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MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional
level. Because of their wide network of interactions, miRNAs have become the focus of many studies over
the past decade, particularly in animal species. To streamline the number of potential wet lab experi-
ments, the use of miRNA target prediction tools is currently the first step undertaken. However, the pre-
dictions made may vary considerably depending on the tool used, which is mostly due to the complex
and still not fully understood mechanism of action of miRNAs. The discrepancies complicate the choice
of the tool for miRNA target prediction. To provide a comprehensive view of this issue, we highlight in
this review the main characteristics of miRNA-target interactions in bilaterian animals, describe the pre-
diction models currently used, and provide some insights for the evaluation of predictor performance.
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1. Introduction

MicroRNAs (miRNAs) are small (�22 nucleotides) noncoding
RNAs that act as posttranscriptional regulators of gene expression
for all known biological processes [1]. Indeed, between 60 and 90%
of human genes are believed to be regulated by miRNAs, as
revealed by genome-wide analyses [2,3]. According to miRbase (re-
lease 22), the primary database of published miRNA sequences and
their annotation, a total of 48,885 mature miRNA products have
been identified in 271 eukaryotic species, among which 2654 are
found in humans [4]. Animal and plant miRNAs share many simi-
larities in their biogenesis and mode of action, as revealed by
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Fig. 1. microRNA seed site types. The vast majority of miRNA interactions occur
through several matching possibilities of the seed region as described above.
Mismatches in the seed region can still result in a functional interaction with the
help of 30 compensatory pairing.
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biochemical and genetic studies, suggesting that they share a com-
mon ancestral origin. However, the sites of biogenesis of miRNAs,
their genetic structure or the location of their genes differ between
plants and animals [5–8].

In bilaterian animals, miRNAs are mostly transcribed by RNA
polymerase II, which yields a primary miRNA (pri-miR). This pri-
miR is then processed to generate a miRNA precursor (pre-miR)
by the microprocessor complex composed of DROSHA and DGCR8
(known as Pasha in flies and nematodes). Then, exportin-5 and
RAN-GTP transfer the pre-miR from the nucleus to the cytoplasm
to be further processed by DICER and produce the mature-miRNA
duplex sequence. The biogenesis of miRNAs in animals has been
reviewed in several publications [1,9–14]. The miRNA inhibition
process requires the formation of miRNA-induced silencing com-
plexes (miRISCs), which are mainly composed of the Argonaute
(AGO) family of proteins and several other proteins, such as the
trinucleotide repeat containing 6 (TNRC6, known as GW182 in
flies) family of proteins [14–16]. These proteins are mainly local-
ized in cytoplasmic P-bodies, which are considered the primary
sites of miRNA activity in the cytoplasm, although they can also
occur in many cellular compartments, such as the nucleus, mito-
chondria or vesicles of the endosomal trafficking pathway [17].
In most cases, miRISC induces silencing through a combination of
processes, including translational repression, deadenylation,
decapping and 50-to-30 mRNA degradation [18,19]; however,
mRNA decay is believed to be responsible for 66–90% of silencing
[20,21]. Interestingly, plant miRNAs regulate their targets mainly
by binding with nearly full complementarity to unique sites in
the coding region. This high pairing rate mostly leads to endonu-
cleolytic mRNA cleavage and a strong effect on a limited number
of targets [6]. In contrast, miRNAs from bilaterian animals regulate
transcripts via imperfect complementarity at multiple interaction
sites mainly located in the 30-UTR, which allows them to poten-
tially regulate several hundred mRNAs, and one mRNA can be tar-
geted by several miRNAs [13,22–25]. Because of these numerous
possible interactions, miRNAs exert major effects in a variety of
cellular processes, including cell proliferation, migration, apoptosis
and differentiation [26–28]. Consequently, altered expression of
miRNAs has been observed in many pathologies [29], including
cardiovascular [30], neurodegenerative [31], and renal diseases
[32], and most notably in cancers [33–35]. Therefore, improved
knowledge of the mechanisms of action of miRNAs will likely
impact our understanding and management of these diseases.

Because miRNAs are now considered major actors among non-
coding RNAs for the regulation of gene expression, their role in this
important cellular mechanism has been an expanding area of
research since 2001. This is particularly challenging in bilaterian
animals due to the imperfect interaction between miRNAs and
their target mRNAs and the resulting large number of potential tar-
gets. To understand this role, it is essential to identify functional
miRNA targets in a predefined cellular and environmental context.
This goal could be achieved through the use of a combination of
cell biology techniques, including gene reporter assays, quantita-
tive PCR and western blot [36]. While a Luciferase gene reporter
test can identify the direct interaction between a miRNA and its
targeted mRNA region, qPCR and western blot assess the transcrip-
tional and translational repression resulting from the interaction
[36,37]. These techniques are time-consuming and allow
validation of a few interactions at a time. To address this issue,
cross-linking and immunoprecipitation approaches coupled with
next-generation sequencing (CLIP-seq) have been developed. These
techniques allow massive discovery of miRNA target interactions
(MTIs) without the need for miRNA overexpression. However, the
identified interactions still need additional investigations to deci-
pher their biological meaning [36,38]. Although improvements
have been made, many datasets generated by this approach
5812
contain numerous false-positives due to UV crosslinking issues
[39]. Regardless of the experimental procedures, they are time-
consuming and expensive; thus, in silico MTI predictions are
required. Predictions of novel target sites could be achieved by
building a classification or ranking model based on experimentally
validated MTI properties (further described below). During the last
decade, scientists have proposed many different computational
approaches, although a consensus has not been reached on how
to best predict MTIs. Currently, more than 192 target prediction
tools have been described (as of November 2020, from OMICtools’
database) [40]; therefore, it is difficult to find the best suited tool
for the analysis of a particular experiment. This issue has been
the subject of several reviews that discuss common prediction
tools as well as the main characteristics of MTIs [41–44]. Recently,
Kern et al. proposed a dedicated tool that would facilitate the
choice of the most appropriate prediction tool [45]. However, com-
putational predictions present high false-positive/negative rates
due to the small size and the binding complexity of the MTI sites
[46]. Moreover, without a common method to evaluate them, it
is not easy to decide which one to test first. Indeed, the result lists
given by each MTI prediction algorithm for a given miRNA differ
greatly in the targets identified, prediction number and ranking
[47]. Below, we will describe the main characteristics of MTIs in
bilaterian animals as well as different up-to-date computational
methods that could help biologists choose the appropriate tool,
and we will provide the knowledge necessary to avoid the numer-
ous drawbacks of these prediction tools. The issue of algorithm
performance evaluation will also be addressed.
2. Analyzable elements

Although the mechanisms of action of miRNAs are not fully
understood, several features of MTI have been defined through
experimental work. Although each algorithm uses a different set
of features, sequence complementarity, site accessibility and
sequence conservation are the most commonly used.

2.1. Sequence features
2.1.1. Seed region. The main biological feature underlying the inter-
action between miRNA and mRNA is defined as the ‘‘seed” region,
which includes nucleotides (nt) 2 to 8 starting from the 5’ end of a
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miRNA. A perfect match with the seed region does not always
induce mRNA repression, clearly indicating that this parameter
alone is not sufficient to predict the interaction [48–50]. Interest-
ingly, the recognition of an adenine at miRNA nt 1 favors miRNA-
mediated protein downregulation even when it does not partici-
pate in a Watson-Crick interaction [51]. Seed sites are categorized
into different types according to their pairing degree. The hierarchy
of site efficacy is as follows: 8mer � 7mer-m8 greater than 7mer-
A1 � 6mer or offset-6mer (position 3–8 match) > no site, with the
6mer differing only slightly from no site at all (Fig. 1) [2,50].
Microarray experiments suggest that the majority of miRNA target
sites are 7mer-m8 type [50]. The difficulty of using the seed region
in target prediction is based on the occurrence of ‘‘bulges” (un-
paired stretches of nucleotides located in either one of the
sequences) or G:U wobbles within the sequence that reduce (but
do not prevent) inhibition efficiency [48,51]. These sites are named
‘‘orphans” or ‘‘noncanonical” because AGO proteins can bind them
without a perfect seed match. They were thought to be relatively
rare in mammals [2,52–54]. However, more recent experimental
methods tend to identify a much higher number of noncanonical
sites or even sites not binding to the seed region at all (binding
to the center of the miRNA or 3’ end) [51,52,55–58]. A possible
explanation for some of these noncanonical sites is the existence
of a ‘‘pivot bulge” on the 6th nt of the seed that could enable a tran-
sitional nucleation state by stabilizing nucleation base pairing (po-
sitions 2–6), allowing subsequent bulge formation and propagation
of the seed interaction [53,59]. An alternative hypothesis is that
noncanonical sites, since they are poorly conserved across species,
may act as evolutionary intermediates between nonfunctional sites
and canonical target sites with selection pressure going toward the
appearance of higher affinity sites [54]. In any case, functional
assays indicate a mild regulatory effect of these noncanonical sites
[50,53,57]. Therefore, the usefulness of considering both fully and
partially matching seed sites to improve MTI prediction is still a
matter of debate [60,61].

2.1.2. Compensation. While most studies consider a ‘‘canonical” site
to be a full seed pairing without a bulge, miRNA target sites can in
fact be divided into three groups: canonical (or seed only), atypical
canonical and noncanonical sites [14]. Canonical sites, which were
described in the previous paragraph, have strong 5’ pairing but
require little or no 3’ pairing. Atypical canonical sites have both
strong seed pairing and supplementary pairing on the 3’ side of
the miRNA. Finally, noncanonical sites have weak seed pairing
and strong 3’ pairing. One might think that atypical canonical sites
are more effective than seed sites only. However, evaluating the
effectiveness of 3’ supplementary pairing is very difficult due to
the number of pairing possibilities and the dependence on context
of this parameter [14]. Nevertheless, additional Watson-Crick pair-
ings of at least 4 nt at positions 12–17, especially from 13 to 16,
enhance miRNA targeting [50]. This type of strong compensation
is very rare (less than 2% of known conserved MTIs), although
when it exists, its target site is usually highly conserved across spe-
cies [2].

2.2. Site accessibility. The complexity of miRNA-mRNA interactions
leads to the rather weak efficiency of algorithms based on
sequence matching only. Additional parameters, such as thermo-
dynamics, UTR context or site conservation, must be considered.
Site accessibility is as important as individual nucleotide matches
in the seed since the action of a miRNA is mediated by a relatively
large silencing complex.
2.2.1. Thermodynamic effect. The most basic approach for consider-
ing the thermodynamic effect is to calculate the free energy, which
reflects the stability of the RNA binding sequences. This binding is
believed to form a stable, low-energy duplex. Therefore, lower
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energy values indicate a more plausible interaction. Since we are
in the context of miRNA interactions, constraints imposed by seed
pairing must be taken into consideration. The ViennaRNA R pack-
age is the most commonly used tool to calculate the free energy
of binding. It aggregates more than 20 programs/packages to solve
the structure of an RNA duplex using dynamic programming [62].
Rehmsmeier et al. found that forbidding intramolecular base pair-
ing and bulge loops seems to give a better free energy estimation
[63]. They also noted that taking several nt (10 and more) flanking
the target site improves the correlation between energy-based
scores and target repression [63,64]. Another possibility is to con-
sider the hybridization energy (DDG), which is the difference
between the free energy gained by the binding of the miRNA to
the target, DGduplex, and the free energy lost by unpairing the
target-site nucleotides, DGopen. This DDG score correlates well
with the degree of miRNA target repression for some interactions
but not all [64].
2.2.2. Target site context. Messenger RNAs can fold into highly
elaborated secondary and tertiary structures, and a perfect miRNA
sequence match might not be structurally accessible for binding.
Therefore, contextual features, such as the local AU nucleotide
composition, proximity to residues that can pair to miRNA nucleo-
tides 13–16, or positioning away from the center of long UTRs,
must be included in MTI prediction algorithms. Among all contex-
tual features, the AU content around the target site favors most of
the interactions with a miRNA [22]. Indeed, swapping a target site
from an open (AU rich) UTR structure to a close structure decreases
the site functions [64]. A possible explanation for this phenomenon
is that AU-rich sequences could be recognized directly by a RISC
component or may reduce the tendency to form stable RNA sec-
ondary structures that could interfere with RISC binding [65].
Although there is a high prevalence of MTI sites found in the 30-
UTR, some miRNAs can also regulate mRNAs by binding to the
50-UTR and the coding sequence (CDS) region of their targets
[66,67]. However, target sites in the open reading frame are not
as efficient as the other sites [51,68,69]. Interestingly, a recent
study showed that the sites in the CDS are quite potent at inhibit-
ing translation by inducing transient ribosome stalling instead of
mRNA destabilization [70,71]. Interestingly, some studies have
shown that miRNA interactions with different binding sites and/
or under different cellular conditions can increase mRNA transla-
tion [72–74]. However, the precise mechanism by which a miRNA
can enhance protein synthesis remains to be elucidated. Thus, it is
important not to restrict the search for MTI predictions to the 30-
UTR. Aside from localization, the number of repetitions of a target
site and their spacing on a given mRNA also affect the inhibition
efficiency of a miRNA [65,75]. Another important aspect to deter-
mine the possibility of an interaction, yet rarely taken into consid-
eration, is the expression level of both miRNAs and targeted
mRNAs [76]. Moreover, depending on the tissue or disease, a vali-
dated MTI can be more or less functional [77,78]. This might be due
to RNA-binding proteins that could block access to miRNA or
mRNA secondary structures in that particular tissue or disease
[78,79]. Conversely, certain RNA-binding proteins, such as PUM1
and Sfpq, have been shown to promote miRNA targeting [79,80].
These RNA-binding proteins in each tissue or disease of interest
must be considered to improve the predictions of MTIs.

2.3. Conservation. The level of conservation of a sequence corre-
sponds to its presence across different species. The use of the evo-
lutionary conservation of miRNA targets is motivated by the idea
that closely related species should share common MTI sites. How-
ever, most target sites are not fully conserved over their entire
length, with higher conservation often occurring in the seed region
than in the other sequences of the target site. Moreover, only the
percentage of 30-pairing is generally conserved and not the nucleo-
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tides themselves. Assuming that aligned sites within orthologous
genes have a common origin, it was proposed to quantify site con-
servation in a phylogenetic tree by summing the length of all
branches in which the site is present [81].

Of note, the level of conservation of a target site has to be esti-
mated with regard to the conservation of its mRNA region and its
length [2]. A stronger conservation profile has been associated with
increased mRNA downregulation as assessed by microarray exper-
iments and better MTI prediction [2,51,65,82,83]. Indeed, over 60%
of human protein-coding genes have conserved targets for miRNAs,
thus supporting the importance of this parameter [2]. However,
since functional nonconserved MTIs exist and mediate protein
translation inhibition [84], target sites cannot be filtered based
on conservation criteria only. Agarwal et al. also observed a
decrease in the performance of their predictor when considering
only highly conserved sites [60]. Therefore, an ideal equilibrium
must be found where conserved sites are favored as well as where
nonconserved sites are also retained. Friedman et al. reported a
high number of preferentially conserved 6mer sites [2], a surpris-
ing finding since, as mentioned above, 6mer sites typically have
poor efficacy when examined experimentally [50]. A possible
explanation for this result is that these sites are inactive (or less
active) forms of conserved 7–8mer sites. An alternative explana-
tion is that when binding with a 6mer, miRNA induces a function
other than repressing protein output. For example, a role in mRNA
subcellular localization could allow many 6mer sites to be con-
served while having a poor effect on protein level inhibition [2].
3. Computational prediction methods

As mentioned in the introductive part of this review, many
computational tools have been developed in the field of MTI pre-
diction. The main objective of prediction algorithms is to select
the most discriminative features within the categories of analyz-
able elements described above and to determine the best way to
compute them to obtain the most accurate prediction.
3.1. Sequence based.
3.1.1. Heuristic scoring models. The earliest attempt to identify
miRNA targets in silico was published by Stark et al. in 2003 [85].
The screening performed in this study was a simple two-step
procedure combining sequence comparison with HMMer (align-
ment tool) and site accessibility using Mfold. The resulting targeted
30-UTRs were then compared based on their conservation between
Drosophila pseudoobscura and Anopheles gambiae, and they suc-
cessfully validated 6 MTIs for two Drosophila miRNAs that they
predicted using this protocol. After analyzing the characteristics of
these 6 validated interactions, they described what we now know
as the seed region: nucleotides 2 to 7 at the 50 end of miRNA [85].

Following this initial report, many more studies have been per-
formed with the aim of improving and generalizing MTI prediction.
The vast majority of the described predictors utilize the seed-
matching parameter since most of the reported functional MTIs
have a 6mer or more. To determine this parameter, predictors
either filter sequences based on a defined set of rules for seed
matching [60,86] or use a score system that favors this feature
[24,87,88]. However, filtering based on seed rules seems too strin-
gent because functional MTIs can also have noncanonical seed
sequences (G:U wobble or bulge). In this regard, some methods
consider the binding of the first eight nucleotides as important
but do not restrict it to particular seed types [89–92]. MIRZA-G
(evolution of MIRZA [93]), for instance, is a recently published
algorithm that allows for nonperfect seed matches if the final score
for the site is above the author-defined threshold [83]. Predictors
such as RNA22 [3] that do not consider seed matching at all in their
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predictions are rather rare. In the case of RNA22, the algorithm
probes mRNA for patterns generated by comparing all known
mature miRNA sequences (as of 2006) and keeps only the most
similar ones. Sequence alignment results are almost always com-
plemented with site accessibility and evolutionary inputs. Tools
such as miRanda [88], RNA22 [3] and TargetScan [60,94] make
use of RNA folding prediction software, such as RNAVienna [62]
or Mfold [95] packages, to estimate the free energy of predicted
miRNA–target duplexes and filter out the candidates above a cer-
tain threshold. Interestingly, the authors of RNAhybrid [63] used
a different approach that avoids intramolecular base pairing and
bulge loops, which seems to improve the estimation of the free
energy [63]. In fact, some predictors, such as PicTar [24] and STar-
Mir [96,97], use the results of RNAhybrid to filter potential target
sites. As mentioned before, the authors of other predictors, such
as PITA [64], prefer to consider the hybridization energy (see
‘‘Thermodynamic”: II.B.1) to score miRNA–target duplex stability.
Out of all the site accessibility features, the local AU content is
the most implemented since it has been shown to favor MTI
[60,89,90,92,98,99]. The frequency of target sites along the mRNA
and the distance separating them are two other features often con-
sidered for target site context implementation [21,94,100]. The
value of site conservation is frequently advocated since omitting
nonconserved targets and not using this parameter drastically
decrease the specificity of the method [2,90,94,101]. This parame-
ter has been extensively analyzed by the authors of EIMMo [86],
who scored MTIs based on conservation criteria only and then used
Bayesian statistics to infer functionality. Therefore, EIMMo is quite
efficient at predicting the mRNAs targeted by a given miRNA but
not as sensitive at the target site level [102]. Feature implementa-
tion for all the algorithms cited thus far has been performed based
on literature data only. To better identify the combination of fea-
tures to use, the authors of miRmap decided to evaluate each of
them individually before integrating them. They first screened all
human transcripts for 7mer seeds and compared the performance
of eleven features mentioned previously on the results from seven
miRNA overexpression experiments obtained in five different stud-
ies. Based on this evaluation, they combined these features using a
linear regression model, thus making it the most comprehensive
MTI predictor at that time [98]. Similarly, TargetScan evaluates
26 features and eventually selects 14 to upgrade itself using a sim-
ilar model in 2015 [60]. Most algorithms store the identified inter-
actions in a publicly available database format, such as
miRWalk2.0 [60,103].
3.1.2. Empirical machine learning models. The limit of rule-based
methods comes from the complexity of MTIs. It is extremely diffi-
cult to take into consideration all possible aspects of these interac-
tions. Thus, another promising direction toward better MTI
prediction is data-driven (or machine learning, ML) algorithms.
There are many computational models available to build such an
algorithm. Unfortunately, there is no fixed rule to select one for a
given problem. In general, ML methods are categorized into two
groups depending on whether the output values are present in
the training data (supervised learning) or not (unsupervised learn-
ing). In the field of MTI prediction, all data-driven methods use
supervised learning regression (scoring system) or classifiers (cat-
egories) to differentiate functional from nonfunctional sites. The
performance of each method depends on the amount and quality
of the training data, the complexity of the relationship between
the inputs and outputs, and the local computational restrictions
(time and memory). Computational constraints depend mostly on
the number of features used [104]. Since an ML approach can only
be as effective as the dataset used to train it, a large high-quality
dataset is therefore primordial to build an accurate model. An ideal
experimental dataset would contain all types of functional MTI and
as many negative experimental examples, and it would also be free



Fig. 2. Basic schematics for the genetic programming (GP) and genetic algorithm (GA). Using seed region (SR) pairing, compensation (CP) pairing, thermodynamic (T) pairing,
target site context (TSC) pairing and conservation (CV) pairing on the training data, both the GP and GA will create subtree crossovers of parents A and B to form offspring C
and D. A fitness test is performed for each tree (parents and offspring) to decide which one is best suited for the classification of the training data.
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from any experimental biases. Since the precise mechanism of
miRNA binding is not yet completely known, the aim of a data-
driven algorithm is to find the best compromise of features to
obtain a generalization model [105] capable of classifying an MTI
in a binary fashion or according to a scoring method. Features
are ranked by a metric system such as F-score (harmonic mean
between precision and recall) or correlation coupled with statistics,
and the top-ranked features are selected to build the algorithm.
This procedure is known as feature extraction. To validate their
approaches, most authors use a k-fold cross validation technique.
In other words, a subset of the dataset is used for training the algo-
rithm and the other part is used for testing it. This process is per-
formed in general 10 times using different partitions of the original
dataset, and the performance results are averaged over the rounds.

3.1.2.1. Genetic programming. Genetic programming is an ML
method that generates functions (represented as trees) using the
different rules or features implemented to best describe a positive
interaction [106,107] (Fig. 2). One of the first ML models developed
with this method was TargetBoost in 2005 [107]. This model is one
of the rare types of algorithms that does not use the seed matching
criteria to predict MTIs. Instead, TargetBoost creates sequence
motifs from a set of 36 experimentally validated MTIs (from the lit-
erature) and 3,000 random strings of 30 nt as negative examples.
These motifs are then weighted with a boosting algorithm that
eventually returns a score indicating the probability of interaction.
Boosting algorithms combine a set of simple rules (or features) by
assigning to each one of them a weight. The idea is to form a single
model with better performance than each rule taken individually
[106]. The final score is calculated by summing the number of true
and false-positive/negative hits and the relative weights given by
the algorithm for each sequence. Feature extraction is not
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performed, and conservation or site density filters are not applied
in this model. The data from 3 miRNAs were used to train the
model, which was tested on the data of another miRNA using the
‘‘leave one out” method. Compared with RNAhybrid and another
algorithm named nucleus, TargetBoost was either as good as or
more performant depending on the dataset used for testing
[107]. To improve the performance of this type of model, a recent
study by Rabiee-Ghahfarrokhi et al. used a genetic algorithm
(Fig. 2) in combination with a C4.5 decision tree instead of boosting
[108]. The output of the C4.5 algorithm results in several rule sets
that can be taken as inputs for the genetic algorithm. First, their
algorithm was trained and tested on a small dataset taken from
the TarBase database (version 3.0) and containing 48 positive
and 16 negative examples [109–111]. They obtained 94% accuracy
using a 10-fold cross-validation method for testing. This perfor-
mance was confirmed by training and testing the model on a dif-
ferent dataset (taken from Ahmadi et al. [112]) containing 113
positive and 312 negative examples and therefore showed 97%
accuracy. The authors related the high performances of their
method to the set of rules used as inputs. However, in both cases,
the training and testing datasets were not independent, thus
increasing the likelihood that this algorithm will perform well.

3.1.2.2. Probabilistic based classifier. A commonly used method is to
model the relationship between the features and the output cate-
gories using probabilities with a naive Bayes (NB) classifier. In
other words, this model computes the probability that a feature
belongs to a certain class (in our case, positive or negative). An
MTI is then classified based on the product of the probabilities of
all features (Fig. 3) [104]. NBmiRTar is an example of such a prob-
abilistic machine learning method [113]. Using both ‘seed’ and
‘out-seed’ features, the NB classifier was applied to predictions



Fig. 3. Naive Bayes classification. The probability that a given interaction is positive or negative is calculated for multiple sets of features. The final decision of the algorithm is
the product of all probabilities.
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frommiRanda, with its scoring and free energy calculation taken as
filters. Moreover, the same dataset of 3000 random 30 nt strings
were used as negative examples for the TargetBoost method. Inter-
estingly, the two most important features in this model discrimi-
nate seed pairing mismatches (‘‘number of bulges in the seed”
and ‘‘number of bulges in the seed with length 1”). To avoid
excluding nonconserved MTIs, the authors did not use sequence
conservation in their model, which generates a large number of
MTIs. Nevertheless, they claim to be able to reduce this number
of MTIs while retaining most of the positive targets (10 out of
13) by using a high score threshold. However, the consistency of
this model needs to be tested on more than 13 positive targets.
Additionally, using a Bayesian probabilistic method, GenMiR3
[114] (an evolution of GenMiR++ [115]) considers the hybridiza-
tion energy, target site conservation (PhastCons algorithm [116])
and context information (5 sequence features) to establish a prior
probability for the target site to be functional. The authors tested
the performance of each feature using multiple linear regression
models and cross-validation and found that hybridization energy
had the greatest enhancing effect on the predictive power of this
model. Expression data for miRNAs and mRNAs were also used
to compute a final (or posterior) probability for the site to be func-
tional. Unfortunately, no performance evaluation is available for
GenMiR3. Interestingly, although the training data was restricted
to colorectal cancer MTIs, the CRCmiRTar authors compared differ-
ent ML approaches (NB, SVM, random forest (RF), artificial neural
network (ANN)) and found that the NB classifier was the most sen-
sitive and specific method [117]. This algorithm also proved to be
more efficient than other tools on an independent colorectal
cancer-specific test dataset. The tissue origin of the samples there-
fore seems to be a parameter that should be included in MTI
predictions.
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Another probabilistic model used for MTI predictions is the ran-
dom forest (RF) classifier. Each tree of the forest is a predictor that
depends on the values and order of a randomly selected subset of
features. When an unlabeled example is given to the algorithm,
each tree votes, with the majority defining the predicted class for
this example (Fig. 4) [118]. The mechanism used to grow the trees
allows us to easily estimate the most important set of features and
is also easily interpretable. An example of such a model is
RFMirTarget [119]. The authors used the dataset published by
Bandyopadhyay and Mitra [99] that contains 289 experimentally
validated functional pairs and 289 ‘‘systematically identified
tissue-specific negative examples” to train an RF classifier. Since
no site alignment was given in this dataset, they used miRanda
to define potential MTI site sequences and alignments. After test-
ing, their model proved to be more efficient on their training set
than other types of machine learning methods (support vector
machines and NB-based) and was able to identify more positive
targets than TargetSpy [120] and miRanda while generating a
higher false-positive rate. Using the same training dataset, a mul-
tiple instance learning random forest classifier (MIL-RF) called
MBSTAR was developed [77]. This model considers potential bind-
ing sites as instances and miRNA-mRNA pairs as bags. Thus, a bag
can contain several instances. If at least one of the instances is
labeled positive, then the bag is labeled as functional. Since the
authors of this algorithm deem the secondary structure of the tar-
get to be more important than site hybridization, the top features
used by MBSTAR are nucleotide patterns in the flanking areas of
the potential site and are not seed-related. MBSTAR achieves an
accuracy of 78% on a large independent dataset (2nd best is miR-
anda with 58%). Unfortunately, the authors did not perform a com-
parison with RFMirTarget, which is the closest related method to
MBSTAR. Recently, the authors of TarPmir used data from CLASH



Fig. 4. Random forest (RF) classifier. A) All data are randomly sorted into subsets to generate several trees using a predefined set of rules to optimize the split. In this example,
seed region (SR) pairing, compensation (CP) pairing, thermodynamic (T) pairing, target site context (TSC) pairing and conservation (CV) pairing are used. B) This specific tree
considers an interaction to occur if it possesses all necessary parameters to fall in one of the green leaves. The RF algorithm returns the prediction made by the majority of the
trees. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Nonlinear support vector machine (SVM). A) SVM constructs hyperplanes (gray dotted lines) in a multidimensional space (as many as the number of features being
used) that separates cases of different class labels. B) Biological data are rarely separable by straight lines, and a transformation is often used to obtain a nonlinear separation
model.
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(crosslinking, ligation, and sequencing of miRNA-RNA hybrids), a
high-throughput experimental method for identifying MTIs, to
train an RF-based model for MTI predictions [121]. The advantage
of CLASH compared to CLIP-seq experiments is that it provides
both the miRNA and the corresponding target sequences. The
training dataset was published by Helwak et al. in 2013 and con-
tains 18,534 MTIs for 399 miRNAs [57]. Since no other CLASH data-
sets were available at the time, the performances of this method
were tested on three independent PAR-CLIP datasets. Validated
MTIs were identified using DIANA-TarBase (v7.0) [109]. Although
TarPmir scored better than three other commonly used algorithms,
it only achieved 55% recall and 19% precision, leaving much space
for improvement. However, since CLASH data include many ‘‘non-
seed” MTIs, TarPmir can better predict most sites of this type.

3.1.2.3. Support vector machines. Support vector machines (SVMs)
are machine learning algorithms generated to identify the best
hyperplanes (linear separation between positive and negative
data) while maximizing the margin of error. The training data
points that are on the margin hyperplanes are called ‘‘support vec-
tors”. In the field of biology, however, it is impossible to separate
all training data points by a straight line. Thus, some will be located
within the margin or on the wrong side of the hyperplane. SVMs
are then formulated to soften the impact of these points or use
more support vectors. SVMs often use a nonlinear curve to create
a decision boundary between data points (Fig. 5) [104]. Most SVMs
used for MTI prediction are nonlinear and based on a similarity
function called a kernel between pairs of samples (miRNA:mRNA)
[89,91,92,99,122]. MiTarget was one of the first algorithms to
implement an SVM to predict MTI and showed equal performances
to popular predictors, such as miRanda, TargetScan or RNAhybrid
[92]. Interestingly, SVMicrO implemented two SVMs, one for the
site and one for UTR-related features [89]. Naturally, the most
important feature of the site-SVM is seed-based, although conser-
vation of the 3’ context region of the interaction was the 2nd best
ranked feature. The debate over the use of conservation criteria has
been quite active in the field of SVM, with some researchers not
using it at all and others showing that it is an important parameter
[56,89,92,120,122]. For the UTR-SVM of SVmicrO, predictions
result mainly from the number of positive sites in the UTR (the
greater the better) and the score of each of these sites (the higher
the better) as well as the length of the UTR. At the time of writing
this review, SVMicrO showed overall better performance than Pic-
tar, miRanda, mirTarget, TargetScan and PITA; however, this tool
has never been updated and is no longer maintained. In the SVM
approach MiREE, a hybrid solution is proposed by combining
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genetic programming for miRNA duplex characteristics (sequence
homology and thermodynamics) and a nonlinear SVM for context
features [91]. Similar to SVMicrO, its most important features are
seed-related. This method obtained a 95% accuracy on human
MTI predictions, which is higher than the other methods compared
in this review (2nd best is miTarget at greater than 60%). Surpris-
ingly, the Avishkar predictor used a linear SVM model because it
has the advantage of being directly interpretable from the weights
of each feature and easy to implement [56]. However, as men-
tioned above, this type of machine learning is expected to perform
poorly due to the complexity of MTIs. As a result, even though
Avishkar obtained a 98% recall on human MTI, the method showed
poor accuracy, with 30% of all predicted targets being misclassified.
Interestingly, Li et al. proposed improving the performance of
miRNA target prediction by searching a second MTI on the whole
mRNA sequence after finding one in the 3’-UTR [123]. Thus, they
trained an SVM on a two-site search dataset of validated MTIs from
miRecords and pSILAC (quantitative proteomics) experiments.
When tested on an independent dataset, it showed higher perfor-
mance than other commonly used methods (PicTar, MirTarget2,
miRanda, PITA, TargetSpy, TargetMiner, and TargetScan). To
improve both the prediction model and the training dataset, Lu
et Leslie created chimiRic, a two-SVM model based on CLASH and
AGO-CLIP sequencing data [124]. One SVM uses both data types
for duplex prediction, and the other serves for AGO site discrimina-
tion (true or not). This strategy has the advantage of training on a
large dataset of interacting miR-target duplexes but does not guar-
antee their functionality. Nevertheless, it shows a superior perfor-
mance to MIRZA, MirTarget, TargetScan, miRanda and Diana-
microT-CDS.

3.1.2.4. Artificial neural networks. Artificial neural networks (ANNs,
also called neural networks) have been developed using intercon-
nected neurons in the brain as a model. Features are used as input
nodes in this model to feed the ‘‘neurons” or working units of the
algorithm, which then create new combinations (hidden layers) of
these inputs following principles such as fuzzy logic, genetic algo-
rithm or Bayesian statistics, and a prediction is eventually
returned. Weight factors are assigned to each neuron to modulate
its impact on the predicted result. The model is computed to be
adaptive so that weight factors and neuron ordering can change
to best suit the training data [125] (Fig. 6). One of the first MTI pre-
diction methods using an ANN was MTar [126]. Unlike most of the
current algorithms, which heavily focus on seed region matching,
MTar aimed to efficiently identify MTIs regardless of the type of
interaction. It first calculates a complementarity score to deter-



Fig. 6. Neural Network. Selected features (here, seed region (SR) pairing, compensation (CP) pairing, thermodynamic (T) pairing, target site context (TSC) pairing and
conservation (CV) pairing) are used as input signals in this feedforward partially connected neural network example. Each node decides what to send to the next node
following various principles, such as fuzzy logic, genetic algorithms or Bayesian statistics. Weight factors are applied to each edge. Eventually, an output layer will combine all
results in one or several nodes (one in this example), thus allowing the classifier to make a decision. The model can change the weights and node ordering to best classify the
training data.
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mine the category into which the site falls: 5’ seed-only, 5’ domi-
nant and 3’ canonical (determined from Betel et al. [90]). Three dif-
ferent ANNs were trained depending on the site category. They
contain 16 input nodes, 9 neurons in the hidden layer and 1 unit
in the output layer. This method produces more than 90% fewer
targets for each miRNA compared to conventional methods with
94.5% sensitivity and 90.5% specificity. Using a very similar model
to that of MTar, HomoTarget uses a pattern recognition neural net-
work (PRNN) coupled with principal component analysis (PCA) for
feature selection [112]. It contains 16 input nodes, 14 neurons in
the hidden layer and 2 units in the output layer. Unlike MTar,
HomoTarget focuses on the seed region to predict MTIs since it fil-
ters sequences based on standard seed rules. HomoTarget was
trained on a dataset of 425 examples and showed 99% specificity
using cross-validation. These two algorithms quickly achieved high
performance values due to the limited number of duplexes in their
training and testing datasets. It would be interesting to test them
on independent and larger datasets.

3.1.2.5. Training datasets. As mentioned above, a good training
dataset needs to have a high number of high-quality examples.
The training dataset is a critical aspect of all machine learning
methods. A major challenge in creating an MTI dataset is to gener-
ate real negative examples. The strategy of creating random
nucleotide sequences of varying lengths was tried for a few models
but was then quickly disregarded because such sequences often
interact with miRNAs, as shown in the signal-to-noise ratio exper-
iments of previous studies [24,92,94,107,113,127]. TargetMiner’s
authors (who later also created MBSTAR) emphasized this issue
[99]. Instead of generating random sequences as negative MTIs,
they crossed the predictions of other algorithms (miRanda, Tar-
getScanS, PicTar and DIANA-micro-T) with microarray experi-
ments. If a miRNA and its potential targeted mRNA were both
overexpressed in a given tissue, then this pair was retained as a
negative example. Using this method, 289 negative MTI were gen-
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erated. A subset of negative examples was then confirmed on a
separate pSILAC dataset [128]. To complete the dataset, 289 exper-
imentally validated positive sites were retrieved from miRecords
and TarBase [109,110,129]. Using an independent dataset (187
positive and 59 negative pairs), TargetMiner showed 74% accuracy
when NBmiRTar and MirTarget2 only had 51% and 46%, respec-
tively, (lower than reported in their original publications), clearly
showing the importance of the testing dataset in performance
evaluation. Furthermore, they showed that TargetMiner performs
better when trained with their negative dataset than with an arti-
ficially generated negative set. They confirmed this finding by
obtaining similar results with the model of NBmiRTar when
repeating the experiment. While validated interactions are most
often taken from miRecords or TarBase, some predictors, such as
MirTarget2, TargetSpy and Avishkar, were directly trained with
positive interactions inferred from microarray or CLIP-seq experi-
ments [56,120,122]. The development of high-throughput methods
fostered the tendency to include the largest number of interactions
regardless of functional testing. Several datasets used by many pre-
dictors marked the history of MTI prediction methods, such as
those reported by Linsley et al. in 2007 (microarray), Selbach
et al. in 2008 (pSILAC), Chi et al. in 2009 (HITS-CLIP) or Hafner
et al. in 2010 (PAR-CLIP) [53,128,130,131]. As mentioned in the
introduction, miRNAs do not necessarily reduce mRNA levels; thus,
microarray data insufficient to fully reflect the action of a miRNA.
The use of complementary proteomics data is recommended in this
case. Moreover, underexpressed mRNA/protein levels measured by
high-throughput experiments can be due to indirect effects of
miRNA action [132]. Recently, some predictors were trained on
CLASH experiments, which identified both AGO-binding miRNAs
and target sites on a transcriptome-wide scale. However, some
caution must be taken with CLASH data because several issues
related to the specificity of the ligation and the functionality and
exhaustivity of the captured MTIs remain unsolved [39,124]. At
present, as difficult and expensive as it might be to acquire the
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data, combining all these technologies (CLIP-seq, CLASH, microar-
ray and pSILAC) seems to represent the best solution for the use
of large training datasets.

3.1.3. Commonly used prediction tools. Most if not all prediction
algorithms are usually compared to miRanda, Diana-microT-CDS
and/or TargetScan because these three heuristic scoring methods
have generally be used by biologists to identify MTIs prior to
wet-lab experiments. Their popularity is due to their long history,
frequent updates and strong adaptation ability to new advances in
MTI prediction.

In the direct foot-step method proposed by Stark [85], miRanda
(2003) was developed to further identify MTIs in animals. MiRanda
uses the ViennaRNA package to calculate the thermodynamic fold-
ing energy of interaction and a scoring matrix, and it assigns values
for each nucleotide pairing, with the higher scores used for seed
matching [88]. Site conservation is also included in the tested fea-
tures, and the results are ranked according to the conservation
score. From 2004 to 2010, miRanda was upgraded to integrate tar-
get site context (global, local and at the duplex level), with a final
scoring performed by a support vector regression algorithm
(mirSVR) based on mRNA expression change [90,133]. The authors
trained mirSVR on a set of nine microRNA transfection experi-
ments performed in HeLa cells by Grimson et al. [50]. The score
resulting from mirSVR is intended to estimate the efficiency of
miRNA action on a given target site and not the probability of reg-
ulating this site. With this model, the authors found that the most
important features are related to the seed region. The upgrading of
mirSVR showed significantly better performances than the previ-
ous version of miRanda and seems slightly above TargetScan [90].

Diana-microT is an algorithm published in 2004 that first
searches for miRNA-recognition elements (MREs) in the 30-UTR of
a mRNA, including Watson-Crick pairing identification and mini-
mum binding energy calculation using a 38-nt window. A second
parameter takes into account the miRNA-associated protein com-
plex, which impacts both the pairing between the miRNA and its
target and the site accessibility [134]. In 2009, microT was updated
to filter MREs that do not have at least a 7mer in the seed region.
The authors also decided to integrate the conservation profiles of
MREs using 27 species. Eventually, each considered 30-UTR is
ranked by the weighted sum of the scores of all its identified MREs,
and a precision score is calculated by comparing the results with a
set of mock miRNAs. An enrichment analysis was also performed
with all potential MREs for a given miRNA using the KEGG pathway
database. The results are highlighted in the significant pathways
that were identified [135]. In 2012, the algorithm was renamed
DIANA-microT-CDS because numerous studies have shown that
the mRNA coding region can be targeted by a miRNA with a mea-
surable effect on its degradation. Therefore, microT is now used to
screen for MREs in this mRNA region, and associated conservation
scores are also calculated. Moreover, a dynamic programming
algorithm identifies the optimal alignment for the miRNA
extended seed sequence (nucleotides 1–9 from the 50-end of the
miRNA) with a 9-nucleotide window on the 30-UTR or CDS. The
prediction method scores the 30-UTR and CDS region differently
and then combines these scores to create the final estimation for
the whole mRNA [136]. This last update showed better perfor-
mance than miRanda and TargetScan at the time of its publication
in 2012.

Released as a freely available web tool in 2003 by Bartel’s group,
TargetScan first used conservation of miRNAs and mRNA UTRs as a
filter and then seed matching (length and frequency), 30 compensa-
tion and folding free energy as prediction features [94,137]. The
algorithm progressively evolved (last version: v7.2, 2018) to take
into consideration all analyzable elements of MTIs that were previ-
ously described [2,50,60,137–139]. TargetScan broke down these
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elements into 14 features using multiple linear regression models
(one for each of the four common seed types, off-set 6mer
included) trained on microarray datasets published by Garcia
et al. in 2011 [138]. The resulting models were collectively called
the context++ model. When multiple sites are present, individual
context++ scores are summed to rank the predicted 30-UTR. Over
time, site conservation has become one of the features of TargetS-
can and is no longer used as a filter. With a relatively weak contri-
bution to the context++ score, nonconserved targets can even
represent the top prediction. After thoroughly analyzing CLIP data-
sets, the TargetScan authors concluded that ‘‘noncanonical sites
might exist but have not yet been characterized to the point that
they can be used for miRNA target prediction”; therefore, they
did not include these sites in their predictions [60]. They also eval-
uated the use of other more complex types of regression (e.g., lin-
ear regression models with interaction terms, lasso/elastic net-
regularized regression, multivariate adaptive regression splines,
random forest, boosted regression trees, and iterative Bayesian
model averaging) but did not find any improvement compared to
that of linear regression models [60]. This result is consistent with
a similar test performed by Vejnar et al. in 2012 [98]. The version of
TargetScan described in 2015 showed better performance than 15
other predictors (miRanda and microT included) when tested on
the dataset from Linsley et al. [131]. With 8 publications describing
its content and updates, TargetScan is currently the most widely
used MTI prediction tool by the scientific community (more than
1700 citations from PubMed as of November 2020) [102,140,141].

3.2. Data combination
Due to the moderate overlap of the results (5–70%) between all

previously cited methods [142], investigators often combine the
predictions of different tools to obtain mainly true positive MTIs.
Several strategies to combine MTI predictions have been proposed
as described below.

3.2.1. Union and intersection. Assuming that an interaction pre-
dicted by more than one algorithm is more likely to be functional,
databases such as miRWalk, miRSystem or miRGator store and
compare results predicted by several tools using statistics and/or
mRNA/protein expression data [103,143–146]. Using such an inter-
section strategy, Kuhn et al. validated the interaction of the human
angiotensin II type-1 receptor (hAT1R) with hsa-miR-155 and sug-
gested based on their findings to cross results between at least two
MTI predictors before undertaking experimental investigations
[147]. Ritchie et al., however, demonstrated that targets resulting
from the intersection of two lists of predictions are not more likely
to be present in the intersection of two other lists [46]. Therefore,
intersecting results do not increase the probability of retaining true
positives. Moreover, approaches based on the intersection of pre-
dictions may lead to decreased sensitivity by possibly omitting
valid interactions, as shown by Sethupathy et al. [148]. In fact, Oli-
veira et al. [149] showed that union of the results obtained by sev-
eral prediction tools was more efficient than their intersection.
However, when ranking MTIs is required, this method should not
be used since it increases the rate of false positives and therefore
decreases the specificity of the predictions, which is the most
important aspect for ranking purposes. Nevertheless, these data-
bases have the advantage of giving a wide panel of predictions
for a given miRNA, with an edge observed for miRWalk, which
has been recently updated [103]. Overall, most users do not have
enough understanding of MTI predictions to decide which data-
base to take or remove from the union and intersection strategies
to be efficient.

3.2.2. Ensemble methods. Because of the limits of the intersection
strategy, the union with a rescoring method has been used to
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better rank MTIs according to the likelihood of being true. This
strategy was first explored by DeConde et al. in 2006 using an algo-
rithm that combines ranked lists of miRNA targets from five
microarray studies and a reranking of the targets using a statistical
test proposed by Tusher et al. [150,151]. The performance of this
method compared to other tools was not evaluated. Although this
work was performed using experimental data, other methods have
used aggregation strategies on MTIs predicted by several com-
monly used tools. For example, MiRror-Suite gathered predicted
and/or validated MTIs from 18 databases and allowed for the anal-
ysis of approximately 40,000 genes and 2,500 miRNAs [152]. The
aggregation strategy consisted of creating a set of potential targets
using several filters (species, miRNA family, cell line, number of
databases, etc.) and then calculating the probability of anMTI being
functional based on a hypergeometric test. However, the ranking
performances of this algorithm were not compared to that of other
methods. Alternative strategies were tested, such as ExprTarget,
which used a multivariate logistic regression model to combine
the scores of 3 databases (miRanda, PicTar and TargetScan) and
which clearly outperformed other methods based on aggregation
[153]. The good performance of similar combination approaches
was also confirmed with a model that aggregated 9 predictive algo-
rithms [154]. Others, such as BCmicrO and ComiR, have used more
complex strategies for the combination step with an NB classifier
for BCmicrO and an SVM for ComiR [155,156]. Interestingly, ComiR
takes into consideration the expression levels of miRNAs in its
rescoringmethods. Of note, ComiRwas designed to specifically pre-
dict the targets of a set of miRNAs and to consider combinatory
interactions. As expected, all aggregationmethodswere able to out-
perform in terms of MTI ranking and each aggregated database was
considered individually. This finding was also confirmed with our
aggregation method named miRabel using a very large dataset
(982,411 common interactions) [157]. MiRabel uses a statistic R
package (RobustRankAgreg) to rescore MTIs according to their
ranks in 4 databases (miRanda, PITA, SVMicrO and Target). This
recently published method showed better or equal ranking speci-
ficity when compared to other (not aggregated) popular prediction
tools. The biological relevance of combined miRNA target predic-
tions from multiple prediction algorithms can also be enhanced
by prioritizing results based on functional ranking (inferred from
Gene Ontology and enrichment analysis) [158].
4. Performance evaluation

Since prediction tools are designed for biologists, the ease of use
should be a criterion in the overall performance. These tools are
usually presented in three different platform types: web service,
downloadable programs or R/python packages. The first type is
the most commonly used because of its user-friendly features;
however, ease of use is generally inversely related to flexibility;
thus, this tool offers the least degree of freedom in sequence anal-
ysis [140].

Programs that exhibit a greater correlation between their pre-
dictions and protein or RNA downregulation are commonly consid-
ered state-of-the-art tools [41]; however, this would not be the
case if the downregulation was directly due to miRNA transfection,
which is far from being certain in high-throughput experiments
because the experimental conditions can induce false positives.

A more interesting and widely used evaluation method is the
area under the receiver operating characteristic (ROC) curve
(AUC), which is now well recognized for its capacity to evaluate
the performance of classifiers [159]. It plots the sensitivity or true
positive rate (TPR) against specificity or false-positive rate (FPR)
with TPR = TP/(TP + FN) and FPR = FP/(FP + TN). An MTI is consid-
ered to be a true positive (TP) if it has been predicted and experi-
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mentally validated, a true negative (TN) if it has been neither
predicted nor validated, a false-positive (FP) if it has been pre-
dicted and not validated, and a false negative (FN) if validated
but not predicted. TPs are readily available through several data-
bases, but this is unfortunately not the case for tested but not val-
idated interactions. Therefore, in the field of MTI prediction, a
nonnegligible part of FPs and TNs are mislabeled, thus creating
biases in ROC analyses [154]. To complement the ROC analysis,
the precision (TP/(TP + FP)) can be plotted versus the recall (same
as TPR), and the AUC can also be used for classifier performance
evaluation (PR analysis) [160]. An alternative is to plot the cumu-
lated precision versus the normalized scores (sorted in descending
order) [154]. Both methods have the advantage of not taking TN
into consideration, which minimizes the number of mislabeled
MTIs in the analysis. The problem is not completely solved, how-
ever, since the accuracy of these methods still depends on the
included FP. The use of both ROC and PR analysis is thus recom-
mended for complete performance evaluation of an MTI prediction
tool. Unfortunately, not all published algorithms use the same type
of parameters to evaluate the performance, which makes compar-
isons almost impossible. A common pitfall that has been increas-
ingly avoided is to use the training dataset to evaluate prediction
performances. Indeed, using several datasets to truly evaluate the
performances of predictors is crucial. To address this issue, several
independent reviews have already benchmarked some of the pre-
viously presented tools, with some predictors being in all bench-
marking papers [102,146,161]. Using all the measurements
mentioned above and additional measurements, Fan and Kurgan
[102] compared 7 target predictors with 4 testing datasets.
Although TargetScan and miRmap appeared to be the strongest
in this report, a consistent best predictor was not observed across
all the possible measurements. Of note, TargetScan performs sys-
tematically well in the vast majority of studies comparing MTI pre-
diction algorithms, and it is closely followed by Diana-microT-CDS
and miRanda-mirSVR.

These prediction tools are often misused because they do not
predict the biological functionality of the interaction between
miRNA and mRNA. Indeed, it is unlikely that each predicted miRNA
target is sufficiently dose-sensitive to be functionally regulated by
miRNAs. Moreover, several studies have shown that some miRNA
target prediction software programs are contaminated by high
false-positive rates, although this information is rarely emphasized
[162,163]. Thus, some mRNAs can efficiently titrate miRNAs, which
may contribute to the conservation of miRNA binding sites for inef-
fectively repressed targets. Another possible explanation would be
that phylogenetically conserved interaction sites are conserved for
reasons independent of their interaction with miRNAs, which
would lead to the overconservation of seed sequences and thus
to an increase in the false-positive rate. A better understanding
of MTI prediction will likely improve the performance of these
bioinformatics tools.
5. Summary and outlook

All miRNA target prediction algorithms use a combination of
the sequence, site accessibility and conservation features to iden-
tify potential MTIs. However, since the mechanisms of miRNA
action are not yet fully understood, predictors still have a high
false-positive rate. To improve the accuracy of these tools, different
computational methods have been tested. However, none thus far
has shown a systematically higher performance regardless of the
parameters considered. Surprisingly, empirical methods do not
seem to perform better than heuristic methods, suggesting that
current training datasets do not efficiently capture all possible
MTIs. Additionally, standardization methods are required to com-
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pare the algorithms. MTI prediction is challenging, and overcoming
the difficulties will require closer coordination between multidisci-
plinary teams. Overall, 3 predictors, TargetScan, miRanda and
Diana-microT, perform well, as reported in benchmarking reviews
[102,146,161]. Until better algorithms are developed, ensemble
methods seem to be the most efficient strategies to obtain an inte-
grated vision of target predictions for a given miRNA. Ultimately,
efficient MTI prediction will reduce the time and resources spent
validating miRNA targets and therefore increase the ability of
molecular biologists to elucidate the role of miRNAs and their tar-
gets under physiological and pathological conditions.
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