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Abstract

We report clinical profile of hundred and nine patients with SARS CoV-2 infection, and

whole genome sequences (WGS) of seven virus isolates from the first reported cases in

India, with various international travel histories. Comorbidities such as diabetes, hyperten-

sion, and cardiovascular disease were frequently associated with severity of the disease.

WBC and neutrophil counts showed an increase, while lymphocyte counts decreased in

patients with severe infection suggesting a possible neutrophil mediated organ damage,

while immune activity may be diminished with decrease in lymphocytes leading to disease

severity. Increase in SGOT, SGPT and blood urea suggests the functional deficiencies of

liver, heart, and kidney in patients who succumbed to the disease when compared to the

group of recovered patients. The WGS analysis showed that these isolates were classified

into two clades: I/A3i, and A2a (four according to GISAID: O, L, GR, and GH). Further, WGS

phylogeny and travel history together indicate possible transmission from Middle East and

Europe. Three S protein variants: Wuhan reference, D614G, and Y28H were identified pre-

dicted to possess different binding affinities to host ACE2.

Introduction

The coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) was first reported in December 2019 from Wuhan, China [1].
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Coronaviruses are enveloped positive sense RNA viruses ranging from 60 nm to 140 nm in

diameter with a genome size of approximately 26–32 kb [2]. They possess a crown like struc-

ture formed by glycoprotein Spike (S) protein on the virus facilitating its recognition to surface

receptor, hence the name coronavirus [3]. In the 1960s, human coronaviruses (HCoVs) were

first described in patients with common cold. Since then, seven HCoVs have been known to

infect humans: 229E, OC43, SARS-CoV, NL63, HKU1, MERS-CoV (Middle East respiratory

syndrome corona virus), and SARS-CoV-2 [4–6]. All the HCoVs are zoonotic with bats as key

reservoirs of the virus [7, 8]. Over the last two decades, the world has experienced three differ-

ent outbreaks caused by corona viruses with extremely high morbidity rates: SARS-CoV in

2002, MERS-CoV in 2012, and COVID-19 in 2019 [9, 10]. SARS-CoV-2 virus shows high

pathogenicity of human transmission than MERS-CoV and SARS-CoV [11, 12].

With its complex disease morbidity and mortality, COVID-19 has raised global concern

and is characterized as a pandemic event by the World Health Organization (WHO) on March

11, 2020. As reported by WHO, globally, as of 11 December, 2020, there have been 69,143,017

confirmed cases of COVID-19, including 1,576,516 deaths. Infections in India were reported

from March 2020; as per the report by WHO there have been 9,796,769 confirmed cases of

COVID-19 with 142,186 deaths in India as on 11th December 2020 [13].

Molecular features of the virus could be realized by undertesting genotypic and phenotypic

properties of the viruses. Whole genome sequence (WGS) data is an excellent resource in

understanding the evolution of the virus, assist in tracing pathways promoting infection, etc;

understanding of which can assist in the development of diagnostics, therapeutic and preven-

tive strategies. The SARS CoV-2 genomic resource GISAID database (https://www.gisaid.org/)

contained a compilation of 70,614 SARS-CoV-2 complete genomes contributed by researchers

from across the world by 23rd July 2020. Among these, 305 complete genome sequences of

Indian SARS-CoV-2 isolates were archived on GISAID. Phylogenetic analysis revealed cluster-

ing of Indian isolates with existing global sequences of SARS-CoV-2 in two separate clusters

indicating two different introductions of the virus genotype into the country [14]. Further-

more, the virus exhibited 96.09% nucleotide identity with Bat CoV RaTG13 sequence, though

phenotypically they exhibit distinct features [14]. For a comprehensive understanding of

SARS-CoV-2 evolution, including different evolutionary strategies adapted by the virus, con-

tinuous monitoring of WGS of the virus strains from different parts of the world is crucial.

The primary objective of the current study is to present clinical profile of hundred and nine

SARS-CoV-2 patients admitted to a COVID-19 referral Gandhi hospital, Hyderabad, Telan-

gana State, India of which fifty-seven patients recovered and fifty-two patients succumbed to

the illness. Secondary objectives are to: a) perform comprehensive WGS analysis of seven

strains of SARS-CoV-2 from among the first reported (during February-March, 2020) SARS--

CoV-2 cases in Hyderabad, India with international travel history from Europe, USA, Indone-

sia, and United Arab Emirates. These patients were screened for COVID-19 symptoms at

Rajiv Gandhi International airport, Hyderabad, India, quarantined, and were tested positive

for COVID-19 by RT-PCR. These patients were admitted in the COVID referral hospital in

Hyderabad and enrolled in the study. b) identify changes in the structure of spike protein

among the isolates, and c) quantify differential expression of host ACE2 in the seven different

cases.

Materials and methods

Ethical approval

This study was approved by Institutional ethics committee, and was carried out as per the

Institutional ethics committee approval No. IEC/GMC/2020/02/40 dated 04/04/2020 of
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Gandhi Medical College and Hospital. In the context of emerging infectious disease condi-

tions, the requirement for written informed consent was waived.

Clinical specimen collection and detection of SARS-CoV-2 nucleic acid

Clinical specimens for SARS-CoV-2 diagnostic testing were obtained in accordance with

WHO guidelines [13]. Nasopharyngeal and oropharyngeal swab specimens were collected

with synthetic fiber swabs; each swab was inserted into a separate sterile tube containing 2 to 3

ml of viral transport medium (QIAGEN). RNA extraction was preformed using QIAamp

Viral RNA Mini Kit (QIAGEN, Cat#52906) as per the manufacturer’s instructions. The

extracted RNA was immediately used for testing the presence of SARS-CoV-2 nucleic acid

using the real time RT-PCR protocol [14] recommended by National institute of virology,

Pune, India, using Super Script™ III Platinum1 One-Step Quantitative Kit (Invitrogen, Cat.

No.11732088) [15].

Clinical records

The medical records of the SARS-CoV-2 positive patients were analysed by the research team,

Department of General Medicine, COVID-19 referral Gandhi Hospital and Medical College,

Hyderabad, India. Physicians and researchers reviewed the clinical, laboratory, radiological

characteristics, and treatment measures of the patients.

Whole genome sequencing

The WGS was carried out at Med Genome Labs Ltd., Bangalore, India. NEB Ultra II direc-

tional RNA-Seq Library Prep kit (NEB, Cat# E7760L) was used to prepare libraries for total

RNA sequencing. Libraries were pooled and diluted to final optimal loading concentrations

for cluster amplification on Illumina flow cell followed by sequencing on Illumina HiSeq X

instrument to generate 150bp paired end reads. The quality of the reads was evaluated using

Fast QC v0.11.9 [16] and cut adapt v2.9 [17] was used to trim adapters and remove contami-

nants. The reads were aligned to the human reference genome hg19 using STAR v2.4 [18]. The

reads that do not align to the human reference were aligned to the Wuhan reference genome

downloaded from NCBI (Ref Seq NC_045512.2) using BWA v.0.7.12 aligner [19]. The reads

mapping to the genes were counted using bed tools v2.26.0 [20]. The aligned reads were sorted,

and then variant calling was performed using GATK variant caller v 4.1.0.0 [21]. The variants

identified were then annotated to the genes. The variant class, amino acid changes and other

relevant annotations were added to the variants. The variants were then compared with the

genomes available in NCBI and GISAID database.

Phylogeny reconstruction

Phylogenetic analysis of the WGS data of samples was performed by multiple sequence align-

ment of the sequences with the genomes available in NCBI and GISAID database. The phylo-

genetic tree in newick file format was downloaded from Indian Coronavirus Genome Datasets

maintained by CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB; http://clingen.

igib.res.in/genepi/phylovis/) for Indian SARS-CoV-2 sequences and visualized using FigTree

v1.4.4. Further, BLAST was performed for each sequence of the current study on the GISAID

database against all the SARS-CoV-2 genome sequences. Top 30 sequence hits for each isolate

were downloaded and merged into a single file. This resulted in total of 142 sequences which

also included the seven sequences of the current study. The sequence alignment was per-

formed using MUSCLE program available in MEGA v10.1.7, and the phylogenetic tree was
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reconstructed using Neighbor-joining method and Kimura 2 parameter as nucleotide substitu-

tion model with 1000 bootstrap values. For phylogenetic analysis of the S protein, protein

sequences of SARS-CoV-2 S protein of all Indian isolates were downloaded from GISAID

database. The multiple sequence alignment was performed using MUSCLE algorithm in

MEGA v10.1.7. The phylogenetic tree was reconstructed using Neighbor-joining method with

1000 bootstrap validation and p-distance substitution model.

Structural analysis of spike protein

Homology modelling based on the spike sequence was carried out using Swiss Model [22].

Obtained model was further optimized using fragment guided molecular dynamics simulation

[23]. Optimized model was visualized in Pymol. Trimeric spike protein optimized above was

docked using protein-protein docking using ClusPro Srver; highest neigbours were taken as

most probable conformation. Docked conformation was visualized in Pymol [24–26]. Binding

constant & energy, and dissociation constant values were computed at Web server PRODIGY

[27].

Statistical analysis

In the current study, categorical variables were described as frequency rates and percentages;

continuous variables were described as mean, median, and interquartile range. Means for con-

tinuous variables were compared using independent two sample t- test statistics (for two-tail)

when the data were normally distributed. On the other hand, categorical type variables were

investigated using a non-parametric Mann-Whitney-U-test. For determining the proportions

for categorical variables, a non-parametric Chi-square test was used, then complete data was

cross tabulated (rows v/s columns) and analyzed. The Fisher exact test was used when the data

were limited. In each case, a two-sided α of less than 0�05 was considered as statistically signifi-

cant. The statistical analyses were done using SPSS ver. 20 software.

Results and discussion

Clinical, radiological, functional, and immunological profile of COVID-19

patients

The current study enrolled patients (N = 109) diagnosed for SARS-CoV-2 during February

2020 to May 2020, admitted to a tertiary referral hospital in Hyderabad, India. Patients exhibit-

ing hypoxia, shortness of breath, altered sensorium, haemoptysis, acute kidney injury (AKI),

chronic kidney disease (CKD), aphasia, chest pain, dysphagia, oral ulcers, hypoxia, metabolic

encephalopathy, renal failure, tracheostomy care, and sudden syncope were admitted to inten-

sive care unit (ICU). Majority of the patients had frequently reported fever (37%) and cough

(39%). Patients with comorbidities such as diabetes (33%), hypertension (31%), CKD (7%),

and cardio vascular disease (CVD) (9%) became severely ill, even when intervened through

respiratory support along with oxygen, and medical support with antibacterials, antivirals,

hydroxy chloroquine (HCQ), and steroids. Conditions such as cancer (1%), septic shock

(11%), acute respiratory distress syndrome (ARDS) (40%), CKD (5%), non-ICU sudden col-

lapse (1%), were seen in patients that could not be recovered and succumbed to the disease

(Table 1). For clinical comparison in the current study, the patients were grouped in to recov-

ered (R) (N = 57; male (n): 37, female (n): 20, aged 3 years-72 years) and succumbed (S)

(N = 52; male (n): 41, female (n):11, aged 2 months-85 years). Median age of recovered patients

was found to be 32 years (26y-35y), and death patients to be 61 years (35y-85y). Between R

and S groups there was a significant difference (P<0.05) in favour of S group in the onset of
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Table 1. Comparison of clinical findings among Recovered (R) and Succumbed group (S).

Parameter Number Recovered number (R) Succumbed number (S) P value

Number of patients 109(100%) 57(52%) 52 (48%) -

Median age in years (IQR) 46(41–50) 32(26–35) 61(35–85) <0.0001�

Sex (Male, Female median age in years) 51, 37 46, 27 61, 47 <0.0001�

Male 78(71%) 37(64%) 41(78%) 0.02�

Female 31(28%) 20(35%) 11(21%) 0.02�

Signs & Symptoms

Fever 40(37%) 8(14%) 32(62%) 0.03�

Cough 42(39%) 10(17%) 32(62%) <0.0001�

Sore throat 8(7%) 4(7%) 4(7%) 0.36

Headache 6(6%) 3(5%) 3(5%) 0.28

Cold/Loss of Smell/Sneezing 1(1%) 0 1(1%) 0.9

Breathing difficulty 46(42%) 2(3%) 44(84%) <0.001�

Respiratory Rate>24 breaths per min 83(76%) 51 (89%) 32(61) <0.001�

SP O2 (%) 85(78) 57(100) 28(54) <0.001�

Retractions 3(2%) 0 3(5%) 0.31

Crepts 23(21%) 0 23(44%) 0.02�

Diarrhoea 5(4%) 0 5(9%) 0.13

Comorbidities

Diabetes 37(33%) 5(8%) 32(61%) <0.001�

<5 12(11%) 5(8%) 7(13%) <0.001�

5–25 25(22%) 0 25(48%) <0.001�

Hypertension 34(31%) 3(5%) 31(60%) <0.001�

<5 12(11%) 3(5%) 9(17%) <0.001�

5–25 22(20%) 0 22(42%) <0.001�

Systolic Blood Pressure Median (IQR) 120(110–130) 120 (110–128) 131(110–150) <0.0001�

Diastolic Blood Pressure median (IQR) 85(80–92) 80 (80–90) 79(60–90) <0.0001�

CVD (Cardio Vascular Disease) (yrs) 10(9%) 1(1%) 9(17%) 0.04�

<5 8(7%) 1(1%) 7(13%) 0.04�

>5 2(1%) 0 2(3%) 0.04�

CKD (Chronic Kidney Disease) 8(7%) 0 8(15%) 0.99

Hypothyroidism 5(5%) 0 5(10%) 0.99

Asthma 5(4%) 1(1%) 4(7%) 0.01�

ECG

Normal sinus rhythm 55(50%) 54(94%) 1(1%) <0.001�

Sinus tachy 19(17%) 1(1%) 18(35%) <0.001�

Median Heart Rate/PR bpm (IQR) 80(75–110) 86(78–95) 102(80–123) <0.001�

RNA CT Values (median, IQR)

E 18(15–25) 20(18–22) 20(17–23) <0.04�

RdRP 26(20–35) 28(23–32) 24(21–26) <0.01�

ORF 24(20–31) 26(24–28) 23(21–25) <0.01�

Date of illness to Recovery/Death

Date of illness to recovery (median days)/Death Days (IQR) 15(10–20) 16(8–20) 9(6–12) 0.04�

Length of hospital stay in days 13(11–21) 16(7–20) 9(4–12) 0.04�

Radiological Findings

Normal 44(40%) 39(68%) 5(9%) <0.001�

Infiltrations 19(17%) 1(1%) 18(35%) <0.001�

Haziness 7(6%) 3(5%) 4(7%) <0.001�

(Continued)
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certain symptoms (fever, cough, breathing difficulty, and crepts) and comorbidities (diabetes,

hypertension, systolic blood pressure, diastolic blood pressure, and asthma) (Table 1). Signifi-

cant difference (P<0.05) between these two groups (in favour of S group) was also observed in

ECG, viral Ct values, majority of the pathological lung radiological findings (Table 1, Fig 1).

Interestingly, significant difference in favor of S group was noticed with supportive therapy.

Supportive therapy was provided with antibiotics (cefotaxime, azithromycin), antivirals (oselta-

mivir and lopinavir/ritonavir), HCQ, and steroids. This suggests that the treatment started in

severely ill patients had no effect in the recovery of the patients. This also suggests that support-

ive therapy although statistically found significant, has no effective role in disease outcome.

Cause of death was significant (P<0.05) due to ARDS, CKD, and septic shock. Other non-

significant causes of death include meningoencephalitis, cancer and non-ICU related sudden

death (Table 1). It was shown previously that 90% of the deaths were due to ARDS followed by

CKD (18%), and shock (12%) [28]. Previous studies reported that comorbidities, particularly

the CVDs and chronic pulmonary diseases, were important to predict the in-hospital mortality

in critically ill patients [29]. Our study reports that majority of patients in the S group had

underlying diseases, especially hypertension, lung disease, and heart disease, more often with

more than one comorbidity in individual patient. Sepsis was also a common complication

found in this study, which might be directly caused by SARS-CoV-2 infection; further research

is needed to investigate the pathogenesis of sepsis in COVID-19 illness.

In this study, radiological findings were obtained in only 40% of cases due to various logistic

reasons. 35% of S group had infiltrates in two or more lobes, and almost 68% had normal

radiological findings in R group (Fig 1). Overall, the findings commonly included patchy

ground glass opacity (GGO) (11%) followed by confluent haziness (7%) in S group; in contrast

consolidation was equal in both groups. Overall, our study highlights the radiological findings

were consistent with the severity of infection varying from infiltrations through GGO to

consolidations.

When immune response of R and S groups was compared, the results show a higher WBC

and neutrophil count in the S group (Table 2). Neutrophilia is a hallmark of any acute

Table 1. (Continued)

Parameter Number Recovered number (R) Succumbed number (S) P value

GGO 7(6%) 1(1%) 6(11%) <0.001�

Consolidation 4(3%) 2(3%) 2(3%) <0.001�

Treatment

Antibiotic 53(49%) 11(19%) 42(80%) <0.001�

Antiviral 51(47%) 9(16%) 42(80%) <0.001�

Hydroxy Chloroquine 18(16%) 1(1%) 17(28%) <0.05�

Steroid 4(3%) 0(0) 4(7%) <0.001�

Cause of Death

ARDS (Acute respiratory distress syndrome) 21(19%) 0 21(40%) 0.49

CKD (Chronic kidney disease) 3(3%) 0 3(5%) 0.50

Septic Shock 6(5%) 0 6(11%) 0.56

Non-ICU Sudden Death 1(1%) 0 1(1%) -

Cancer 1(1%) 0 1(1%) -

Meningoencephalitis 1(1%) 0 1(1%) -

Numbers in the brackets indicate percentage of patients enrolled in the current study that are exhibiting the respective parameters; unless mentioned otherwise.

�Indicates significant difference.

https://doi.org/10.1371/journal.pone.0246173.t001
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infection. It was also suggested before that aberrant activation of neutrophils contribute to the

exacerbated host response in patients with severe COVID-19, predicting poor outcome [30].

Importantly neutrophil infiltration was also observed in pulmonary capillaries of COVID-19

patients leading to acute capillaritis with fibrin deposition, extravasation of neutrophils into

the alveolar space, and neutrophilic mucositis [31]. In addition to this, the role of neutrophilia

as a source of excess neutrophil extracellular traps (NETs) was also shown before [32]. NETs

are web-like structures of DNA and proteins expelled from the neutrophils that capture and

kill the pathogens [33]. In addition to being useful, excessive NET formation can trigger a cas-

cade of inflammatory reactions that results in permanent organ damage to the pulmonary, car-

diovascular, and renal systems, the most commonly affected organ systems in severe COVID-

19 [6, 34–38].

Another interesting finding was that the lymphocyte count was low in S group compared to

R group (Table 2); such a decrease in lymphocyte count was reported previously in pneumonia

Fig 1. Chest computed tomographic, and X-ray images. a) Chest CT images of sample ID RK100 showing chest consolidation in central areas of RT upper lobe, RT

middle lobe and bilateral basal areas b) Chest X ray of sample ID KN443 showing sub pleural ground glass opacities in bilateral mid and lower zones Lt>Rt haziness c)

Chest X ray of sample ID RR1191showing bilateral lower zone and left retro cardiac consolidation, Lt>Rt haziness d) multifocal bilateral ground glass opacities and

patchy consolidation in a patient suffering with COVID-19.

https://doi.org/10.1371/journal.pone.0246173.g001
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patients [39, 40]. This suggests that the increased lymphocytes in the R group may be contrib-

uting for the recovery of the patients, while lymphocytes may be damaged in the condition of

severe infection condition, thus reducing recovery of S group. Lymphocytes play an important

role in the maintenance of immune system function. After virus infection, alteration in total

lymphocyte numbers varies with different viral pathogenic mechanisms [41]. Several mecha-

nisms were shown before for virus induced lymphopenia including immune injuries from

inflammatory mediators, virus attachment, exudation of circulating lymphocytes into inflam-

matory lung tissues [39]. Recent studies indicated a clear association of decrease in peripheral

lymphocytes with the clinical characteristics of COVID-19 patients [39]. This indicates an

impairment of the immune system during the course of SARS-CoV-2 infection. These alter-

ations were also found in patients with pneumonia caused by MERS- CoV and SARS-CoV

[42]. Marginal differences were seen in monocyte, eosinophil and platelet counts between R

and S groups (Table 2).

When functional parameters were compared, large deviation of serum glutamic-oxaloacetic

transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT) and blood urea was seen

when mean values were taken in consideration (Table 2). There was a significant increase in

SGPT, SGOT and blood urea in S group compared to R group (Table 2). There was no signifi-

cant change seen in alkaline phosphatase (AP), which indicates that liver may not be severely

affected. Higher SGOT and SGPT levels could be due to effect of infection to both heart and

liver [43]. Since blood urea was also significantly increased in S group, the observed increase

may also be associated with comorbid diabetes in these patients (Table 2). In summary, neu-

trophil and lymphocyte count, the levels of SGOT and SGPT in COVID-19 patients may pro-

vide an indication on severity of the infection in Indian population infected with SARS CoV-2,

while the comorbid conditions such as diabetes, hypertension and CVD would further

enhance the complexity of the disease condition. Death was reported in the patients on an

average of 9 (6–12) days of hospitalization, while recovery was noticed with in 16 (8–20) days

of hospitalization (Table 1). A previous study reported number of days from hospital admis-

sion to death is 6.35+/-4.51 days [44].

Hospitalization was shorter in death patients, which is most likely due to rapid progression

of disease in such severe cases. As per the recent health bulletin released by the Govt. of

Table 2. Functional and immunological parameters of COVID-19 patients with variable severities.

Functional Parameter (SI Units) Normal Range All Patients(N = 109) Median (IQR) Recovered (N = 57) Succumbed (N = 52) P Values

Total Serum Bilirubin, umol/L 1.71–20.52 5.23 (4.99–15.91) 5.385 (4.96–16.58) 19.41 (18.82–40.5) <0.05�

Serum Creatinine, umol/L 61.88–114.9 64.5 (58.95–119.12) 63.64 (40.66–86.62) 92.33 (90.56–150.36) <0.001�

BU mmol/L 1.16–3.33 3.39 (1.21–5.57) 2.11 (2.03–5.41) 6.00 (5.68–15.34) <0.001�

SGOT/AST, Units/Lit 8.01–45 43.01 (43.55–95.13) 13.43 (13.01–38.72) 42.64 (40.00–90.5) <0.001�

SGPT/ALT, Units/Lit 7.01–56 19.05 (18.10–41.3) 8.16 (5.56–27.08) 21.92 (15.87–71.79) <0.001�

AP, U/Lit 44–147 117.5 (77.2–131.61) 46.56 (42.56–133.7) 48.38 (43.68–139.84) 0.7

Na, mmol/Lit 136–145 138.00 (132.91–144.84) 139.54 (137.57–144.51) 140.6 (129.43–146.4) <0.05�

K,mmol/Lit 3.5–5.0 4.23 (3.45–5.01) 4.16 (3.53–4.79) 2.15 (3.36–5.24) 0.42

CL,mmol/Lit 98–107 102.33 (96.81–107.85) 102.36 (98.83–106.89) 102.23 (95.1–109.54) <0.001�

Immunology Normal Range All Patients(N = 109) Median (IQR) Recovered Succumbed P Values

WBC X 10^9/L 4.5–10 4.8(4.24–13.96) 4.55 (4.35–12.47) 6.37 (6.12–14.86) <0.05�

Neutrophils, X10^9/L 2.5–7.5 3.38 (2.56–10.95) 2.40 (2.22–7.36) 5.52 (4.43–13.63) <0.05�

LymphocytesX10^9/L 1–4.8 1.25 (0.7–4.15) 1.66 (1.56–5.06) 0.64 (0.39–2.17) 0.52

Monocytes, X10^9/L 0.2–0.6 0.4 (0.32–0.96) 0.38 (0.37–0.97) 0.59 (0.45–1.68) 0.16

Eosinophiils, X10^9/L 0.03–0.35 0.115 (0.07–0.53) 0.12 (0.08–0.56) 0.23 (0.21–0.97) 0.88

Platelets, X10^9/L 150–450 250 (167.88–268.12) 273 (250–450) 263 (250–500) 0.14

https://doi.org/10.1371/journal.pone.0246173.t002
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Telangana, India, maximum number of deaths were reported in the age group of 51–60

(N = 52), followed by 61–70 (N = 48), 41–50 (N = 42), and 71–80 (N = 26) [45, 46]. Studies

from China have reported similar findings that majority of the affected patients were middle

aged and elderly people with median age of deceased patients being 69 years [28, 47]. It is evi-

dent that respiratory distress is the major cause of mortality. It is possible that ageing dimin-

ishes the lung function, regeneration, and remodelling thereby enhancing its susceptibility to

the disease [48].

Next generation sequencing

From the first reported cases in India that had international travel histories from USA, UK,

Italy, Indonesia, United Arab Emirates during 20-02-2020 to 25-03-2020, n = 7 samples were

sent to whole genome sequencing (n = 6 from R group and n = 1 from S group). > 4.9 Gb data

was obtained by 151bp pair end sequencing. Of the total, more than 80% of bases have base

quality > = Q30. The raw reads were pre-processed for adapter and contamination removal.

Of the total raw reads, ~50–64% of the total reads were left after pre-processing. Out of total

pre-processed reads, ~50–77% align to the host transcriptome/genome (human-hg19) using

STAR aligner. The unaligned reads from host analysis were converted to fastq and then aligned

to the SARS-CoV-2 reference genome (Genbank Ref seq NC_045512.2). A total of>200,000

reads mapped to the viral genome for all the samples, and of these 97% of the reads were prop-

erly paired. Coverage analysis of the genome showed 100% coverage for all the samples with

an average read depth of>225X. Of the total bases of interest ~100% of the genome have more

than 100X depth. The full-genome viral sequences were deposited in the dataset of GISAID

(EPI_ISL_431101, EPI_ISL_431102, EPI_ISL_431103, EPI_ISL_431117, EPI_ISL_438139,

EPI_ISL_437626, EPI_ISL_438138) and NCBI GenBank (MT415320, MT415321, MT415322,

MT415323, MT477885, MT457402, MT457403).

Genetic variation in the sequences

Mutations among the seven SARS-CoV-2 strains, were identified both at the genome level

and corresponding amino acid level throughout the whole genome, with reference to the

prototype SARS-CoV-2 Wuhan strain genome (NCBI Ref Seq NC_045512.2) (Table 3). Two

synonymous (15324C>T in ORF1ab; 24130C>T in S) and two nonsynonymous mutations

(21644T>C{Y28H} in the S gene; 29303C>T{P344S} in the N gene) were observed in the sam-

ple (OUMRK100/2020) collected from patient with travel history to Dubai. One synonymous

(3037C>T in ORF1ab) and two nonsynonymous mutations (14408C>T{P4714L} in ORF1ab;

23403A>G{D614G} in the S gene) were observed in the sample (GMCKN318/2020) collected

from patient with travel history to Italy. One synonymous (23929C>T in the S gene) and four

nonsynonymous mutations (6312C>A{T2016K}, 11083G>T{L3606F}, 13730C>T{A4489V}

in ORF1ab; 28311C>T{P13L} in the N gene) were observed in the sample (GMCKN443/2020)

collected from patient with travel history to Indonesia. One synonymous (3037C>T in

ORF1ab) and four nonsynonymous mutations (14408C>T{P4714L} in ORF1ab; 23403A>G

{D614G} in the S gene; 28881G>A{R203L}, 28883G>C{G204R} in the N gene) were observed

in the sample (GMCTC469/2020) collected from patient with travel history to UK. One synon-

ymous (23929C>T in the S gene) and four nonsynonymous mutations (6312 C>A{T2016N},

11083G>T{L3606F}, 13730C>T{A4489V} in ORF1ab; 28311C>T{P13L} in the N gene) were

observed in the sample (OUMRK1090/2020) collected from patient with travel history to

UAE. Two synonymous (3037C>T, 18877C>T in ORF1ab) and three nonsynonymous muta-

tions (14408C>T{P4714L} in ORF1ab; 23403 A>G{D614G} in the S gene; 25563G>T{Q57H}

in the N gene) were observed in the sample (GMCKP1125/2020) collected from patient with
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travel history to USA. One synonymous (23929C>T in the S gene) and four nonsynonymous

mutations (6312 C>T{T2016K}, 11083G>T{L3606F}, 13730C>T{A4489V} in ORF1ab;

28311C>T{P13L} in the N gene) were observed in the sample (GMCRR1191/2020) collected

from patient with cluster infection and no travel history, and who succumbed to the disease.

Orf1ab is a poly-protein, which, after translation, is cleaved into 15 nonstructural proteins

(NSP). Total 4 nonsynonymous mutations were observed at 4 different positions among differ-

ent samples. Mutation at position 6312 C>T{T2016K} is on NSP3 in sample GMCKN443/

2020, GMCRR1191/2020, and OUMRK1090/2020. NSP3 has 10 different conserved domains

including the nucleic acid binding domain (cl24732: NAR superfamily). The mutation 6312

C>T{T2016K} falls on relative position of 1198 on NSP3 protein sequence. This position is

related to the nucleic acid binding domain. The mutation 11083G>T{L3606F} was observed

in NSP6 in sample GMCKN443/2020, GMCRR1191/2020, and OUMRK1090/2020. NSP6 is a

1945 amino acid long peptide containing putative transmembrane domain. In pp1ab it ranges

from amino acid 3570 to 3895. Two mutations were observed in NSP11, in which the first

mutation 13730:C>T{A4489V} was present in samples GMCKN443/2020 GMCRR1191/2020

and OUMRK1090/2020; and the second 14408:C>A{P4714L} was observed in samples

GMCKN318/2020, GMCTC469/2020, and GMCKP1125/2020. NSP11 is RNA-dependent

RNA polymerase (RdRp) having one conserved domain SARS-CoV-like RdRp (cd21591)

(Fig 2).

N gene codes for nucleocapsid phosphoprotein (N Protein). Four different variants in N

protein were reported among six out of seven different samples. The mutation 28311C>T

{P13L}, was found in three samples GMCKN443/2020, OUMRK1090/2020, GMCRR1191/

2020, while one mutation in each was observed in other three samples. The N protein of

SARS-CoV-2 shares 90% sequence similarity with the N protein of SARS-CoV [49]. The N-

protein is a RNA binding protein and has three intrinsically disordered regions (IDRs) from

residues 1–44, 182–247 and 366–422 in case of SARS-CoV, which may modulate the RNA-

binding activity [50, 51]. The two mutations out of four in N-protein reported from our analy-

sis (28311C>T{P13L} and 28883G>C{G204R}) are present in IDRs suggesting there may be

variation for RNA binding activity among the N-protein of different variants of SARS-CoV-2.

Several mutations were observed among the seven isolates with both synonymous and

nonsynonymous mutations with pyrimidine exchanges (C to T or T to C) suggesting the

Fig 2. Graphical representation of polyprotein synthesized by orf1ab (taken form NCBI sequence viewer). The four different mutations observed in 6 different

samples were mapped based on the position. Out of four, two mutations were observed in NSP3 and NSP6 each. The remaining two mutations were observed in RNA-

dependent RNA polymerase (NSP11).

https://doi.org/10.1371/journal.pone.0246173.g002

PLOS ONE Clinical and genome profile of CoV-2 in India

PLOS ONE | https://doi.org/10.1371/journal.pone.0246173 February 2, 2021 11 / 21

https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=cl24732
https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=cd21591
https://doi.org/10.1371/journal.pone.0246173.g002
https://doi.org/10.1371/journal.pone.0246173


possibility of occurrence of transcription-induced mutations [52]. This could be due to high

replication rates of the virus. Nonsynonymous mutations showed higher frequency than syn-

onymous mutations in the ORF regions of the viral genomes suggesting that the selection of

mutation may be biased towards viral phenotype changes which may be contributing to the

observed variability in the severity of infection reported in different epidemiological studies

[53].

Phylogenetic analyses

The genomes sequenced in the current study were found to be in two clades, when analysed

with the other available Indian SARS-CoV-2 sequences. Four of the seven sequences belong to

clade-I/A3i; of which three sequences (OUMRK1090/2020, GMCRR1191/2020, and

GMCKN443/2020) are clustered together, and one sequence (OUMRK100/2020) clustered

separately in the same clade. The other three sequences (GMCTC469/2020, GMCKP1125/

2020, and GMCKN318/2020) belong to the clade A2a in three different clusters (Fig 3). The

sequences were further analyzed with other SARS-CoV-2 sequences worldwide (Fig 4). It can

be seen that the virus sequence from patient with travel history to Dubai (OUMRK100/2020)

clustered with sequences from UAE, Japan, and the original Wuhan-Hu-1 strain. Virus

sequences from patients with travel history to Indonesia (GMCKN443/2020), UAE

(OUMRK1090/2020), and no travel history (GMCRR1191/2020) clustered together along with

two other Indian isolates, and a Singapore isolate. Sample GMCKP1125/2020 isolated from

patient who travelled to India from USA via UAE can be seen closely clustered with one USA

and three Saudi Arabian isolates. Virus sequence from patient with travel history to UK

(GMCTC469/2020); and Italy (GMCKN318/2020) were found to be clustered with other

England, Italian; and USA, Russian strains, respectively. The global comparison according to

GISAID database revealed that three sequences from the current study: GMC-RK1090,

GMC-RK1191, and GMC-KN443 are in the cluster labeled as clade O according the GISAID

database. Other four sequences belonged to four different clades: L (GMC-RK100), G

(GMC-KN318), GR (GMC-TC469) and GH (GMC-KP1125) (Fig 5).

These findings, suggest that there might be two distinct points of transmission: one is

involving Middle East, and other Europe, this could be a transition point during travel for an

airway transmission of the virus. A previous study suggested that divergence from a single

point of Clade I/A3i suggests a single point of introduction into the country, and that the

spread from this could be from a single outbreak [54]. The first sequence from this cluster in

India was GMC-KN443 which was from a patient who travelled to India from Indonesia.

However, the authors suggested that the strain is similar to those strains from Singapore and

Philippines [54]. Furthermore, another study reported that isolate RK100 clustered with the

ancestral first isolates from India that were originally reported from Kerala [55].

Analysis of spike protein

Protein sequences for spike protein of SARS-CoV-2 of all Indian isolates were downloaded

from GISAID database. Total 53 sequences were obtained in which 4 sequences

(EPI_ISL_431101, EPI_ISL_431102, EPI_ISL_431103, and EPI_ISL_431117) were from

Hyderabad isolates. The multiple sequence alignment was performed using MUSCLE algo-

rithm in MEGA v10.1.7. The phylogenetic tree was constructed using Neighbor-joining

method with 1000 bootstrap validation and p-distance substitution model. The results show

four different genotypic variants (Fig 6). Among these, three amino acid variations were

observed including reference Wuhan isolate. RK100 showed Y28H mutation, while sample

nos KN318, TC469, and KP1125 showed D614G mutation, and samples KN443, RK1090 and
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RR1191 spike protein are similar to Wuhan reference. Thus, among seven samples there are

three phenotypic variants of spike protein.

Total 53 different types of proteins were identified in GISAID database to date. Among

seven Hyderabad isolated total 4 different types of Spike proteins are observed (Red).

Structure prediction analysis of spike protein shows that overall structure of isolated viruses

may not be significantly affected, while loop regions connected to beta sheets are varied

among the spike proteins of four variants. When predicted affinity of spike protein with ACE2

Fig 3. Phylogenetic tree of Indian SARS-CoV-2 sequences according to the dataset available at CSIR Institute of Genomics and Integrative

Biology. The sequences form the current study are labeled in black font. Sequences OUMRK1090/2020, GMCRR1191/2020, GMCKN443/2020,

and OUMRK100/2020 are in clade I/A3i. Sequences GMCTC469/2020, GMCKP1125/2020, and GMCKN318/202 are clustered in clade A2a.

https://doi.org/10.1371/journal.pone.0246173.g003
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was analysed through docking, the results showed that spike protein of RK100 may be inter-

acted between position 470–490 and 200–220, while KN318, TC469 and KP1125 spike protein

may be interacting with ACE2 between position 250–270 and 630–650 (Fig 7). In case of

KN443, RK1090 and RR1191, spike protein interacts with ACE2 between position 70–80, 120–

160, 170–250 and 470–485. When energy of interaction and binding constant was compared

with Wuhan reference, the results showed that the binding affinity RK100 and KN318

decreased by 5615 and 6000-fold, respectively. Thus, suggesting that the virus affinity to ACE2

receptor could be varied among the three variants of the isolates in circulation (Table 4).

We observed 3 distinct variants Y28H (RK100), D614G (KN318, TC469, KP1125), and sim-

ilar to Wuhan reference NC_045512.2 (KN443, RK1090 and RR1191). These mutations were

distinctly different with varied affinities as assessed by theoretical analysis, wherein the affinity

of Wuhan was higher followed by Y28H and D614G (Table 4). When RNA reads for ACE2

Fig 4. Phylogenetic tree of Indian SARS-CoV-2 isolates with sequences worldwide. Indian SARS-CoV-2 sequences of the current study

are shown in red.

https://doi.org/10.1371/journal.pone.0246173.g004
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were quantified, it shows higher variability among the patients, but the ACE2 expression (0.13

to 1.51) (Table 4) could not be correlated with the predicted affinity of the S protein to ACE2

of isolates and also Ct values. A larger WGS sample size, which is a limitation of the current

study, can provide better insights in this area. It was interesting to note comparatively low Ct

values (high viral loads) in the Spike G614 variants when compared to D614 variants (E gene:

19±1 vs 22±2; RdRp: 26±0 vs 27±5; ORF: 25±1 vs 28±3).

Conclusion

Clinical profile of COVID-19 in India majorly shows fever and cough; comorbid diabetes,

hypertension, and CVD were associated with increased severity of infection. Increased neutro-

phil count, decreased lymphocyte count, increased levels of SGOT, SGPT and blood urea were

also associated with increased severity of infection. The observations in X-ray and CT scan

confirms the severity of infection. A limitation of the current study is the inability to retrieve

all the data regarding radiological findings. This hindered us to compare the findings exten-

sively in both groups. It is hoped that findings from this study will guide clinicians to identify

patients with different prognosis at an early stage based on the clinical characteristics

Fig 5. The clustering of the isolates in the current study in the phylogenetic tree of all SARS-CoV-2 sequences globally according to the GISAID database.

https://doi.org/10.1371/journal.pone.0246173.g005
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presented by patients, and help in providing appropriate and effective management for the

patients. Sequence analysis of seven patients of SARS CoV-2 in India showed they are under

two clades I/A3i, A2a; and O, L, GR, and GH clades as per the latest GISAID classification.

Analysis of the S protein showed that they belong to three variants with distinct predicted

ACE2 interaction. ACE2 expression levels were variable among the patients.

Fig 6. The phylogenetic tree of SPIKE protein from all the seven Indian Isolates.

https://doi.org/10.1371/journal.pone.0246173.g006
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