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Ultra-high dynamic range quantum measurement
retaining its sensitivity
E. D. Herbschleb 1✉, H. Kato 2, T. Makino2, S. Yamasaki2,3 & N. Mizuochi 1✉

Quantum sensors are highly sensitive since they capitalise on fragile quantum properties

such as coherence, while enabling ultra-high spatial resolution. For sensing, the crux is to

minimise the measurement uncertainty in a chosen range within a given time. However, basic

quantum sensing protocols cannot simultaneously achieve both a high sensitivity and a large

range. Here, we demonstrate a non-adaptive algorithm for increasing this range, in principle

without limit, for alternating-current field sensing, while being able to get arbitrarily close to

the best possible sensitivity. Therefore, it outperforms the standard measurement concept in

both sensitivity and range. Also, we explore this algorithm thoroughly by simulation, and

discuss the T−2 scaling that this algorithm approaches in the coherent regime, as opposed to

the T−1/2 of the standard measurement. The same algorithm can be applied to any modulo-

limited sensor.
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Supreme sensitivities are realisable by exploiting the coher-
ence of quantum sensors1. For quantum-sensing applica-
tions, nitrogen-vacancy (NV) centres in diamond have

attracted considerable attention due to their exceptional quantum-
mechanical properties1,2, including long spin-coherence times3,4,
and due to their great potential for far-field optical nanoscopy5–8.
Furthermore, an increase in sensitivity can be gained for alter-
nating current (AC) field sensing by prolonging the NV spin
coherence with dynamical decoupling of the centre’s spin from its
environment2,3,9–12. Therefore, AC field sensing is applied in
various areas of physics, chemistry and biology: to detect single
spins13–15, for nuclear magnetic-resonance of tiny sample-
volumes16–20, for nanoscale magnetic-resonance imaging13,21–23

and to search for new particles beyond the standard model24,25. In
these applications, both a wide range of the AC field amplitude
and a high sensitivity are very important, because the magnitude
of the AC field strongly depends on the distance r from the NV
spin (r−3 in case of a magnetic dipole field). This outlines the most
relevant variable for this field of research: the dynamic range,
which is the ratio of the range to the sensitivity, the latter being a
measure for the smallest measurable field amplitude.

In previous research, NV centres were utilised for sensitive
high-dynamic range direct current (DC) magnetic field mea-
surements. A theory paper26 discussed the application of a more
general phase-estimation method27 to a single NV nuclear spin in
diamond, read out with single-shot measurements. They com-
bined Ramsey interferometry on the nuclear spin with different
delays to improve the sensitivity via Bayes’ theorem applied to
binary data, which precision, given full visibility, scaled as T�1

meas
(with Tmeas the measurement time), dubbed Heisenberg-like
scaling28. Adaptive27 and non-adaptive28,29 approaches were
discussed, but they found to their surprise that under more rea-
listic circumstances, only the non-adaptive method could still
show sub-T�0:5

meas scaling, by applying different amounts of itera-
tions in a linear way29. The range itself remained the same as with
the standard measurement, but they improved the sensitivity for
this range, hence improving the dynamic range. This theory was
applied to the electron spin30 and the nuclear spin31 of the NV
centres via the non-adaptive method. Indeed, they found that the
uncertainty scaled sub-T�0:5

meas (T
�0:77
meas

30 and T�0:85
meas

31), while they
improved the dynamic range by 8.530 and 7.431. More recently, in
an experiment at low temperature the adaptive method showed
improved results, with scaling close to T�1

meas and a claimed
improvement (compared to refs. 30,31) of the dynamic range by
two orders of magnitude32.

A similar method for AC magnetic field sensing applied dif-
ferent order dynamic-decoupling sequences33. Their improve-
ment of the dynamic range compared to a sequence with 16
π-pulses was about 26, and they explored the effect of the phase of
the measured field in depth. Besides, one of the advantages of the
previously reported dynamical sensitivity control11 was the
increase in the range by 4000 times, up to a theoretical maximum
of 5000 times. Their uncertainty for a single measurement was
about double that of a similar standard measurement, while the
required multi-measurement for the large range worsened the
sensitivity further (which is the uncertainty times

ffiffiffiffiffiffiffiffiffiffiffi

Tmeas

p

) by
ffiffiffiffiffiffi

Nϕ

p

with Nϕ the number of phases applied in their method (the
more phases, the larger the range, but each phase requires an
additional measurement).

As to see why dynamic-range increasing algorithms are
required, we look at the standard measurement. In the standard
method to measure the AC magnetic field with NV centres with a
synchronised Hahn-echo measurement2,3,9,10 (Fig. 1b), after
initialisation into a superposition state with a laser pulse and the
first microwave (MW) π/2-pulse, the AC magnetic field is
applied. Hence, the spin rotates along the z-axis, thus its phase

changes. Halfway the period of the magnetic field, a MW π-pulse
flips the spin, such that the phase accumulated during the
negative half of the period doubles the acquired phase. The final
phase is essentially converted into a population with a final MW
π/2-pulse before read-out with a laser pulse. The larger the
amplitude of the field, the further the spin rotates, thus the final
phase of the spin relates directly to this amplitude.

However, the phase of the spin can be determined only within
2π at best, thus the range of amplitudes is limited. If the sensor is
more sensitive, the spin accumulates more phase, thus it revolves
for 2π for a smaller AC field amplitude already. Therefore, the
more sensitive the system, the smaller the range is. Thus, to
benefit from extremely sensitive sensors which utilise entangle-
ment34–36 without the limitation of their minuscule range, it is
important to increase this range, while retaining their high sen-
sitivity (thus low uncertainty) as much as possible. Moreover,
since the measurements of the electron spin of a single NV centre
consist of iterating a sequence many times to accumulate suffi-
cient signal (photons for NV centres), the uncertainty scales as
T�0:5
meas

37.
In this work, we demonstrate and explore a non-adaptive

algorithm for quantum sensors to measure AC fields with a large
range for which the loss in sensitivity is negligible (thus max-
imising the dynamic range), both by measurement and extensive
simulation. This shows that our algorithm scales nearly
Heisenberg-like (here T�2

meas) under realistic circumstances, thus
even with the reduced contrast in the spin read-out (normally
about 30% for NV centres); we explain why this happens, and its
importance. Finally, we establish with our algorithm how to
increase the range beyond the limit given by the best possible
standard measurement, which in principle allows to extend it
without bound. Throughout this paper, we use the electron spin
of a single NV centre to measure magnetic fields with the phase of
the spin coherence. However, the insights of this paper remain
the same for similar quantum systems.

Results
Base algorithm. We start with explaining the base of our algo-
rithm (illustrated in Fig. 1), and we clarify the terms referred to
throughout the paper and supplementary information. The
standard measurement for AC magnetic fields, applying the
Hahn-echo sequence, has a limited range Brange= Bperiod/2 due to
the sinusoidal shape (with period Bperiod) of the signal response to
magnetic field amplitudes (Fig. 1a). The sensitivity is defined as
σB

ffiffiffiffiffiffiffiffiffiffiffi

Tmeas

p

with σB the uncertainty of the sensed quantity (here
magnetic field amplitude) and Tmeas the measurement time. For
this standard measurement, σB ¼ σS=gradmax where σS is the
uncertainty in the measured signal of a single measurement (in
our case shot-noise limited), and gradmax the maximum gradient
in the response3 (for example at the inflection point of the
sinusoid in Fig. 1a). Therefore for these measurements, the
shorter Bperiod (thus the smaller the range), the steeper the slope,
thus the more sensitive, as mentioned earlier.

For the maximum sensitivity, a standard Hahn-echo sequence
is performed over the full period of the magnetic field (Fig. 1b, for
single NV centres this period should be shorter than about half
the coherence time3). Since the acquired phase of the spin is
proportional to the area under the magnetic field curve (see
Supplementary Information of ref. 3), and hence Bperiod is
proportional to this area as well, by reducing the measured area
M times (Fig. 1b), the effective period increases by M (Fig. 1a, d).
The time delay between the π/2-pulses in the sequence follows
from integration to compute the probed area (Fig. 1c). Hereafter,
measuring an area A means applying a sequence with this
calculated time delay, and A0 is the maximum area. Thus,
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performing a measurement with a sufficiently small area would be
the simplest approach for a large-range measurement. However,
roughly comparing with the measurement over the maximum
area, using the same number of iterations of the sequence (thus σS
is similar) and the same measurement time (no optimisations),
the gradient for the reduced area gradmax;M ¼ gradmax;1=M, hence
its sensitivity is M times worse.

To improve the sensitivity for a large range, initially, a number
of measurements with different areas are combined to uniquely
define the magnetic field amplitude in a range limited by the
measurement with the smallest area (Fig. 1d). Consequently, only
part of the measurement time is spent on the largest area, which
has the best sensitivity (but a small range), while the remainder of
the time is spent on areas with a worse sensitivity. Therefore, the
sensitivity of the combined measurement is strictly worse than
this best sensitivity. Using halved areas (hence requiring at least
log 2 Mð Þ additional areas) and the same number of iterations
for each area and using no optimisations, for roughly the
same σB, the measurement time for the combined sequence
Tmeas;M ¼ d1þ log 2 Mð ÞeTmeas;1. Thus, the sensitivity would

become
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid1þ log 2 Mð Þep

times worse, which is already a
significant improvement compared to the straightforward case
in the last paragraph.

The measurements resulting from different areas are combined
via Bayes’ theorem. For area An, the measurement gives signal Sn

(for example the crosses/circles/triangles on the sinusoids in
Fig. 1a, d for three areas). The posterior probability distribution
for the magnetic field B given measured signal Sn is

P BjSnð Þ ¼ P SnjBð ÞP Bð Þ
P Snð Þ ; ð1Þ

with P Bð Þ the prior distribution, P Snð Þ independent of B, and
P SnjBð Þ ¼ P SnjS Bð Þð Þ; ð2Þ

with S Bð Þ the relation between the signal S and the applied field B
(the sinusoids in Fig. 1a, d, e). Fig. 1e visualises these equations.
P SnjSð Þ is a Poisson distribution (counting photons), but it can be
approximated by a normal distribution (green line along y-axis in
Fig. 1e) when more than ~10 photons arrive (with continuity
correction). This is generally the case when the uncertainty is below
the maximum uncertainty, as described later. For the first
measurement, the prior distribution is flat since there is no initial
knowledge about the field, and for the remainder of the
measurements, the previous posterior is the new prior distribution.
This results in a combined distribution as demonstrated in Fig. 1f.

Uncertainty. Before performing measurements and simulating
the algorithm, a definition of merit is required that facilitates both
the sensitivity and the range. Therefore, we choose the uncer-
tainty in magnetic field σB, defined as the standard deviation of

Fig. 1 Algorithm base principle. a Since the measured signal (red dotted line) oscillates due to the rotating spin, the magnetic field B can be determined up
to a certain range only. Example ranges are indicated by different colours, and the resulting magnetic field for each range given the measured signal
(horizontal black dashed line) with blue crosses. b The conventional and most sensitive way to measure an AC field is given at the top left, with π/2-pulses
of a Hahn-echo sequence at the beginning and end of the period, and the π-pulse halfway at the inflection point. The measured area A0 can be reduced by
moving the π/2-pulses closer to the centre (top right A0/2, bottom left A0/4, bottom right A0/8). c The fraction of the maximum area A0 vs the fraction of
the longest time delay between the π/2-pulses for DC (green dotted line) and AC (cyan line) fields. For DC, this is linear, while for AC, this depends on the
area of a sinusoid, which resembles a line near the inflection point, thus the relation becomes quadratic for short time delays. The area and thus
uncertainty/range can be changed continuously by changing this delay. d For smaller measured areas, the probed field decreases proportionally, as does
the effective frequency. In a, the signal for area A0 was shown, while here, the signals for areas A0/2 and A0/4 are drawn in similar fashion, which are
offset for clarity. Combining several measured areas reduces the potential fields (vertical grey dashed arrows), thus increasing the overall range. e After
measuring the signal (horizontal green dotted line), with the known uncertainty of the signal (green line along the vertical axis), the probability distribution
of the field (magenta line along the horizontal axis) follows via the sinusoidal relationship (red dotted sine-shaped line for area A0/2). f The measurement
with the largest area A0 gives several similar peaks in the probability distribution (blue line). However, when combining measurements with different areas
(magenta dashed line added A0/2, olive dotted line added A0/4 as well), the number of remaining peaks reduces, while the sharpness (thus uncertainty)
remains similar to that of the first measurement.
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the magnetic field distribution centred around its maximum
value. For sufficiently long measurement times, this gives the
same result compared to applying the normal formula. However,
the difference is visible for short measurement times, since it
takes the range into account: we know the magnetic field is in the
given range, which means that if the probability distribution is
flat, the uncertainty is at its maximum σB;max ¼ Brange=

ffiffiffiffiffi

12
p

(see

Supplementary Note 1). σB multiplied by
ffiffiffiffiffiffiffiffiffiffiffi

Tmeas

p

gives the sen-
sitivity, but this is unsuitable as figure of merit at short mea-
surement times, since its limit is 0 nT Hz−1/2 for Tmeas= 0 s
while approaching the asymptotic maximum uncertainty.

At first, since the uncertainty in a range is limited by the worst
uncertainty in this range, we simulated the homogeneity of the
uncertainty in the complete range. For a standard measurement,
the usually reported uncertainty (σB ¼ σS=gradmax) is only true
for a single magnetic field amplitude at infinite measurement
time, but otherwise it is worse and inhomogeneous. By combining
two measurements with the same area but their response shifted
by a phase of π/2, the uncertainty becomes more homogeneous,
and guarantees a lower uncertainty than the standard measure-
ment across its range. Thus, such a measurement consists of two
phases (see for example Supplementary Fig. 7a). The homo-
geneity is improved further by increasing the number of phases;
four phases are used throughout this paper. Supplementary
Note 2 describes the details of homogeneity for our algorithm,
and for previous ones it is explored in ref. 38. Since the
uncertainty is nearly homogeneous, which field is applied is
irrelevant while determining this uncertainty. Without prior
knowledge or feedback, the uncertainty is ultimately limited by
this combination of four phases for the largest area possible3.

Measurement compared with simulation. For our measure-
ments, we use an n-type diamond sample. This was epitaxially
grown onto a Ib-type (111)-oriented diamond substrate by
microwave plasma-assisted chemical-vapour deposition with
enriched 12C (99.998%) and with a phosphorus concentration of
~6 × 1016 atoms cm−3 3,39. We address individual electron spins
residing in NV centres with a standard in-house built confocal
microscope. MW pulses are applied via a thin copper wire, while
magnetic fields are induced with a coil around the sample. All
experiments are conducted at room temperature. We use single
NV centres with T2s of about 2 ms.

We measure and simulate σB for five sequences to show the
consistency between the measurements and simulations, and to
get an idea of the working of the base of our algorithm. Please
note that the only difference between our measurements and
simulations is that the simulations calculate the signal otherwise
measured using the known sequence, the set magnetic field
amplitude, and the parameters of the measured NV centre. The
analysis applied otherwise is exactly the same, thus realistic
circumstances are simulated (small contrast, shot-noise as
described in Supplementary Note 2, decay due to coherence time
T2). The first sequence measures the largest area (here a single
period of the field); the second, third and fourth use half, a
quarter and an eighth of the largest area; and the fifth sequence
includes these four sequences equally in a separate measurement/
simulation. All include four phases as mentioned in the last
subsection. Initially, the objective is to investigate the details of
the algorithm itself, hence to nullify artefacts stemming from
overhead times (which are implementation-dependent, and could
include laser pulses, MW pulses and waiting times), these are
ignored at first and explored in the discussion.

The results are shown in Fig. 2a, which reveals a number of
important points. Firstly, the measurements closely match
simulations. Secondly, below a certain measurement time, no

knowledge about the field is gained, and hence σB is at its
maximum. Thirdly, for longer measurement times, σB scales as
T�0:5
meas. Fourthly, for the combined sequence there is a region in

Tmeas where σB scales more steeply (here referred to as the steep
region). Finally, as explained in the base-algorithm subsection,
the uncertainty of the combined sequence is always higher than
the uncertainty of the largest-area sequence, since the former
spends measurement time on sequences other than this largest-
area sequence which has the lowest uncertainty. Of course, the
advantage of the combined sequence over the largest-area
sequence is its larger range (please remember that
Brange / σB;max, see Supplementary Note 1).

Algorithm design. To design our eventual algorithm, its principle
is explored in more detail with additional simulations. Fig. 3a
shows the result for changing the relative number of iterations for
each area, which reveals that there is a trade-off between the
lowest uncertainty reached for measurement times at the steep
region and at long measurement times. In other words,
depending on Tmeas, a different relative number of iterations gives
the lowest uncertainty. When fixing these (Figs. 2a and 3a), the
uncertainty is not optimised, and thus it can display very steep
curves that can be tuned to even sub-Heisenberg-like scaling (for
example T�4:0

meas in Fig. 3a).
For our algorithm, we optimise the relative number of

iterations at each measurement time to minimise the uncertainty.
The result for this measurement-time-wise optimisation is plotted
in Fig. 3b. This shows that the longer Tmeas, the closer the
sensitivity gets to its ultimate limit, where the scaling approaches
T�0:5
meas. At the steep region of this optimum, the scaling is T�0:98

meas .
When we look at Fig. 3c, which depicts the relative number of

iterations, we can understand how our algorithm works. For very
short Tmeas, all measurement time is allotted to the smallest area,
since the larger areas are at their maximum uncertainty and hence
cannot contribute. But for longer Tmeas, at some time the next area
becomes relevant and thus turns on, since it can receive sufficient
measurement time to lower σB below its maximum uncertainty.
This continues until the largest area turns on, which then keeps
increasing in relative importance, at which point the scaling of the
uncertainty is about T�0:5

meas. Thus for longer Tmeas, the largest area
receives increasingly more relative measurement time, meaning
the uncertainty continuously approaches this ultimate uncertainty,
as plotted by the green dashed line in Fig. 3c.

If we would increase the number of areas in the sequence, the
uncertainty becomes steeper during the turning-on region (which
is the steep region). Figure 3d plots the result for a large amount
of areas, indicating that the uncertainty scales as T�2

meas up to
nearby the largest area. The scaling follows from the quadratic
dependence of the area on the subsequence length (see Fig. 1c).
Since closer to the largest area, this is not quadratic yet, it
becomes less steep (lowest yellow crosses in Fig. 3d). The decay in
coherence due to the finite T2 negatively effects the uncertainty as
well in this region, further decreasing the steepness. Analogue for
DC measurements, the uncertainty scales as T�1

meas in the steep
region. Supplementary Note 3 discusses scaling in more detail
beyond the indication given here. When taking any overhead
time into account, the effective measurement time decreases, thus
the curves would become even steeper.

So far in the examples with our algorithm, we used halved areas
(An=A0/2n for integer n ≥ 0). Even though the uncertainty is
mostly defined by the largest area, and the range by the smallest, the
middle areas are important for reaching the lowest uncertainty (see
Fig. 3c: they partake in the optimal combination). Adding more
areas at integer multiples of the smallest area decreases the
uncertainty, though slightly (see Supplementary Note 4).
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Algorithm measurement. In Fig. 2b, measurement results of our
algorithm in the steep region are plotted (for details of the mea-
surement see Supplementary Note 5), together with the Heisenberg
limit (which is only true for a small range and infinite T2) and the
approximate large-range limit explained in Supplementary Note 3. As
mentioned before, and just like in Fig. 3d, the focus is on the scaling
that originates from the algorithm, hence all overhead time is
ignored. Our algorithm is very close to the limit, as could be expected
since at long measurement times most time is spent on the sequence
with the largest area. Moreover, our results scale approximately as
T�1:6
meas , which is less steep than the Heisenberg-like scaling of T�2

meas,
since our algorithm keeps approaching this limit.

When merely halving areas in a measurement sequence, its
range is defined by the smallest area. Therefore, it would only
improve the uncertainty with respect to the standard single-area
measurement, but not the range. In this way, given a limit on the
time delay between the π/2-pulses, for example owing to a
maximum time resolution or waiting time requirements, the
maximum range is restricted. However, the range of our
algorithm is the inverse of the greatest common divisor of the
frequencies in measured signal of all included areas (see
Supplementary Note 6). For halved areas, since all larger areas
are integer multiples of the smaller ones, this means that the
greatest common divisor is the lowest frequency, thus the one
related to the smallest area. To increase the range beyond this
limit, we combine areas that are not integer multiples of each
other. When purely looking at the range, combining two
sequences for slightly different areas increases the range far
beyond the standard measurement’s range. Thus in principle, the
range can be extended unlimitedly. Adding the large areas as well,
it is still possible to get arbitrarily close to the ultimate uncertainty
(for details see Supplementary Note 6).

The dynamic range of our algorithm is explored with
measurements in Fig. 2c, which plots the sensitivity with respect
to the range of the measurement sequence. Initially, for each
increase in the range, an additional subsequence of half the
smallest area is added. However, for the final four ranges, a single
area is added at 1.5, 1.25, 1.1 or 1.05 times the smallest area. To
compare with shorter sequences and with other results fairly, the
sensitivity is chosen instead of the uncertainty (to calculate the
dynamic range) and the overhead time is still ignored. It is
computed by combining measurements from both the left side
and right side of the designed range (as explained before, given
the homogeneity of the uncertainty in our algorithm, the applied
magnetic field does not matter). The sensitivity for the standard
measurement with the same range is plotted as well (derived from
the smallest area of our algorithm), and the sensitivity of the most
sensitive sequence (derived from the largest area of our
algorithm), the latter having a small range only (~102 nT). Our
algorithm is nearly as sensitive as the most sensitive sequence,
and its range can go beyond that of a standard measurement. In
these measurements, the maximum range was limited by our
equipment only, and could be improved further.

Discussion
Given a fixed sequence, a subsequence contributes only to the
result when the measurement time it receives is sufficiently long
to lower the measured uncertainty below its maximum (see
Fig. 3c). Therefore in our algorithm, the optimum sequence for a
given measurement time includes contributing subsequences
only. On the contrary, when combining subsequences in a fixed
way with the least sensitive subsequence measured most often, for
short measurement times, the more sensitive subsequences do not
contribute, and hence their measurement time is wasted. This

Fig. 2 Measurement and simulation. a Example uncertainty σB vs measurement time Tmeas for AC sensing (1 kHz) comparing simulations (blue dashed line
for largest area A0; magenta, olive and grey dashed lines for A0/2, A0/4 and A0/8; green line for the equally combined sequence with these areas) with
measurements (blue crosses, magenta circles, olive triangles, grey diamonds and green pluses, respectively; error bars indicate single standard deviations).
The simulations use the same parameters and analysis as the measurements, they are not fits. b Optimised uncertainty vs measurement time for AC
sensing (2 kHz) around the steep region. Green pluses give the measurement results, the error bars are single standard deviations. Blue triangles are the
simulation results. Red circles display the estimation of the large-range limit. Cyan diamonds plot the Heisenberg limit for infinite T2 (see Supplementary
Note 3 for details). The diagonal black dashed lines are guides to the eye for scaling T�2

meas and T�1:6
meas. The overhead time is ignored in order to show the

effect of the algorithm only. c Sensitivity vs magnetic field range (at 2 kHz). Blue dots with error bars (single standard deviations) give the sensitivity of our
algorithm measured at each range excluding all overhead time. Grey circles plot the sensitivity including all overhead time assuming basic compact
sequence design (see Supplementary Note 8), while grey pentagons plot the sensitivity assuming each area requires a separate period. The green
diamonds plot the sensitivity for the standard measurement (excluding overhead time) extracted from the smallest area of our algorithm. Please note that
our algorithm goes beyond the range possible with the standard measurement (vertical green dashed line) by combining non-integer-multiple areas (see
Supplementary Note 6 for details). The horizontal magenta line indicates the sensitivity of the most sensitive standard measurement extracted from the
largest area of our algorithm, which thus has a single small range only (the leftmost: ~102 nT). The horizontal black dashed line (on top of the magenta line)
gives the fitted sensitivity of our algorithm.
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results in a steeper measurement time dependence in the same
way as overhead time does. This illustrates one conclusion of
Supplementary Note 3: a steeper dependence leads to a worse
algorithm, since when decreasing the measurement time, the
uncertainty increases more quickly for a steeper curve.

For our algorithm, if it is possible to choose for which sub-
sequence to increase the number of iterations while measuring,
the uncertainty can be minimised for all measurement times (red
line in Fig. 3b), since the absolute number of iterations for each
subsequence is monotonically increasing over measurement time
(see Supplementary Note 7). Please note that it is known
beforehand for which subsequence to increase the number of
iterations, it does not depend on the measurement results, thus it
is a non-adaptive method. Moreover, since our algorithm spends
most time on the largest area, any overhead time (which is
generally independent of the subsequence) is relatively as short as
possible. This is visualised in Fig. 2c, which plots the sensitivities
both with and without all potential overhead times, illustrating
the overhead is negligible indeed.

For measurement times in the steep region, since quantum
sensing is generally chosen for its high sensitivity, a sensor would
rather unlikely be used given the high uncertainty. Therefore, this
region and its scaling are fairly irrelevant: if a short measurement
time is desired, less subsequences are required, which effectively
puts the sensor just at the inflection point (when scaling starts to
be T�0:5

meas).
For measurement times beyond the steep region, σB and thus

sensitivity are very close to the limit for a homogeneous range.

This is still about
ffiffiffi

2
p

worse than the standard sensitivity for a
single field at infinite measurement time (Supplementary Fig. 2).
It is possible to improve towards this by applying feedback of
intermediate results during the measurement, and dropping all
but two phases in the process to focus on the two phases with the
field to measure located at their maximum gradient, which gives
the smallest uncertainty. There is a trade-off between added
complexity of such an adaptive measurement32 (real-time pro-
cessing of data, changing the sequence during the measurement
and/or set any phase in the measurement instead of just four with
in-phase-quadrature modulation) and gained sensitivity (

ffiffiffi

2
p

at
best for infinite measurement time), even when ignoring the
processing overhead. Moreover, even under these ideal circum-
stances, the dynamic range, rather relevant for large-range mea-
surements, is actually

ffiffiffi

2
p

worse for standard adaptive
measurements compared to non-adaptive measurements (see
Supplementary Note 2).

An important point ignored so far is how to implement this
algorithm at all for AC fields, since its shape needs to be taken
into account. As opposed to DC measurements, where the area
can be reduced simply by shortening the time delay between the
π/2 pulses proportionally, for AC it is more complicated, as
illustrated in Fig. 1b, c. Moreover, it might seem that for each
iteration another period of the magnetic field is required
(resulting in the practical but non-optimal sensitivity plotted with
pentagons in Fig. 2c), while for DC all measurements can be
strung together, the latter limiting the measurement time. How-
ever, something similar is possible for AC fields, since the DC

Fig. 3 Simulation analyses. a For different relative numbers of iterations of the subsequences (written directly left of each curve) of areas A, the
uncertainty σB with respect to measurement time Tmeas changes. Depending on the measurement time, a different combination gives the lowest
uncertainty. bMinimised uncertainty for a large-range sequence by optimally combining the subsequences (red line). The dashed lines give the uncertainty
for single-area sequences (A0 blue, A0/2 magenta, A0/4 olive, A0/8 grey). See Supplementary Note 1 for maximum uncertainty∝ range. c The relative
number of iterations for each area (A0 blue crosses, A0/2 magenta circles, A0/4 olive triangles, A0/8 grey diamonds kept at 100) for each measurement
time to minimise the uncertainty, which results in the red line in b. The vertical arrows indicate when a subsequence for its area turns on, since its relative
number of iterations becomes significant. The green dashed line gives the relative difference between the most-sensitive small-range sequence (blue
dashed line in b) compared to the optimally combined large-range sequence. This difference scales inversely with the measurement time. d When looking
at the turning-on points (yellow crosses, fit with black dotted line) for many sequences with different areas (largest area blue line, smallest area red line), it
scales as T�2

meas for short measurement times. Please note that the optimally combined result in b scales as T�0:98
meas , since it includes relatively large areas

only, equivalent to the lowest lines in this plot.
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part cancels, as explained in Supplementary Note 8. In our results,
we neglected the effect this stringing has on the total measure-
ment time to focus on the working of the algorithm. However,
since AC stringing is only slightly less effective than DC stringing,
and since often most measurement time is dedicated to the largest
area (which has no stringing disadvantage), it justifies the choice
to ignore the overhead time of these stringing effects. This is
explored in detail in Supplementary Note 8, which describes how
to design compact measurement sequences (resulting in the
practical closer-to-optimal sensitivity plotted with circles in
Fig. 2c). Measurements with these compact sequences illustrate
that the practical sensitivity, compared to the overhead-ignored
sensitivity, would worsen with about 5% when all overhead time
is included using a basic sequence design (see Supplementary
Fig. 10).

Additionally, please note that the description of the algorithm
focussed on areas to easily translate it to any field, such as DC
fields or square waves. Moreover, the frequency of the AC field is
not relevant, since for lower frequencies the largest area will not
span a whole period, while for high frequencies additional
π-pulses are required to optimise the largest area. This defines the
lowest uncertainty, which our algorithm approaches for every
situation. This uncertainty increases for lower frequencies, since a
smaller area is measured within the coherence-limited time delay,
while for higher frequencies it decreases, due to the increase in
coherence time by a dynamic-decoupling sequence (just for the
larger areas, the largest defining the lowest uncertainty). Of
course, the shape of the area vs time-delay graph (Fig. 1c)
depends on the shape of the field and the chosen pulse sequences.

For practical implementations of the algorithm, as in the
example with a single NV centre, the reader is advised that the
larger the range becomes, the more prominent the effects of off-
resonance MW pulses become. For DC, this is even more
important (see for example ref. 31), while for AC, the pulses are
often near low fields (for example for the sensitivity-defining large
area they are at the inflection points). Thus, care should be taken
during the design depending on the chosen quantum system and
the available technology.

As a final remark, applying the optimal number of iterations
for a long measurement time gives a small chance to conclude the
wrong field, since relatively little time is spent in the smaller
range-defining areas (see Supplementary Note 9). However, the
analysis does not return a single measured field amplitude, but a
probability distribution of the field. As demonstrated in Supple-
mentary Note 9, when the field is within a few σB of the actual
field, there is a single pronounced peak in this distribution.
Oppositely, there are multiple strong peaks if the expected field of
the measurement is significantly different. Thus, such a result
could easily be discarded (of course effectively slightly reducing
the sensitivity to redo the measurement for these cases).

To conclude, we have introduced an ultra-high dynamic-range
algorithm for measuring magnetic fields with a quantum sensor,
such as a single NV centre, for which the uncertainty, and hence
sensitivity, can be arbitrarily close to the ultimate uncertainty/
sensitivity by increasing the measurement time. The maximum
range depends on the smallest difference in areas attainable,
which results in a larger range than possible with a standard
measurement. As example, we demonstrated a dynamic range of
~ 107, an improvement of two orders of magnitude compared to
previous algorithms32 (please note that a fair comparison between
algorithms corrects the results for the coherence time, the mini-
mum/maximum time delays, the applied spin-measurement
method and the experimental equipment, as these change the
results independent of the applied algorithm). Moreover, we
explained the origin of Heisenberg-like scaling in algorithms and
why steeper scaling indicates a worse algorithm. Our algorithm

and its implications are the same for other modulo-limited sen-
sors, thus it paves the way to optimally benefit from extremely
sensitive entanglement-based sensors for large-range applications.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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