway were significant in the liver. They can be grouped into ontologies related 
to DNA repair, histone ubiquitination, the regulation of embryonic development and cytoplasmic 
translation. Linear mixed models are valuable tools for the analysis of high-throughput biological 
data. Their main advantages are the possibility to incorporate information on covariance between 
observations and circumventing the problem of multiple testing.

The most general formulation of heat stress is defined as an increase in ambient temperature above the threshold 
beyond which body temperature cannot be maintained on the physiologically optimal level1,2. Heat stress is 
among the best characterized environmental stressors and has the most severe detrimental effects. Individuals 
cope with heat stress by increasing body temperature, reducing feed intake as well as changing of physiologi-
cal state, which is referred to as physiological adaptive responses3. Therefore, heat stress can lead to economic 
losses due to lower productivity and reproductivity, as well as increased health burden4. Unfortunately, global 
temperature is expected to rise by 2 °C in 20505 and furthermore, the average temperature in 2100 may rise by 
up to 4.8 °C6. As a consequence, the maximum daily temperature will be higher, so the intensity and duration of 
heat stress will be more severe and prolonged, compared to 2021. Therefore, heat stress may become the most 
severe environmental factor.

Studies have reported that heat stress significantly altered physiological, biochemical, metabolic, and cellular 
responses in mice and livestock models3,7,8. However, animals have developed protective measures against the 
challenges of heat stress manifested by altered transcript and gene expression levels9–11. With the development 
of next generation sequencing technologies, including RNA-sequencing (RNA-seq), hundreds or thousands of 
genes involved in heat stress response have been identified12,13. Consequently, the main goal of the research was to 
illustrate how linear mixed models can be used to perform a biologically driven analysis of changes in transcript 
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and gene expression levels between the control and the heat-stress groups. In contrast to the vast majority of 
approaches, when particular transcripts are considered as independent, we incorporated biological information 
on the correlation between them directly into the statistical model. Furthermore, we also considered higher-
order units, expressed by Gene Ontology terms and Reactome pathways, since these are the actual functional 
components of the physiological response towards heat stress.

The incorporation of functional units into the analysis of RNA-seq data is a known idea. It has been applied 
either through enrichment analysis as e.g. by Dou et al.14 to the data set analysed in our study or through the 
Ingenuity Pathway Analysis as e.g. by Lan et al.15 to gene expression under heat stress in poultry. Nevertheless, 
the major difference between our approach and the aforementioned studies is that the former conducts a two-
step analysis, by first identifying significantly differentially expressed transcripts and genes by considering them 
independent (step 1) and then further analysing the selected, significant transcripts and genes in terms of the 
correlation between them or the enrichment of ontologies or pathways in this significant gene set (step 2). The 
approach proposed in our study attempted to combine the process within one-step by including the correlation 
of the functional information directly into the model fitted to the whole (i.e. not only to significant) expression 
data and is statistically similar to the linear mixed model fitted to gene expression data by Wang et al.16, albeit 
with a different approach to the modelling of the covariance of random effects.

In the current study, we illustrate the application of the mixed models using the whole genome transcript 
expression data of Sprague–Dawley rats obtained from a heat stress experiment14.

Methods
Experimental animals.  The data set underlying the analysis is a subset of the material used by Dou et al.14. 
In brief, the analysed individuals comprised eight weeks old female, specific-pathogen-free, Sprague–Dawley 
rats. Prior to the experiment, all rats were housed in a laboratory at 22 ± 1 °C, 50% relative humidity with 12 h 
reverse light/dark cycle with feed and water provided ad libitum. After one week, five rats from the heat-stressed 
group were exposed to 42 °C for 120 min, while five rats from the control group were housed at an initial tem-
perature of 22 °C. After the completion of the experiment, the animals were euthanised and samples of liver and 
adrenal gland tissues were used as a source of total RNA.

Bioinformatic analysis.  Illumina HiSeq2000 was used to sequence 150 long reads in the paired-end (PE) 
data mode. The total number of read pairs per sample was from 51,706,978 to 97,059,004. The detailed descrip-
tion of the RNA isolation and sequencing was also provided by Dou et al.14. The bioinformatic pipeline consisted 
of the following steps: quality control of raw reads, editing of raw reads based on their quality, and quantification 
of transcripts’ expression. In particular, the quality of raw reads was assessed by applying the FastQC software17. 
Then, reads were processed by the Trimmomatic software18, which removed adapter sequences, trimmed reads 
with an average sequencing quality of 4 consecutive reads below 20 (SLIDINGWINDOW:4:20), and removed 
reads shorter than 60 bp (MINLEN:60). Next, the Salmon software19 was used to quantify the abundances of 
transcripts. This software implements the pseudoalignment process—an approach allowing for rapid identi-
fication of the compatibility of reads with transcripts, without the need of a computationally intensive whole 
genome alignment. In the last step, log2 fold changes in transcript expression levels between the control and heat 
stressed groups were calculated using DESeq220.

Statistical modelling of expression data.  The log2 fold changes (log2FC) calculated based on the tran-
script expression levels pooled over the control and heat-stressed animals respectively, were analysed in four 
mixed linear models.

The transcript-based model (M1) is given by:

where y is the vector of log2FC of transcript expression, µ represents the general mean, t  is the random transcript 
effect with a predisposed normal distribution defined by N
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 , ZM1 is an incidence matrix for t  . In this model, the similarity between transcripts i and j, was 

introduced into the model by incorporating a nondiagonal transcript covariance matrix VM1 . The covariance 
between transcripts was expressed by the Jaccard similarity coefficient: J(A,B) = |A∩B|

|A∪B| , which in the case of 
transcripts was calculated based on the similarity in their exon composition:

where a represents the number of exons common between transcripts i and j, while N represents the total number 
of exons of a given gene. Independence was assumed between genes, so the resulting matrix had a block diagonal 
structure. Transcript information was obtained from the Ensembl database, release10021 and Jaccard coefficients 
were calculated using the ADE-4 package22.

The gene-based model (M2) was applied to the same dependent variable ( y ) as M1 and is given by:

where g  is the random gene effect with a preimposed normal distribution defined by N
(
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genes was assumed so VM2 was diagonal.
Furthermore, the Gene Ontology-based model (M3):
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where go is the random effect of Gene Ontology (GO; geneontology.org) terms assigned to transcripts whose 
log2FC of transcript expressions are contained in y . It was assumed that go follows the normal distribution 
N
(
0,VM3σ

2
go

)
 , eM3 is a vector of residuals distributed as N

(
0, Iσ 2

eM3

)
 , and ZM3 is an incidence matrix for the 

go terms. VM3 describes the covariance between GO terms expressed, as above, by the Jaccard coefficients quan-
tifying genes overlapping between two given GO terms. Each transcript was assigned GO term(s) from the 
biological process ontology, considering the ontologies from the 2nd hierarchy level.

Finally, a model incorporating the effects of Reactome pathways (M4) was fitted to transcript log2FC:

in this model, r represents the random effect of Reactome pathways (reactome.org) corresponding to transcripts. 
The normal distribution pre-imposed on r is given by N

(
0,VM4σ

2
r

)
 , eM4 is a vector of residuals distributed as 

N
(
0, Iσ 2
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)
 , and ZM4 is an incidence matrix assigning Reactome pathways to transcripts. The covariance matrix 

between Reactome pathways ( VM4 ) was also expressed by the Jaccard coefficients quantifying genes overlapping 
between the two given pathways.

Estimation of variance components and significance testing.  The expectation–maximization 
algorithm23 was applied for the estimation of variance components underlying the four above models (i.e. 
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 ) and the mixed model equations24 were used to obtain solutions of 
µ, t , g , go and r:

with x representing t , g , go or r depending on the model, and i ∈ {M1,M2,M3,M4} being a model indicator. 
Each element of the solution vectors t̂ , ĝ , ĝo and r̂  was transformed to the standard normal distribution and 
tested for significance by assessing the probability of obtaining a more extreme value based on the standard 
normal density function.

Enhancement of the computational efficiency of the estimation.  In order to maximise the com-
putational performance of the estimation of model parameters and its variance components, a custom-written 
Python program implementing the Numba library25 was used. Numba compiles a subset of native Python and 
NumPy code into the machine code. Since all calculations were carried out on a multicore server, the Numba 
library was also used to parallelize the code, what further improved the computing time compared to a native 
Python application.

Ethics approval.  Not applicable, only in silico data was processed in this study.

Results
Obviously models M1 and M2, fitting thousands of components, i.e. transcripts (M1) or genes (M2) explain a 
much larger proportion of the observed variability of log2FC than the M3 and M4 fitting the functional com-
ponents, i.e. GO terms (M3) or Reactome pathways (M4). Still, by taking into account the correlation between 
transcripts expressed by their exon composition, we explain 12.43% and 18.32% of the total variability of log2FC 
observed in liver and adrenal tissues, respectively. A similar picture arises when the assumed source of variability 
of log2FC is considered on a gene level, resulting in 10.12% and 16.45% variance components in liver and adrenal 
tissues respectively—somewhat lower than for correlated transcripts in M1. By further shrinking the functional 
units to GO terms and Reactome pathway units we explain “only” 1.48% (GO) and 1.45% (Reactome) of the total 
variance for liver, as well as 1.44% (GO) and 1.93% (Reactome) for the adrenal tissue (Table 1).

Considering the transcript and gene levels, in the liver, M1 and M2 point at the significant effects of the 
PNKD and TRIP12 genes. PNKD exhibits a significant effect of a transcript ENSRNOT00000046229, which 
is approximately 223 times higher expressed in the control than in the heat-stress group. However, three of the 
five transcripts of the gene show higher expression in the heat-stress group, reaching 25 higher expression of 
ENSRNOT00000089580. TRIP12 synthesises one particular transcript (ENSRNOT00000022822) which is 222 
times higher expressed in the control than in the heat-stress group. Different genes were significantly differentially 
expressed in the adrenal tissue. One transcript of the SUCO gene (ENSRNOG00000026542) is 223 times higher 
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Table 1.   Variance components estimated by the mixed models (M1–M4) expressed as the percentage of the 
total variance of y. σ 2

t  the transcript variance, σ 2
g  the gene variance, σ 2

go the GO term variance, σ 2
r  the Reactome 

pathway variance, σ 2
y  the variance of log2FC.

Tissue σ
2
t

σ 2
y

 (M1) (%)
σ
2
g

σ 2
y

 (M2) (%)
σ
2
go

σ 2
y

 (M3) (%) σ
2
r

σ 2
y

 (M4) (%)

Liver 12.43 10.12 1.48 1.45

Adrenal 18.32 16.45 1.44 1.93
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expressed in the control than in the heat-stress group, while the three other transcripts synthesised from this 
gene have an opposite effect, i.e. show higher expression in heat-stressed individuals. PLEC has two transcripts 
which are significantly overexpressed in the heat-stress group. PER3 was significant only on the gene level (M2) 
with all of its transcripts being under expressed during heat stress (Table 2).

While moving to a functional level, we did not identify any significant GO terms differentially expressed in 
the adrenal tissue and a single Generic Transcription Reactome Pathway (R-RNO-212436). However, in the liver, 
five ontologies and one Reactome pathway were significant. Functionally, they can be grouped into ontologies 
related to DNA repair through the regulation of double-strand break repair (GO:2000780 and GO:2000779) 
and histone ubiquitination (GO:1901315), to the regulation of embryonic development (GO:0045995) and to 
cytoplasmic translation (GO:0002181, R-RNO-6791226).

Discussion
Various scopes of information considered in our study explain different amounts of the observed variation of 
transcript differential expressions across the genome (Table 1). The difference in the estimated variance com-
ponents related to transcripts, genes, GO terms and Reactome pathways associates with the number of levels of 
those independent variables. Since we are not aware of the corresponding estimates reported by other studies, 
a discussion with the literature is not possible. Therefore, at this stage, we can only hypothesise that on the one 

Table 2.   Top 5 significant transcripts from M1, top 2 significant genes from M2, significant Gene Ontology 
terms from M3, and significant Reactome pathways from M4. ID  the Ensembl transcript ID, Ensembl gene ID 
Gene Ontology database ID, or Reactome ID, depending on the effect considered, Effect represents the estimate 
from the corresponding mixed model M1–M4, P  P value corresponding to the normal probability density 
function with mean zero and the variance estimated by the corresponding model.

Tissue Model ID name Effect P

Liver

Transcript (M1) ENSRNOT00000074131
PNKD 2.76 4.7 × 10–10

Transcript (M1) ENSRNOT00000093245
TRIP12 2.15 1.2 × 10–6

Transcript (M1) ENSRNOT00000093735
TRIP12 1.67 0.00016

Transcript (M1) ENSRNOT00000022822
TRIP12 1.65 0.00021

Transcript (M1) ENSRNOT00000079452
TRIP12 1.63 0.00023

Gene (M2) ENSRNOG00000016963
TRIP12 1.66 3.5 × 10–5

Gene (M2) ENSRNOG00000014806
PNKD 1.12 0.00520

Gene ontology (M3) GO:1901315
Negative regulation of histone H2A K63-linked ubiquitination 0.52 0.00055

Gene ontology (M3) GO:2000780
Negative regulation of double-strand break repair 0.48 0.00130

Gene ontology (M3) GO:2000779
Regulation of double-strand break repair 0.37 0.01300

Gene ontology (M3) GO:0045995
Regulation of embryonic development 0.30 0.04200

Gene ontology (M3) GO:0002181
Cytoplasmic translation 0.29 0.05200

Reactome pathway (M4) R-RNO-6791226
Major pathway of rRNA processing in the nucleolus and cytosol 0.29 0.05500

Adrenal

Transcript (M1) ENSRNOT00000075998
SUCO 3.48 9.2 × 10–11

Transcript (M1) ENSRNOT00000084058
SUCO 2.18 4.9 × 10–5

Transcript (M1) ENSRNOT00000082271
PLEC 2.10 8.9 × 10–10

Transcript (M1) ENSRNOT00000075936
SUCO 1.95 0.00029

Transcript (M1) ENSRNOT00000088945
PLEC 1.70 0.00160

Gene (M2) ENSRNOG00000026542
SUCO 2.26 8.4 × 10–6

Gene (M2) ENSRNOG00000018413
PER3 1.63 0.00130

Reactome pathway (M4) R-RNO-212436
Generic Transcription Pathway 0.49 0.00500
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hand, the differences in variance components can be due to the technical nature of the model, since many more 
transcript effects were estimated as Reactome pathway effects. On the other hand, those effects were modelled 
as random and thus their variation was constrained by the predefined co-variance structure so that the differ-
ences in variance components express the biological phenomenon—Reactome pathways aggregate effects of 
many transcript/genes.

By considering the significant transcripts, genes and pathways identified in our study, a consistent picture 
emerges that DNA stability and its repair mechanisms are affected by heat stress. This phenomenon has already 
been reported by other authors, e.g.26 and was reviewed by Kantidze et al.27. On a gene level, TRIP12 was 
reported as encoding a protein which is associated with chromatin and plays a role in the maintenance of genome 
integrity28 and PER3 influences DNA damage repair by correlating with checkpoint kinase 2 gene29. Mutations 
in the SUCO gene induce hypoglycaemia [www.​ensem​bl.​org] in humans, which is the cause of hypothermia in 
diabetic patients30. PER3 was differentially expressed in broiler chicken maintained under control and heat stress 
conditions31. In general, it has been proven that PER3 is associated with behavioural differences towards stress 
and was influenced by stress and ethanol treatment in BXD strain mice32.

On the functional level, we observed a significantly under expression of genes with ontologies related to 
double-strand break repair (GO:2000780 and GO:2000779) and histone ubiquitination. Furthermore, outside 
of the nucleus, a significant effect of the cytoplasmic translation ontology (GO:0002181) and rRNA processing 
in the nucleolus and cytosol pathway (R-RNO-6791226) can be linked to the phenomenon of the aggregation of 
proteins in the cytoplasm of yeast cells subjected to heat stress, which consequence was impaired cytoplasmic 
translation33.

Noteworthy, our list of significant transcripts, genes, GO terms, and Reactome pathways did not overlap with 
the results reported for the same material by Dou et al.12. Only the PER3 gene was significantly associated with 
differential expression in adrenal tissue in both studies. The most emerging difference concerned the number 
of significant effects reported. While Dou et al.12 estimated 3909 and 4953 significantly differentially expressed 
genes for liver and adrenal tissues respectively, our study pointed at only two significant genes for each tissue. 
Similarly, the number of significant GO terms was 193 for liver and 79 for adrenal tissue in Dou et al.12, while 
only five and zero in our results. The observed differences are caused by the following factors: different raw 
reads editing criteria, different approaches to estimate transcript expression, and different statistical modelling 
of expression data. Dou et al.12 used the Cufflinks software34 for bioinformatic processing of the expression data, 
which implements Tophat235 for the alignment of reads to the reference genome and a single gene hypothesis 
test with multiple testing correction of P values via the FDR for the assessment of differential expression. In our 
analysis, an alignment-free approach and a random effect model incorporating all transcripts/genes simultane-
ously were applied. Already 36 pointed at differences in the statistical inference based on fixed and random effect 
models, indicating that the former tend to underestimate, and the latter—overestimate a residual variance. As 
a consequence, a type I-error is often elevated in fixed-effect models, which was analytically demonstrated by 
37 in the context of meta-analysis. Moreover, significant differences in the quantification of expression between 
alignment-based and alignment-free approaches were recently demonstrated in our unpublished analysis of Sus 
scrofa RNA-seq data by Hoffman et al.

Conclusions
Mixed models, i.e. statistical models fitting random effects, are a valuable tool for the analysis of high-throughput 
biological data. Their major advantages comprise: (1) the possibility to incorporate information on covariance 
between observations, which is often neglected while applying simple, fixed effect models, and (2) circumvent-
ing the problem of multiple testing, by simultaneous fitting all effects. We see the major limitation of the pro-
posed approach in the varying quality of functional annotation of genomes available for different species. While 
genomes of humans and experimental species, such as rats, are very well functionally annotated with the most 
of transcripts/genes assigned to GO terms and metabolic pathways, less well-studied species have less complete 
annotation, which would enforce the incorporation of phantom GO and phantom pathway effects (similarly to 
phantom parent groups in livestock genetic evaluation).

From the biological perspective, PER3 and SUCO genes as well as DNA repair and translation were indicated 
as factors playing a significant role in heat stress response.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to institutional 
constrains, but are available from the Yachun Wang on reasonable request.

Code availability
Python code is available in principle upon request from the corresponding author.
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