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Abstract

Background: Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics
of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model
inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics.

Methods/Findings: Time-varying distributed delays (TVDD) and multi-way functional response equations were
implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages
and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An
open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop
models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity,
water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were
used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater
Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while
controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines
pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual
increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district.

Conclusion/Significance: Findings presented here provide new opportunities for weather-driven RVF epidemic simulation
modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction,
prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data
in different settings.
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Introduction

Rift Valley fever (RVF) is an infection caused by arbovirus

belonging to genus Phlebovirus of the family Bunyaviridae. The

viruses use arthropod vectors such as mosquitoes and sand flies for

infection transfer to livestock and humans [1]. Since its first

description in 1930 in Kenya [2,3], the virus has occurred as

epidemic disease in Sub-Saharan Africa primarily in eastern and

southern Africa, North Africa, Arabian Peninsula and Madagascar

[4,5] and poses a potential threat to Europe [6]. In all recorded

epidemics, the disease had socio-economic impact due to high

animal and human morbidity and mortality. The major outbreaks

in Kenya, Tanzania and Somalia were in 1997–1998 and 2006–

2007 [7,8], with human deaths totalling 478 and 318 in years 1998

and 2007 respectively [9]. During the 2006–2007 outbreaks in

Kenya and Tanzania, a reported number of 16,973 cattle, 20,193

goats, and 12,124 sheep died of the disease, with spontaneous

abortions observed for 15,726 cattle, 19,199 goats, and 11,085

sheep [9–11]. Similar to other arboviral infection, RVF virus is

passed from generation to generation of Aedine mosquitoes trans-

ovarially [12–14]. This vertical disease transmission permits the

virus to survive over prolonged periods because eggs can survive

for several years in dry conditions [12,15–17].

Emergence of infected mosquito populations and amplification

of the virus are determined by changes in weather conditions

[15,18,19]. In East Africa, RVFV epidemics are known to be

associated with patterns of unusually heavy rainfall [20]. This led

the World Health Organization (WHO) and Food and Agriculture
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Organization (FAO) to developed RVF forecasting models centred

on cyclical patterns of the El Niño/Southern Oscillation (ENSO)

[18,21]. These models incorporate measurements of global and

regional elevated sea surface temperatures, rainfall and satellite

derived-normalized difference vegetation index data [22–24]

which derive from Remote Sensing Satellite Imagery (RSSD),

including use of Landsat, SPOT and Synthetic Aperture Radar

and Cold Cloud Density (CCD) which allow use of more

sophisticated tools to predict RVF virus epizootic activity over

much wider areas [24–26]. Predictions were corroborated through

entomological field investigations of mosquitoes and virus activity

in the suspected area [27] as a key element in controlling RVF

[28]. However, recent climate-driven prediction results in 2012 for

some areas in Kenya and Tanzania [29] indicating foreseeable

challenges due to the complexity of the disease (virus, vectors, and

hosts) involved and their interactions with the environment hence

a need to incorporate more tools.

Mathematical models have been developed for RVFV epidem-

ics to complement available weather only dependent prediction

models [30–33]. Many of them are based on previously developed

epidemiological model of RVF that focus mainly on animals and

vectors population dynamics with hypothetical consideration of

infection dynamics [32]. Further development of this model

incorporated the role of vaccination and vector control to describe

epidemiology of RVFV in areas of intense transmission [34,35].

Other developments for this model associate exclusion of a vertical

transmission in vectors and inclusion of animal movements for

spatial spread of disease [36–38]. Some models associate

epidemics with cryptic cycles of the virus within animal hosts

[39] and a more improved vertical transmission in vectors that

include seasonality [31]. The role of daily weather data such as

temperature and rainfall as model input to determine vector

populations have not previously been directly considered. This

limits their further applicability in predictive epidemiology due to

insufficient incorporation of weather data and on-the-ground

biological processes related to RVF disease.

Development of prediction models for RVFV epidemics faces

many challenges like lack of reliable data. Absence of field-based

rapid diagnostic tools results in the disease first being detected

when it is actually beginning to decline from within the infected

populations. RVF epidemics preparedness teams are therefore less

effective for counter-measure against the impact of the disease. It is

well documented that in order for disease to be controlled by

vaccination, animals need to be vaccinated 4–6 weeks before stress

and risk periods [40] to ensure that the vaccinated population have

developed enough immunity against the virus [29,41]. We

therefore present a simulation modelling approach that incorpo-

rate weather data to simulate on-the-ground entomological data

on mosquito abundances in relation to their hosts as previously

recommended [11].

Figure 1. Diagrammatic presentation of RVF vector population dynamics simulation model. Adult mosquitoes lay eggs directly in
breeding sites or in soil above water level (the latter remain inactive for many years). Hatching of inactive floodwater Aedes eggs depend on water
level in breeding sites which in-turn depends on amount of daily rainfall. Our model considers mosquito growth and mortality in each developmental
stage depend on temperature, water level and host availability. Mosquitoes move from susceptible to infectious phase after contact with infectious
host. Hosts remain in the susceptible phase until after effective contact with infectious mosquitoes, and then hosts flow from susceptible to exposed,
infectious and recovered phases. Abbreviations: b = births, d = natural mortality, d2 = mortality due to disease, temp = depends on temperature,
waterLevel = depends on water in breeding sites, transovarial = transovarial transmission.
doi:10.1371/journal.pone.0108430.g001
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Materials and Methods

Study scenario and data source
The Ngorongoro district in Tanzania was purposely selected as

the main study scenario. The district is part of the Serengeti-Masai

Mara Ecosystem, which is defined by the limits of the annual

wildlife migration linking with a neighbour country, Kenya

experiencing similar disease epidemics. The district represents

unique interaction between livestock, wildlife and human interface

with animal migrations. The area has experienced several records

of RVFV outbreaks. According to 2006–2007 outbreaks, high

animal mortality was recorded in this area [5]. Freely accessible

daily rainfall and temperature data from 1994–1999 for Ngor-

ongoro with Narok ecosystem, Mwanza and Musoma regions

downloaded from http://www.ncdc.noaa.gov/cdo-web.

Assumptions for simulation model
The assumptions for model development include; Floodwater

Aedine mosquitoes are responsible for maintenance of the virus

with vertical transmission and Culicine mosquitoes play a major

role in virus amplification during epidemics. Water level in

potential breeding sites determines hatching of Floodwater Aedine

eggs. Increased water level in breeding sites is required to allow

infected eggs laid further in the soil to hatch. Mosquito

developmental stages use cumulative temperature as important

Table 1. Parameters description.

Parameter Description Value range Details Reference

aedesLongevity Longevity of females Aedes 30.0–45.8 days [58]

aedesFecundity Eggs laid per female Aedes per day 25–35 egg per day [59]

aedesEggMortality Number eggs dead per day in a stage 11.3–12.9% failure to hatch [55,59,60]

aedesHatchRate Hatch rate for Aedes 85–95% [59]

aedesLarvalSurvival Larvae survival rates 90–100% [59]

aedesLarvaeMortality 13.97–16.7% Endogenous causes [59]

aedesPupaMortality 17–30% Endogenous causes [59]

sexRatio Proportion of female mosquitoes
for both Aedes and Culex spp

1:1 [58,59]

transovarial Virus transovarial transmission rate Range from 0 to 1 RVF virus vertical
transmission in Aedes
mosquitoes is still not
known

[31]

gonotrophicCycles Gonotrophic cycles or number of
blood meals per female

5–9 times Cycle after every 3–5
days

[58]

culexLongevity Survival or longevity (females Culex) 25.2–36.9 days [61], [62]

culexFecundity Culex fecundity 21–69 eggs per day 63–200 eggs after
every 3 to 5 days

[63]

culexHatchRate Egg hatching (Culex) 75.2–89.0% [62]

culexEggMortality Egg mortality (Culex) 10.9–24.9% [62]

culexPupaGrowth Larva pupation (Culex) 47.8–68.5% [62]

culexLarvaeMortality Larvae mortality (Culex) 15.9–31.8% [62]

culexPupaMortality Pupae mortality (Culex) 5.62–6.13% [62]

activationRate Infectious eggs hatch from soil per day 10–100% [64]

waterLevelThreshold Minimum amount of water in mosquito
breeding sites required to activate
infectious eggs

Adjusted based on
parameter sensitivity
analysis

dailyLoss Amount of water lost per day Fixed/Manually adjusted Adjusted based on
parameter sensitivity
analysis

daysDegreesLarvae Cumulative temperature for larvae growth 206 Celsius degrees [55,59,60,65–67]

daysDegreesPupae Cumulative temperature for pupa growth 74 Celsius degrees [55,59,60,65–67]

sheepLifeSpan Longevity of females sheep 6 to 11 years [68]

lambAge Age period for lamb 365 days [68]

gestationPeriod Period for foetus development 152 days [68]

carryingCapacity Environment’s maximum load 200 sheep per square kilometre Calculated from sheep
population in specific
areas

sheepAbortions Foetus die per day due to RVF 90–100% [69,70]

lambMortality Lamb die per day due to RVF Less than 50% [69,70]

adultMortality Adult sheep die per day due to RVF 20–30% [69,70]

doi:10.1371/journal.pone.0108430.t001
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model input factor to determine maturation time and adults

survival. Mosquito search for a blood meal is a function of

availability of hosts and that the probability of a successful blood

meal is a function of the availability of host. During feeding, a

mosquito has the probability of transferring viral infection to a

host, or becoming infected by taking a blood meal from a viremic

host. Flow of infection in mosquitoes and host is governed in

compartmental phases. RVFV infection is initiated in a single

phase small population of Floodwater Aedine mosquitoes before

reaching the amplifying Culicine mosquitoes (Figure 1).

Formulation for simulation model
1-D and 2-D time-varying distributed delay (TVDD) equations

were used to formulate the models [42–45]. These time-variant

distribution delay equations were initially developed in 1970s

based on a kth order time-invariant distributed delay and later on

applied as stage structured population dynamics models. TVDD

models emphasize that delay in the distribution from one stage or

phase to another is the quality of the output given some input

parameters. All entities that enter the delay process at the input

either leave at the output or remain stored inside the process. The

2-D TVDD are implemented similar to 1-D TVDD in a way that

stages and phases are capable of interacting simultaneously [46].

Details on how these mathematical models were implemented in

C++ programming language are indicated in Text S1. Four

developmental stages such as eggs, larvae, pupae and adults with

host age groups were modelled using 1-D TVDD. 2-D TVDD

were used to model distribution compartmental phases of

mosquitoes and hosts. Mosquitoes were categorised in two phases;

Susceptible (S) and Infectious (I). Hosts were categorised in four

phases; Susceptible (S), Exposed (E), Infectious (I) and Recovered

(R) (Figure 1). We have included the exposed stage because we

need model predictions to be accurate to the nearest day by

accounting for the time lag between infection and the onset of

infectiousness.

During each mosquito developmental stage temperature

dependence delays were used [44,45]. The mean delay time for

mosquitoes to pass through a stage of growth is calculated as a

total required number of degree days given as cumulative

temperature. A simplified water balance model was used to

Figure 2. Daily weather data for Ngorongoro district from 1994–1999 only for the first 1000 days. (A) Daily temperature in uC. (B) Water
level in breeding sites (millimetres) calculated from daily rainfall data.
doi:10.1371/journal.pone.0108430.g002
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simulate daily variations in amount of water in potential breeding

sites for floodwater Aedine mosquitoes. Daily rainfall data was

used as model input to determine cumulative amount of water in

breeding sites after deduction of daily water loss due to other

factors such as evaporation. We applied water balance equation

that uses the principles of conservation of mass in a closed system

as previously described [47,48] but with added simplicity to reflect

mosquito breeding behaviour. Cumulative amount of water in

breeding sites determined hatching of floodwater Aedine eggs laid

on the soil above water level in breeding sites (Figure 1).

Multi-way functional response equations previously described

for predator prey relations [49] were modified to reflect vector-

host interactions in a disease setting as indicated in Text S1. Mult-

way functional responses were used to determine how host search

for blood meal influenced mosquito fecundity. Mosquito vector

phases (susceptible or infectious) were allowed to take a blood meal

from all phases and stages of a host. Interaction between infectious

mosquito vectors with susceptible host caused a phase outflow to

exposed hosts. Interaction between susceptible mosquito vectors

with infectious host caused a phase outflow to infectious vectors.

Infectious Floodwater Aedine mosquitoes were allowed to lay

infectious eggs timed to hatch depending on cumulative water

level in breeding sites above threshold. Infectious Culicines laid

eggs hatching susceptible mosquitoes as they lack transovarial

transmission. Infection transfer to hosts was calculated automat-

ically as indicated in Text S1. Phase outflow for the host from

exposure phase to infectious and then recovered take consider-

ation of host mortality due to disease and recovered host were

allowed to flow into a susceptible phase (Figure 1). RVFV don’t

induce lifelong immunity like measles, recovered animals should

be at risk of getting infection again but it is still not known how

long it takes before they become susceptible again.

Development of simulation model
Model algorithms were developed using an open-source

Universal Simulator and Qt Integrated Development Environ-

ment in C++ programming language [50]. We followed proce-

dures for installation and use of Qt creator, Universal Simulator

end user and developer’s versions as provided in the Universal

Simulator website (http://www.ecolmod.org). Source codes for

mosquito fecundity, host fecundity, water level, mosquito infec-

tion, host infection and Aedines eggs time were prepared.

Extensible Markup Language (XML) files were prepared as recipe

to integrate source codes in Qt creator with Universal Simulator

plug-in. Source codes incorporated control structures for hatching

of infectious inactive egg laid in the soil due to water level increase

in breeding sites and RVFV infection initiation from Floodwater

Aedine mosquitoes to susceptible host and then to Culicine

mosquitoes for virus amplification. Details of parameters used are

as shown in Table 1 and source codes are shown in Text S1.

Figure 3. Simulated RVF vector population dynamics showing developmental stages from eggs, larvae, pupae and adults. (A)
Floodwater Aedines depending on water level in breeding sites and host availability. (B) Culicines.
doi:10.1371/journal.pone.0108430.g003
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Parameter sensitivity and calibration
In order to understand the influence of many time based

processes in this model, sensitivity analysis of model outputs due to

variation in input parameters was assessed during simulation

period. Stochastic random normal distribution was applied to

quantify the sensitivity of the outputs [51]. Sensitivities were

assessed on daily time-step spanning 100 steps of simulation. The

influence of temperature, water level thresholds, infection period,

incubation period and vector-host interactions on time-dependent

sensitivities were quantified. Generated sensitivity data was then

used to calibrate the models output to reflect the actual number

that would have been trapped in the same period based on

independent mosquito population dataset [52].

Results

During simulations, the following initial conditions were

prescribed to run once; 50 adult Floodwater Aedine and Culicine

mosquitoes that were allowed to lay eggs and initiated growth to

larvae, pupae and adult mosquitoes under appropriate conditions.

Similarly, initial population for host sheep was 50 lamb and 100

adults with the environmental carrying capacity of 200 sheep per

square kilometer (Table 1). Mosquito population dynamics simu-

lated for both floodwater Aedines and Culicine showed relation-

ship with daily temperatures and rainfall fluctuate over a period

from 1994 to January 1999 (Figure 2A) and rainfall data used to

determine estimated amount of water in breeding sites for Aedine

mosquitoes (Figure 2B).

Selected parameters were sensitive to substantial changes with

vector-host population’s simulation time. Low temperature

thresholds had a significant impact on larvae by delaying transfer

of larvae to pupae. High temperature caused high mortality in

larvae and reduces adult survival days. Water level thresholds that

depended on daily rainfall influenced the emergence of floodwater

Aedine mosquitoes and hatching of infectious eggs laid in the soil

above water level in the breeding site. At low water level

thresholds, population of floodwater Aedine mosquitoes varied

similar with Culicine which did not depend on water level for

mosquito emergence. In this light, water level threshold for

emergence of infectious floodwater is adjusted to reflect the

biological role of floodwater Aedine in RVF epidemics.

Mosquito attack rates for blood meal and infection introduction

during vector-host interactions were sensitive to determine stage

and phase flows. Vector-host interactions were influenced by

Figure 4. Simulated infection initiation before virus amplification. (A) Floodwater Aedines initiate infection. (B) Culicines without infection
from infected sheep to prevent virus amplification.
doi:10.1371/journal.pone.0108430.g004

Weather-Dependent RVF Vectors Population Dynamics Simulation Modelling

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e108430



infection period and RVFV incubation period in hosts. Infectious

period in mosquito vectors and hosts influenced the pattern and

peak size of the simulated epidemic, longer infectious period

extended the duration of the epidemic. For mosquitoes, this

duration was set to the lifespan of the mosquito in order to reflect

the actual duration of RVF epidemic whereas in hosts ranged from

three to six days. Longer disease incubation period within hosts

showed a delayed increase in the number of infectious hosts and

therefore a later peak in the epidemic than when the incubation

period is assumed to be short. Knowing the infection and

incubation period appeared to be important in predicting

dynamics of a simulated epidemic.

Simulation results yielded equilibrium over time with a stable

and consistent number of mosquitoes, regardless of the initial

starting point of the adult population following model calibration.

Floodwater Aedines and Culicine vector population continued to

fluctuate with temperature and water level over the entire period

while controlled by availability of host for blood feeding

(Figure 3A, B). In order to initiate infection, emergence of

infectious floodwater Aedines was set at different water level

threshold (Figure 4A, B). Culicines only pick infection from

infected sheep once in order to amplify disease epidemic

(Figure 4B).

Sheep population provided as lamb and adults were allowed to

fluctuate over the whole simulation period. Sheep remained in the

susceptible phase until had contact from infectious Floodwater

mosquitoes (Figure 5A, B). Following infection introduction in the

exposure phase, sheep were allowed to flow to infectious and

recovered phases. Mortality due to disease was also calculated and

simulated at a given time. Mortality provided varied with age

group of sheep and sex to indicate high abortions in natural

environment as indicator for RVF epidemic (Figure 6).

Controlled simulation of mosquito population dynamics without

influence of host availability for a period from 1994 to 1999

showed sudden increase after about 1450 days of simulation, a

period between December 1997 and January 1998, similar to the

time in which Ngorongoro district experienced a RVF disease

outbreak (Figure 7). However, this sudden increase in mosquito

population was not observed in Mwanza region where RVF

outbreak did not occurred in the same period (Figure 7). This

unusual pattern in vector population increase could be associated

with potential of RVFV outbreaks. The early stage of the

simulated potential disease outbreak was characterized by an

abnormal decline in vector population as a potential future

epidemic indicator.

Figure 5. Sheep population dynamics controlled at the environmental carrying capacity of 200 sheep per square kilometre. (A)
Growth stages without infection. (B Growth stages after introduction of controlled infection within Aedines mosquitoes only.
doi:10.1371/journal.pone.0108430.g005
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Discussion

Our simulation modelling strategy was to produce useful tool for

studying effects of daily rainfall and temperature on vector life

stages in terms of stage-specific growth and death rates. Conditions

that result in unusual abundance of vector mosquito species have

been shown to have a positive association with RVFV epidemics

[53]. The model that we developed provides understanding of the

dynamics of RVFV vector population by implementing time

dependent distribution delay and functional response modelling

approaches for aggregated systems. These models have previously

had broad applications in predicting life cycles of insects, animals,

plants, trees, and capital goods in economics, but not in previously

published RVF modelling papers [43,46,49]. Assessment of the

value of the underlying biological processes allows us to examine

potential variability in RVFV infections in animal and human

populations given the vectors for both maintenance and amplifi-

cation of the virus in the population.

Studying RVFV transmission dynamics poses a big challenge

among scientists, as disease outbreaks are associated with

abnormal changes in weather conditions which are essential

components for prediction of disease epidemics. Choosing the

right modelling procedure for this complex disease can be quite

challenging. Simulation modelling of RVFV vector populations

dynamic remains a useful tool in understanding these transmission

dynamics. In our simulation model, we attempt to replicate the

actual biological processes related to dynamics of the relevant

disease vectors in a local endemic setting. This model takes

advantage of previously developed mathematical equations for

modelling disease vectors and hosts stages at different phases of

infection but with careful selection of useful parameter in relation

with the biology of RVFV [54–56].

The current procedures for simulations development are highly

flexible to allow inclusion of factors that might accelerate the

emergence and decline of Aedine population by not only

considering availability of water in respective breeding sites.

However, we carefully avoided including other factors such as

landscape features [57] and soil types in relation with vectors

distribution. Although Aedine populations may play important

role of RVFV infection initialization, we limited our simulation

procedure to generalized presentation of vectors for maintenance

of the virus by Aedines and amplification during epidemics by

Figure 6. Simulated RVF epidemic. (A) Compartmental phases after allowing infection to flow from Aedines to Culicines for virus amplification,
recovered hosts are not allowed to flow back into the susceptible hosts. (B) Calculated host mortality per developmental stages due to infection with
RVF virus. Abbreviations: SAdult = Susceptible adults, SLamb = Susceptible lamb, EAdult = Exposed adult, ELamb = Exposed lamb, IAdult = Infectious
adult, ILamb = Infectious lamb, RAdult = Recovered adult, RLamb = Recovered lamb.
doi:10.1371/journal.pone.0108430.g006
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Culicines. Despite this simplicity, our model produced reasonable

vector population values and generated trajectories that were

consistent with expectations for years from 1994 to 1999 based on

only freely accessed weather data. This model provides flexibility

for inclusion of more hosts and vectors interactions as would

appear in disease epidemics setting.

While developing models for RVF disease prediction is highly

useful, significant work is needed for further improvement in this

modelling approach. We agree on simplification of some

parameter estimation such as trans-ovarial transmission within

Aedes mosquitoes due to the lack of more information. RVF virus

vertical transmission in Aedes mosquitoes is still not known [31].

This simulation required inclusion of more relevant numerical

information and use of the advanced calendar module in order to

be able to clearly mark simulation dates linking biological

processes with simulation output. Further model improvements

should include need for separate models handling animal and

human population dynamics and addition of spatial distribution of

vectors and host in relation to disease distribution.

Simulation outputs from this study provide new insights for

weather-driven RVFV epidemic modelling. This study shows that

daily temperature and rainfall are key ecological factors to include

in models that predict episodes related to RVFV outbreak [20].

Simulations provide an ideal approach for understanding the

important parameters in virus transmission dynamics with

important insights to be gained in prevention and control of such

epidemics. This approach can be used as an alternative source for

generation of RVFV epidemics data in different scenario for use in

advanced computational analyses and can be modified for use to

other diseases. Final version of this simulation model is available

for download as a Universal Simulator plug-in in both the end user

version and source code from http://www.ecolmod.org/

download.html.

Supporting Information

Text S1 File containing instructions to guide installation and use

of therein attached RVF plug-in source codes.
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