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Abstract: Endothelial dysfunction plays a critical role in atherosclerosis progression, leading to
cardiovascular complications. There are significant associations between diabetes mellitus, oxidative
stress, and endothelial dysfunction. Oxidative stress is increased by chronic hyperglycemia and acute
glucose fluctuations induced by postprandial hyperglycemia in patients with diabetes mellitus. In
addition, selective insulin resistance in the phosphoinositide 3-kinase/Akt/endothelial nitric oxide
(NO) synthase pathway in endothelial cells is involved in decreased NO production and increased
endothelin-1 production from the endothelium, resulting in endothelial dysfunction. In a clinical
setting, selecting an appropriate therapeutic intervention that improves or augments endothelial
function is important for preventing diabetic vascular complications. Hypoglycemic drugs that
reduce glucose fluctuations by decreasing the postprandial rise in blood glucose levels, such as
glinides, α-glucosidase inhibitors and dipeptidyl peptidase 4 inhibitors, and hypoglycemic drugs
that ameliorate insulin sensitivity, such as thiazolidinediones and metformin, are expected to improve
or augment endothelial function in patients with diabetes. Glucagon-like peptide 1 receptor agonists,
metformin, and sodium-glucose cotransporter 2 inhibitors may improve endothelial function through
multiple mechanisms, some of which are independent of glucose control or insulin signaling. Oral
administration of antioxidants is not recommended in patients with diabetes due to the lack of
evidence for the efficacy against diabetic complications.
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1. Introduction

The number of patients with diabetes has been increasing worldwide. A pooled
analysis showed that the prevalence of diabetes in adults has been increasing, and it was
estimated that the number of adults with diabetes in the world increased from 108 million
in 1980 to 422 million in 2014 [1]. Diabetic patients are at high risk for developing mi-
crovascular and macrovascular complications. Diabetic vascular complications are major
causes of morbidity and mortality in diabetic patients. Microvascular complications such
as neuropathy, nephropathy, and retinopathy are major causes of decreased quality of life.
Macrovascular complications including coronary heart disease, cerebrovascular disease,
and peripheral artery disease, are major causes of mortality. A systematic literature review
has shown that cardiovascular disease affects approximately 32.2% of patients with type
2 diabetes (21.1% with coronary heart disease, 14.6% with angina, 10.0% with myocardial
infarction, and 7.6% with stroke) and that cardiovascular disease is the cause of death in
9.9% of patients with type 2 diabetes aged 63.6 ± 6.9 years, accounting for 50.3% of all
deaths in diabetic patients [2]. Therefore, inhibiting the progression of atherosclerosis and
preventing the development of diabetic vascular complications is clinically important for a
better prognosis in diabetic patients.
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Endothelial dysfunction is not only an early event of atherosclerosis but also plays a
critical role in atherosclerosis progression, leading to the development of vascular compli-
cations [3–5]. Diabetes mellitus is associated with endothelial dysfunction [6–9]. Therefore,
it is important to understand the mechanisms underlying endothelial dysfunction caused
by diabetes mellitus and to select treatments that improve or augment endothelial function
for preventing diabetic vascular complications. In this review, we discuss the current un-
derstanding of the mechanisms of endothelial dysfunction and recommended therapeutic
options for improving endothelial function in patients with diabetes mellitus.

2. The Resting Endothelium

The vascular endothelium acts as an endocrine organ that secrets a variety of vasoac-
tive agents: vasodilators such as prostaglandin I2, endothelium-derived hyperpolarizing
factor, and nitric oxide (NO), and vasoconstrictors such as angiotensin II, thromboxane A2,
and endothelin-1 (ET-1) [10]. The resting endothelium acts as a gatekeeper that maintains
vascular homeostasis by regulating the moment-to-moment balance between vasodilation
and vasoconstriction, antithrombosis and prothrombosis, anti-inflammation and proin-
flammation, antioxidation and pro-oxidation, and vascular smooth muscle cell growth
inhibition and growth promotion [3]. Endothelial dysfunction refers to the inability of
endothelial cells to maintain vascular homeostasis due to the disturbed balance between
endothelium-derived proatherosclerotic factors and antiatherosclerotic factors in favor of
proatherosclerotic factors, leading to the initiation and progression of atherosclerosis. NO
released from the endothelium has a variety of antiatherosclerotic effects such as vasodila-
tion, inhibition of the proliferation of vascular smooth muscle cells, inhibition of leukocyte
adhesion, and inhibition of platelet adhesion and aggregation. Therefore, endothelial dys-
function often refers to a condition in which increased NO inactivation and/or decreased
NO production from the endothelium results in reduced NO bioavailability.

Diabetes mellitus is associated with endothelial dysfunction [11–13]. Clinical studies
have shown that endothelial function assessed by endothelium-dependent vasodilation
is impaired in diabetic patients [14,15]. Although the pathogenesis has not been fully
elucidated, several mechanisms underlying the relationship between diabetes mellitus and
endothelial dysfunction have been proposed.

3. Mechanisms Underlying Endothelial Dysfunction in Diabetes Mellitus
3.1. Oxidative Stress

Reactive oxygen species (ROS) are derived from molecular oxygen. Oxidative stress
refers to the disturbed balance between the antioxidant system and ROS in favor of ROS.
When the counteracting effect of the antioxidant system is insufficient, harmful effects
of ROS such as inhibition of signal transduction pathways or normal cellular functions
through damage to cellular lipids, proteins, or DNA become evident. In human cells, ROS
are produced by various enzymatic sources such as nicotinamide-adenine dinucleotide
phosphate (NADPH) oxidases, xanthine dehydrogenase/oxidase, the mitochondrial elec-
tron transport chain, uncoupled endothelial NO synthase (eNOS), cyclooxygenase, lipoxy-
genase, and glucose oxidase [16]. ROS include free radical species such as superoxide anion
radical (O2

•−), peroxyl radical, alkoxyl radical, and hydroxyl radical, and non-radical
species such as singlet molecular oxygen, hydrogen peroxide, organic hydroperoxides,
hypochlorous acid, and ozone [16].

There is an interaction between endothelial function and oxidative stress [3,17]. O2
•−,

one of the free radical species, is produced through the removal of one electron from
molecular oxygen. NO is directly inactivated by O2

•− with high affinity, resulting in
decreased NO bioavailability. In addition, peroxynitrite is produced as a result of the
direct reaction between NO and O2

•− [18]. Peroxynitrite is a highly potent oxidant that
can cause lipid peroxidation, protein tyrosine nitration, DNA damage, and cell death [18].
Tetrahydrobiopterin (BH4), an essential eNOS cofactor, is oxidized by peroxynitrite to the
biologically inactive form, resulting in reduced BH4 availability. Under a condition of
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insufficient BH4, O2
•− is produced instead of NO from uncoupled eNOS [19]. Therefore,

O2
•− is closely associated with the development of endothelial dysfunction. Once an

oxidative condition is established, endothelial function continues to be impaired through
a vicious cycle of increased O2

•− and decreased NO bioavailability. In diabetes mellitus,
chronic hyperglycemia, acute glucose fluctuations, and insulin resistance are regarded as
major causes of endothelial dysfunction.

3.2. Chronic Hyperglycemia and Oxidative Stress

Intracellular O2
•− is mainly produced from mitochondria [20]. Pyruvate is generated

by glycolysis in the cytosol and is used for ATP synthesis by oxidative phosphorylation
in mitochondria. After the transportation of pyruvate into the mitochondria, pyruvate is
oxidized by the tricarboxylic acid (TCA) cycle to produce H2O, CO2, nicotinamide adenine
dinucleotide (NADH), and 1,5-dihydro-flavin adenine dinucleotide (FADH2) [21]. Elec-
trons from mitochondrial NADH and FADH2 are used as energy for ATP synthesis by
the electron-transport chain at the inner mitochondrial membrane. Electrons from NADH
and FADH2 are transferred through the mitochondrial electron-transport chain, which
is coupled with proton pumping by the electron-transport chain from the mitochondrial
matrix into the intermembrane space. As a result of proton pumping, a proton gradient
is generated across the inner membrane of mitochondria, which provides the energy for
driving the ATP synthase. In a hyperglycemic state, increased production of NADH and
FADH2 by the TCA cycle leads to increased transportation of NADH and FADH2 to the
electron-transport chain. Since NADH and FADH2 serve as electron donors, electron trans-
fer and proton pumping through the electron-transport chain is concomitantly enhanced
and a proton gradient across the inner mitochondrial membrane is increased. As a result,
electron transfer and proton pumping are inhibited, resulting in an increase in electron
leak from the electron-transport chain and a subsequent increase in O2

•− generation in
mitochondria (Figure 1) [21].

Figure 1. Mechanisms of endothelial dysfunction in diabetic patients. Chronic hyperglycemia,
acute glucose fluctuations, and insulin resistance are involved in endothelial dysfunction in diabetic
patients. ET-1, endothelin-1; ROS, reactive oxygen species; AGE, advanced glycation end products;
PI3-kinase, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase; ERK, extracellular
signal-regulated kinase.

GAPDH is the glycolytic enzyme that is essential for maintaining glycolysis. Hypergly-
cemia-induced overproduction of mitochondrial O2

•− partially inhibits the activity of
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GAPDH. Therefore, the inhibition of GAPDH activity by mitochondrial O2
•− causes the

accumulation of glycolytic metabolites upstream of GAPDH and the increased flux of
upstream metabolites into pathways of glucose overutilization (Figure 1) [21].

An increase in glucose flux into the polyol pathway leads to increased consumption
of NADPH. NADPH is required for the regeneration of reduced glutathione. Therefore,
intracellular concentrations of reduced glutathione are decreased as a result of increased
consumption of NADPH by an increase in glucose flux into the polyol pathway. Since
reduced glutathione is a main intracellular antioxidant, intracellular oxidative stress is
enhanced, leading to endothelial dysfunction.

Increased glucose flux into the hexosamine pathway may result in endothelial dysfunc-
tion. Fructose-6-phosphate is converted to glucosamine-6-phosphate in the hexosamine
pathway, resulting in an increase in UDP-N-acetylglucosamine, which is required for
reactions such as proteoglycan synthesis and O-linked glycoproteins formation. As a
result of increased UDP-N-acetylglucosamine, transcriptional factors, nuclear proteins,
and cytoplasmic proteins are modified by O-linked N-acetylglucosamine, leading to many
alterations in both gene and protein functions. For instance, eNOS activity is inhibited by
O-acetylglucosaminylation of the eNOS protein at the Akt site [22], leading to decreased
NO production and consequent endothelial dysfunction.

Hyperglycemia-induced activation of protein kinase C (PKC) through an increase
in diacylglycerol has a number of pathogenic effects such as decreased eNOS expression,
increased ET-1 expression, increased plasminogen activator inhibitor-1 expression, in-
creased transforming growth factor-β expression, NF-kB activation, and NADPH oxidase
activation, leading to endothelial dysfunction.

Increased intracellular production of advanced glycation end products (AGE) pre-
cursors causes modifications of plasma proteins and extracellular matrix proteins and
functional alterations of intracellular proteins. ROS production and NF-kB activation are in-
duced by the activation of the receptor for AGEs on the surface of endothelial cells, leading
to endothelial dysfunction. Therefore, endothelial dysfunction is caused by hyperglycemia-
induced overproduction of mitochondrial O2

•− and diversion of glycolytic flux from the
normal glycolytic pathway to alternative metabolic pathways due to inhibition of GAPDH
activity by mitochondrial O2

•−.

3.3. Acute Glucose Fluctuations and Oxidative Stress

In healthy subjects, plasma glucose levels are controlled and maintained within a
narrow range, whereas blood glucose levels are rapidly and greatly increased in the
postprandial phase in patients with diabetes mellitus. Experimental and clinical studies
have indicated that endothelial function is impaired by postprandial acute hyperglycemia
through increased oxidative stress in patients with diabetes mellitus (Figure 1) [23]. Com-
pared with constant high glucose, intermittent high glucose may have more harmful effects
on endothelial cells. In vitro studies have shown that more apoptosis of endothelial cells
was induced by intermittent high glucose through PKC activation and NADPH oxidase
activation than by constant high glucose [24,25]. In addition, clinical studies have indicated
that endothelial function is impaired by glucose fluctuations through oxidative stress.
Monnier et al. reported that a marker of glucose fluctuations was strongly correlated with
a marker of oxidative stress, whereas there was no significant correlation between the
oxidative stress marker and any other glycemic parameters such as fasting plasma glucose
and glycated hemoglobin (HbA1c) [26]. Torimoto et al. reported that the marker of glucose
fluctuations was negatively correlated with a marker of endothelial function [27]. These
findings suggest that endothelial function is impaired by glucose fluctuations through
increased oxidative stress. Although the precise molecular mechanisms underlying the
association between glucose fluctuations and enhanced oxidative stress have not been fully
elucidated, it is postulated that cellular metabolic adaptation to toxic effects induced by
high glucose may be facilitated by a constant high glucose concentration through constant
feedback. In contrast, intermittent high glucose may fail to facilitate such adaptations to
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toxic effects induced by high glucose because of the lack of constant feedback, leading to
higher oxidative stress and consequent endothelial dysfunction. HbA1c has been used
as a therapeutic marker of glucose control. HbA1c, however, reflects time-averaged glu-
cose exposure but not glucose fluctuations. Large clinical randomized studies in which
HbA1c was used as a marker of glycemic control failed to demonstrate the superiority of
intensive glucose control for prevention of cardiovascular events [28–30]. Therefore, it is
necessary to pay attention not only to HbA1c and fasting plasma glucose levels but also to
postprandial glucose levels for protecting the endothelium from oxidative injury caused by
postprandial hyperglycemia.

3.4. Selective Insulin Resistance-Induced Endothelial Dysfunction

Insulin stimulates NO production in endothelial cells. Insulin receptor substrate (IRS)
is phosphorylated by the binding of insulin to its cognate receptor on endothelial cells,
resulting in the activation of the phosphoinositide 3-kinase (PI3-kinase)/Akt pathway.
eNOS is phosphorylated at Ser1177 by Akt, resulting in increased NO production [31,32].
Insulin also stimulates ET-1 production in endothelial cells through activating the mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway
independent of the PI3-kinase/Akt/eNOS pathway [33]. The PI3-kinase/Akt/eNOS
pathway is selectively impaired under the condition of insulin resistance because of reduced
IRS expression in endothelial cells. In contrast, the MAPK/ERK/ET-1 pathway remains
unchanged and is preferentially stimulated because of the compensatory hyperinsulinemia,
leading to endothelial dysfunction (Figure 1) [34]. This phenomenon is referred to as
selective insulin resistance.

3.5. Endothelial Dysfunction in Type 1 Diabetes

Endothelial function has been shown to be impaired in patients with type 1 dia-
betes [15,35]. Oxidative stress is increased and antioxidant defense is impaired in patients
with type 1 diabetes [36–38], suggesting that oxidative stress is involved in endothelial
dysfunction in patients with type 1 diabetes. Clinical studies have indicated that chronic
hyperglycemia and acute hyperglycemia are associated with endothelial dysfunction in
patients with type 1 diabetes [39–41]. In addition, experimental studies have indicated
the possibility that dysregulated autoimmune response in type 1 diabetes may contribute
to endothelial dysfunction by increasing oxidative stress through activation of NADPH
oxidase [42]. It remains unclear whether glucose fluctuations are involved in endothelial
dysfunction in patients with type 1 diabetes due to the paucity of clinical evidence.

4. Recommended Pharmacotherapies from a Perspective of Endothelial Dysfunction
in Diabetes Mellitus

Selecting an appropriate intervention that will effectively improve or augment en-
dothelial function is clinically important for preventing cardiovascular events in diabetic
patients. Considering that endothelial function may be impaired by chronic hyperglycemia,
acute glycemic variability, and insulin resistance through increased oxidative stress, behav-
ior modification and pharmacotherapies aimed at reducing blood glucose levels without
hypoglycemia, reducing glucose variability, and ameliorating insulin sensitivity are ex-
pected to improve endothelial function.

4.1. Insulin Treatment

Intensive glucose control with insulin has been shown to reduce microvascular and
macrovascular complications in patients with type 1 diabetes [43]. Insulin therapy may
be beneficial for endothelial function in patients with type 1 diabetes who have a healthy
energy balance without insulin resistance since there is little concern about selective insulin
resistance. In contrast, the effect of insulin treatment on endothelial function may depend
on the achieved level of metabolic control in patients with type 2 diabetes [44]. In obese or
overweight patients with type 2 diabetes who have insulin resistance due to overnutrition
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and a positive energy balance, endothelial function is potentially impaired by high-dose
insulin therapy due to selective insulin resistance.

4.2. Hypoglycemic Drugs

Sulfonylureas are insulin secretagogues. Therefore, sulfonylureas, as well as high-dose
insulin therapy, could have an adverse effect on endothelial function in overweight or obese
diabetics because of the selective insulin resistance, potentially resulting in endothelial
dysfunction (Table 1).

Table 1. Hypoglycemic drugs and their effects on endothelial function.

Hypoglycemic Drugs Effects on Endothelial Function

Insulin therapy [44]
Endothelial function is potentially impaired due to

the selective insulin resistance in patients with
insulin resistance.

Sulfonylureas [44]
Endothelial function is potentially impaired due to

the selective insulin resistance in patients with
insulin resistance.

Glinides [45]

· Endothelial function is potentially improved by
reducing glucose fluctuations through decreasing

postprandial hyperglycemia.
· Endothelial function is potentially impaired due to

the selective insulin resistance in patients with
insulin resistance.

α-glucosidase inhibitors [45–47]
Endothelial function is potentially improved by

reducing glucose fluctuations through decreasing
postprandial hyperglycemia.

DPP-4 inhibitors [46,48–50]

· Endothelial function is potentially improved by
reducing glucose fluctuations through decreasing

postprandial hyperglycemia.
· Endothelial function is potentially impaired due to

the selective insulin resistance in patients with
insulin resistance.

GLP-1R agonists [51–55]

Endothelial function is potentially improved by
reducing glucose fluctuations through decreasing

postprandial hyperglycemia, by reducing
postprandial triglycerides levels, and by

activating AMPK.

Thiazolidinediones [56,57] Endothelial function is potentially improved by
reducing insulin resistance.

Metformin [58–66]
Endothelial function is potentially improved by

reducing insulin resistance, activating AMPK and
sirtuin-1, and promoting antioxidation.

SGLT2 inhibitors [67–78]

Endothelial function is potentially improved by
lowering glucose levels in an insulin-independent

manner, reducing acute glucose fluctuations,
improving insulin sensitivity, and improving other

metabolic parameters.
DPP-4 indicates dipeptidyl peptidase 4; GLP-1R, glucagon-like peptide 1 receptor; SGLT2, sodium-glucose
cotransporter 2; AMPK, AMP-activated protein kinase.

Hypoglycemic drugs that reduce glucose fluctuations by decreasing postprandial hy-
perglycemia are expected to ameliorate endothelial function through decreasing oxidative
stress. Glinides, α-glucosidase inhibitors, and dipeptidyl peptidase 4 (DPP-4) inhibitors
are hypoglycemic drugs that decrease postprandial hyperglycemia. Indeed, clinical studies
have shown that those hypoglycemic drugs improve postprandial endothelial function in
diabetic patients [45–48]. However, there are conflicting reports regarding the effects of
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glinides, α-glucosidase inhibitors, and DPP-4 inhibitors on postprandial endothelial func-
tion; some studies have shown that glinides, DPP-4 inhibitors, and α-glucosidase inhibitors
have no beneficial effects on endothelial function [45,49,50]. As for DPP-4 inhibitors and
glinides, increased secretion of endogenous insulin through their pharmacological actions
is possibly associated with a lack of a beneficial effect of DPP-4 inhibitors or glinides on
endothelial function because of the selective insulin resistance in overweight or obese
patients with diabetes mellitus.

Glucagon-like peptide 1 receptor (GLP-1R) agonists improve the control of postpran-
dial blood glucose levels. Therefore, GLP-1R agonists are expected to improve endothelial
function through reducing glucose fluctuations in patients with diabetes mellitus. In-
deed, GLP-1R agonists have been shown to augment endothelial function in patients with
diabetes mellitus [51–55]. However, augmentation of postprandial endothelial function
by GLP-1R agonists was independent of postprandial changes in blood glucose levels
or insulin sensitivity but was associated with postprandial reduction in serum levels of
triglycerides [51,52,54]. It has also been shown that eNOS activation in endothelial cells
through GLP1-R and AMP-activated protein kinase (AMPK) activation is involved in the
augmentation of endothelial function by GLP-1R agonists [53].

Considering that there is a significant association between endothelial dysfunction
and insulin resistance, insulin sensitizers are anticipated to ameliorate endothelial function
through restoring PI3-kinase/Akt/eNOS pathway and increasing NO production. Indeed,
clinical studies have shown that thiazolidinediones, which are insulin sensitizers, improve
endothelium-dependent vasodilation [56,57].

Metformin, which is an insulin sensitizer, has been shown to ameliorate endothelial
function with a significant association between endothelial function and insulin resistance
following treatment in patients with type 2 diabetes mellitus [58]. In addition, metformin
has been shown to improve endothelial function in patients without diabetes who have in-
sulin resistance [59]. These findings suggest that metformin improves endothelial function
by ameliorating insulin resistance. On the other hand, other clinical studies have shown
that metformin improves endothelial dysfunction irrespective of insulin sensitivity or body
weight, suggesting that metformin improves endothelial function through multiple mecha-
nisms, some of which are independent of insulin resistance [60,61]. Preclinical studies have
shown that metformin improves endothelial function by eNOS phosphorylation through
AMPK activation [62,63], sirtuin-1 activation [64,65], and promotion of antioxidation [66].

Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels by in-
creasing glucose excretion into urine through inhibition of renal glucose reabsorption [67].
The glucose-lowering effect of SGLT2 inhibitors is independent of insulin. Therefore, there
is little concern that treatment with SGLT2 inhibitors in overweight or obese diabetics with
insulin resistance would further deteriorate endothelial function through the mechanism
of selective insulin resistance in endothelial cells. SGLT2 inhibitors have been shown to
reduce postprandial glucose levels and decrease overall glucose variability in patients with
diabetes mellitus [68,69]. In addition, SGLT2 inhibitors have been shown to reduce insulin
resistance and ameliorate peripheral insulin sensitivity [70–72]. SGLT2 inhibitors have
other metabolic actions including reductions in plasma lipid levels, blood pressure, and
body weight. Therefore, SGLT2 inhibitors are expected to improve or augment endothelial
function by decreasing oxidative stress through lowering glucose levels in an insulin-
independent manner, reducing acute glucose fluctuations, improving insulin sensitivity,
and improving other metabolic parameters. Indeed, an experimental study demonstrated
that urinary excretion of 8-oxo-2′-deoxyguanosine, an oxidative stress marker, was de-
creased and endothelial function was ameliorated by treatment with an SGLT2 inhibitor
in mice [73]. In addition, clinical studies have shown that SGLT2 inhibitors improve
endothelial function in patients with diabetes mellitus [74–78].
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4.3. Other Treatment

Dyslipidemia and hypertension are significantly associated with endothelial dys-
function and are highly prevalent in patients with type 2 diabetes [79,80]. Therefore, a
multiple-risk-factor intervention approach should be performed to improve endothelial
function and prevent future cardiovascular events. The Steno-2 Study demonstrated that
the risk of microvascular complications and cardiovascular events was significantly re-
duced by an intensified, target-driven, multifactorial intervention involving a combination
of focused behavior modification and medications aimed at concomitant cardiovascular
risk factors than by a conventional strategy [81,82]. In the treatment of other modifiable
risk factors in diabetic patients, it is recommended to select an intervention that ameliorates
endothelial function, such as administration of statin [83], administration of blockers of
the renin-angiotensin system [84–86], and behavior modifications such as body weight
reduction, aerobic exercise, and smoking cessation [87–90].

Since oxidative stress has been considered as a major cause of endothelial dysfunction
in patients with diabetes, an intervention targeting direct reduction in oxidative stress
is attractive and expected to improve endothelial function and cardiovascular outcomes
in patients with diabetes. Indeed, endothelial function is augmented by concomitant
intra-arterial infusion of vitamin C in patients with diabetes [91,92]. However, oral admin-
istration of antioxidants, including vitamin C, vitamin E and N-acetylcysteine, has failed
to demonstrate a protective effect of antioxidants against diabetic vascular complications
in patients with diabetes [93–96]. Although the precise reasons for the ineffectiveness of
oral administration of antioxidants remain unclear, ineffectiveness may be due to the lack
of pharmacokinetic evaluation; plasma levels of the supplemented antioxidants were not
monitored and the drug range for safety and efficacy was not determined [12]. Therefore,
administration of antioxidants for the prevention of diabetic vascular complications is not
clinically recommended in patients with diabetes.

5. Conclusions

Endothelial dysfunction is a therapeutic target in patients with diabetes mellitus. Ox-
idative stress induced by chronic hyperglycemia, acute glucose fluctuations, and decreased
NO production by selective insulin resistance in endothelial cells may be associated with
endothelial dysfunction in patients with diabetes. In addition to behavior modifications
including body weight reduction, aerobic exercise, and smoking cessation, hypoglycemic
drugs that reduce acute glucose fluctuations, such as glinides, α-glucosidase inhibitors
and DPP-4 inhibitors, and hypoglycemic drugs that ameliorate insulin sensitivity, such
as thiazolidinediones and metformin, are expected to improve endothelial function in
patients with diabetes mellitus. Preclinical studies have indicated the possibility that
GLP1-R agonists, metformin, and SGLT2 inhibitors improve endothelial function by multi-
ple mechanisms, some of which are independent of glucose control or insulin signaling,
such as eNOS phosphorylation through AMPK and sirtuin-1 activation. Selecting ap-
propriate hypoglycemic drugs that will improve or augment endothelial function may
be clinically important to prevent diabetic vascular complications for better prognosis in
diabetic patients. In the treatment of other modifiable risk factors, including hypertension
and dyslipidemia, in patients with diabetes, it is recommended to select an appropriate
intervention that will improve endothelial function, such as administration of statins and
renin-angiotensin system blockers. Although an intervention targeting direct reduction in
oxidative stress by antioxidants is attractive, clinical studies in which the efficacy of oral
administration of antioxidants against diabetic vascular complications was investigated
have yielded disappointing results. Further studies are needed to develop therapeutic
strategies for improving endothelial function and cardiovascular outcomes by decreasing
oxidative stress in patients with diabetes.
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