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Detection of haloalkanes is of great industrial and scientific importance because some

haloalkanes are found serious biological and atmospheric issues. The development

of a flexible, wearable sensing device for haloalkane assays is highly desired. Here,

we develop a paper-based microfluidic sensor to achieve low-cost, high-throughput,

and convenient detection of haloalkanes using perovskite nanocrystals as a nanoprobe

through anion exchanging. We demonstrate that the CsPbX3 (X = Cl, Br, or I)

nanocrystals are selectively and sensitively in response to haloalkanes (CH2Cl2, CH2Br2),

and their concentrations can be determined as a function of photoluminescence

spectral shifts of perovskite nanocrystals. In particular, an addition of nucleophilic trialkyl

phosphines (TOP) or a UV-photon-induced electron transfer from CsPbX3 nanocrystals is

responsible for achieving fast sensing of haloalkanes. We further fabricate a paper-based

multichannel microfluidic sensor to implement fast colorimetric assays of CH2Cl2 and

CH2Br2. We also demonstrate a direct experimental observation on chemical kinetics of

anion exchanging in lead-halide perovskite nanocrystals using a slow solvent diffusion

strategy. Our studies may offer an opportunity to develop flexible, wearable microfluidic

sensors for haloalkane sensing, and advance the in-depth fundamental understanding

of the physical origin of anion-exchanged nanocrystals.

Keywords: colorimetric, microfluidic, anion exchange, perovskite, haloalkanes

Haloalkanes are an important group of chemical compounds widely used as solvents and reactants
in pharmaceutical and chemical industries (Kinani et al., 2016; Daud et al., 2018). Accurate
detection and identification of haloalkanes are of great industrial and scientific importance (Leri
et al., 2006; Fu et al., 2020; Gul et al., 2020), because many of these compounds exhibit high
toxicities to environment and human health, such as carcinogenicity and nephrotoxicity. Over the
years, several techniques have been developed for the detection of haloalkanes, such as chromatic,
fluorescent indicators, X-ray absorption near-edge structure (XANES) spectroscopy, ultrahigh-
resolution mass spectrometry (UHR-MS), and liquid chromatography–mass (LC-MS) (Leri et al.,
2006; Roveretto et al., 2019; Fu et al., 2020; Gul et al., 2020; Li et al., 2020; Yin et al., 2021).
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Despite its importance, precise and rapid quantification of
haloalkanes remains a technical challenge. Inherent limitations,
such as the bandwidth of recording, restrict the available
resolution. Additionally, these technologies are generally limited
by their lack of high selectivity. For practical applications, rapid
and high-throughput analysis of pollutants are highly desired for
on-site testing.

Lead-halide perovskite nanocrystals (NCs) are an emerging
class of materials that could be used to achieve fast, sensitive,
and selective detection of halides through anion exchange,
owing to its unique property of soft and predominantly
ionic lattice (Akkerman et al., 2018; Chen et al., 2018; Geng
et al., 2018). These materials have been well-developed to be
applied in solar cells, light-emitting devices, photodetectors,
and photocatalysis, because of their unique facile synthesis,
high photoluminescence quantum yields and optical versatility
(Huang et al., 2016; Zhou et al., 2016; Kovalenko et al., 2017;
Li et al., 2017; Yin et al., 2017). Multicolor photoluminescence
emissions can be readily tuned to various wavelengths in
the visible spectrum either by adjusting the ratio of halide
atoms (Cl, Br, I) or by facile anion exchange (Xing et al.,
2014; Protesescu et al., 2015; Wong et al., 2019). Notably, the

FIGURE 1 | Characterization and spectroscopy study of as-synthesized CsPbX3 (X = Cl, Br, or I) perovskite nanocrystals. (A) TEM images of the as-synthesized

cubic-phase perovskite nanocrystals. The samples are CsPbCl3, CsPbBr3, and CsPbBr0.5 I2.5 nanocrystals. (B) XRD patterns of the as-synthesized perovskite

nanocrystals. All peaks are consistent with the cubic-phase CsPbBr3 structure [Joint Committee on Powder Diffraction Standards file (PDF) number 54-0752]. (C)

Fluorescence spectra of the perovskite nanocrystals under 365-nm UV excitation. The insets show photographs of the samples under 365-nm UV excitation.

high mobility of halide anions and the high concentration of
halide vacancies result in fast rate during anion exchanging
(Parobek et al., 2017; Yoon et al., 2018; Zheng et al., 2018).
Direct observation of dynamic process in anion exchanging
is still difficult, owing to its fast chemical kinetics, typically
within a few seconds (Pan et al., 2018). Although lead-
halide perovskite nanocrystals are promising in haloalkanes
sensing (Zhu Y. et al., 2019; Li et al., 2021), the fabrication
of an on-site testing device is highly desired for low-cost,
convenient applications.

Over the past two decades, microfluidic lab-on-a-chip (LOC)
technologies have increasingly emerged as a powerful tool for
point of care testing, by taking the advantages of low sample
consumption, low-cost production, and high-throughput rapid
analysis (Xie et al., 2019; Miller et al., 2020). In particular, paper-
based microfluidic sensors are attractive to perform the real-
time measurements in-situ by designing an on-demand pattern
of the channels (Cate et al., 2015). This makes paper-based
microfluidic devices of particular interest in testing analyses
when combined with luminescence nanocrystals. Here, we
demonstrate a paper-based multichannel microfluidic platform
for detection of haloalkanes through anion exchanging in
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perovskite nanocrystals. We show a direct observation of
the chemical kinetics of anion exchanging between perovskite
nanocrystals and haloalkanes, as a result of a slow solvent
diffusion. We also demonstrate that the lead-halide perovskite
nanocrystals-based paper microfluidic sensor is affordable to
achieve a fast, convenient analysis of haloalkanes based on
colorimetric sensing.

To validate our hypothesis, we synthesized lead-halide
perovskite nanocrystals by reacting Cs-oleate precursors with
PbX2 (X = Cl, Br or I), using a hot-injection solution
strategy at 160◦C. Transmission electron microscopy (TEM)
images indicate the well-defined cubic morphologies of the as-
synthesized CsPbCl3, CsPbBr3, and CsPbBr0.5/I2.5 perovskite
nanocrystals (Figure 1A), with an average size of about
11 nm (Supplementary Figure 1). X-ray diffraction (XRD)
measurements were conducted to confirm the cubic phase
of the perovskite nanocrystals (Figure 1B). Figure 1C shows
photoluminescence spectra of the as-synthesized perovskite
nanocrystals, which display high photoluminescence yields and
color-tunable emissions in blue, green, and red regions. The
highly ionic nature of perovskite nanocrystals allows for readily
engineering their optical emissions through facile and rapid
anion exchange. Such unique capability can be employed
to achieve rapid detection of halide compounds through
anion exchanging.

To assess the feasibility of the perovskite nanocrystals
as nanoprobes for colorimetric sensing of haloalkanes,
we used CH2Br2 as an analyte sample by reacting with

CsPbCl3 and CsPbBr0.5I2.5 nanocrystals. Our experimental
results indicated that their luminescence emission colors
were readily shifted as a result of the anion exchanging
process (Figure 2A; Supplementary Figures 2, 3). Note
that the passivation of CsPbBr3 nanocrystals with bromide-
enriched CH2Br2 molecules can enhance their luminescence
emission, owing to the efficiently reduced surface quenching
defects (Supplementary Figure 4). Moreover, the use of
TOP or UV illumination is capable of accumulating the
anion exchanging rates (Supplementary Figures 5, 6). The
wavelength shift in the photoluminescence emission spectra
is attributed to the change of bandgaps of the perovskite
nanocrystals as a result of the exchange of bromide with Cl
or I in the lattice of CsPbBr3 and CsPbBr0.5I2.5 nanocrystals.
The changes in emission color are conveniently visual for
colorimetric sensing of samples, as indicated in the CIE chart
(Figure 2B). Furthermore, we examined the suitability of using
this method to achieve a quantitative detection of CH2Cl2
and CH2Br2 samples through measuring the wavelength
shift of photoluminescence from perovskite nanocrystals,
as shown in Figures 2C,E. With the increase in the analyte
concentrations, the photoluminescence emission wavelength
of the CsPbBr3 nanocrystals in solution was shifted from
510 to 460 nm, with a linear equation of y = 0.69x + 510.2
(y is the wavelength and x is the sample concentration) and
a detection limit of 4.12 mg/ml for CH2Cl2. Similarly, we
demonstrated a detection limit of 0.29 mg/ml for CH2Br2
sensing (Figures 2D,F). These results suggested that our

FIGURE 2 | Detection of haloalkanes using perovskite nanocrystals based on anion exchanging. (A) Luminescence color changing of perovskite nanocrystals when

adding various CH2Br2 samples. (B) CIE (Commission International de l’Eclairage) chromaticity coordinates from the fluorescence spectra of perovskite nanocrystals

reacting with various CH2Br2 samples. (C,E) Normalized emission spectra of CsPbBr3 and CsPbBr0.5 I2.5 nanocrystals, as a function of the CH2Cl2 and CH2Br2
amounts, respectively. (D,F) A linear relation between the analytes (CH2Cl2 and CH2Br2) concentrations and luminescence emission peaks of perovskite nanocrystals.
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method was sufficient for qualitative and quantitative analysis of
halide compounds.

We carried out experiments to fabricate a paper-based
microfluidic device for achieving on-site detection of haloalkane.
Figure 3a shows the design of a six-channel paper microchip
containing three types of perovskite nanocrystals. The detection
of the targeted haloalkane samples was implemented by diffusing
them into the perovskite nanocrystals via anion exchange-
mediated reaction. In a typical experiment, we deposited the
perovskite nanocrystals of CsPbCl3, CsPbBr3, and CsPbBr0.5I2.5
in the microchannels which emitted deep blue, green, and
red fluorescence under a 365-nm excitation (Figure 3b). The
CH2Cl2 sample was added to the central region of the designed
paper microfluidic device. Our experiments indicated that the
green fluorescence of CsPbBr3 nanocrystals was quickly changed
into blue as a result of anion exchanging-mediated reaction
under UV illumination. This suggested that our design is
suitable for a fast detection of CH2Cl2 sample by convenient
colorimetric sensing (Figure 3c). In a parallel set of experiments,
we demonstrated that the device can also be employed to
qualitatively detect CH2Br2 sample through monitoring the
fluorescence color change of CsPbCl3 and CsPbBr0.5I2.5 channels

(Figure 3d). We further demonstrated that our method is
suitable for the detection of a mixed sample containing both
CH2Cl2 and CH2Br2 (Figure 3e; Supplementary Figure 7). The
reaction mechanism for the haloalkane sensing is illustrated in
Figure 3f, an anion exchange process with CsPbX3 (X = Cl, Br,
or I) nanocrystals. Haloalkane molecules, such as CH2Br2, were
introduced in-situ near the surface of perovskite nanocrystals to
implement the anion-exchange reaction, upon either an addition
of nucleophilic trialkyl phosphines (TOP) or a UV-photon-
induced electron transfer from CsPbX3 nanocrystals (Figure 3f).
The change of halide composition after the anion exchanging
leads to continuous changes of the bandgap, as well as the
absorption and emission spectra in the perovskite nanocrystals
(Figure 3g).

The physical process for haloalkane detection was investigated
by monitoring the chemical kinetics of the anion-exchanged
reaction between perovskite nanocrystals and haloalkane.
A solvent mixture of CH2Br2 and cyclohexane containing
nucleophilic TOP was homogeneously mixed with CsPbBr0.5I2.5
nanocrystals. Under UV illumination, we observed a gradual
change in the photoluminescence emission color, as a function
of halide exchanging time. Figure 4A shows the green

FIGURE 3 | Schematic of a perovskite microfluidic platform for on-site detection of haloalkane. (a) Design of a paper-based microfluidic chip for multichannel detection

of haloalkane. The perovskite nanocrystals were firstly filled in the paper microchip, and then the analyte samples were dropped and diffused along the microchannel.

Upon UV irradiation, on-site sensing can be implemented as a result of a fast anion exchange reaction. (b) Luminescence image of a paper-based microfluidic device

filled with perovskite nanocrystals (CsPbCl3, CsPbBr3, and CsPbBr0.5 I2.5). The photograph was taken under a 365-nm UV excitation. (c–e) Colorimetric sensing of

CH2Cl2 and CH2Br2, using the paper-based microfluidic device from (b). The photographs were taken under a 365-nm UV excitation. (f) Reaction mechanism of a

nucleophile (TOP)-mediated anion exchange between perovskite nanocrystals and halides. (g) Schematic of the electronic structures for perovskite nanocrystals.
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FIGURE 4 | Direct observation of chemical kinetics of anion exchanging between perovskite nanocrystals and haloalkanes through slow solvent diffusion. (A)

Homogeneous anion exchanging between CsPbBr0.5 I2.5 and CH2Br2. The luminescent images were recorded before and after anion exchanging under a 365-nm UV

illumination. (B) Diffusion anion exchanging between CsPbBr0.5 I2.5 and CH2Br2. (C) Diffusion anion exchanging between CsPbCl3 and CH2Br2.

photoluminescence emission via anion exchange for 1min.
In a parallel experiment, 10 µL of CsPbBr0.5I2.5 perovskite
nanocrystals were dropped into a mixture of CH2Br2 and
cyclohexane containing nucleophilic TOP. Intriguingly, a
colorful rainbow-based photoluminescence emission was
observed under UV illumination (Figure 4B). The gradual
transition in photoluminescence emission color from red
to green was attributed to the slow diffusion of perovskite
nanocrystals into the solvent. A similar result was also obtained
by diffusing CsPbCl3 nanocrystals into the mixture of CH2Br2
and cyclohexane (Figure 4C; Supplementary Figure 8). The
direct experimental observation on the chemical kinetics of
anion exchange in perovskite nanocrystals offers a powerful
strategy for in-depth understanding of the physical process of
anion exchanging in perovskite nanocrystals.

In summary, we have developed a perovskite-based paper
microfluidic sensor for detection of haloalkanes through
anion exchanging. Our experimental results demonstrated
that, by combing with perovskite nanocrystals, the paper-
based multichannel microfluidic device offers a low-cost, high-
throughput and convenient platform for fast colorimetric
sensing of haloalkanes. The direct experimental observation on
chemical kinetics of slow diffusion-mediated anion exchanging
in perovskite nanocrystals may be valuable for a fundamental
understanding on the materials synthesis and optical properties
of perovskite nanocrystals for various applications, such as X-
ray imaging and photocatalysis (Chen et al., 2018; Zhu X. et al.,
2019; Ou et al., 2021). Future work can be devoted to designing
the flexible microfluidic sensors suitable for achieving on-site
qualitative and quantitative analysis of haloalkane and for both
visual and instrumental readout.
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