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ABSTRACT

Much of the inter-individual variation in gene expres-
sion is triggered via perturbations of signaling net-
works by DNA variants. We present a novel proba-
bilistic approach for identifying the particular path-
ways by which DNA variants perturb the signaling
network. Our procedure, called PINE, relies on a sys-
tematic integration of established biological knowl-
edge of signaling networks with data on transcrip-
tional responses to various experimental conditions.
Unlike previous approaches, PINE provides statisti-
cal aspects that are critical for prioritizing hypothe-
ses for followup experiments. Using simulated data,
we show that higher accuracy is attained with PINE
than with existing methods. We used PINE to ana-
lyze transcriptional responses of immune dendritic
cells to several pathogenic stimulations. PINE identi-
fied statistically significant genetic perturbations in
the pathogen-sensing signaling network, suggesting
previously uncharacterized regulatory mechanisms
for functional DNA variants.

INTRODUCTION

With the advent of transcription profiling technologies, it is
now possible to identify genetic associations between DNA
variants and gene-expression traits (1,2). Such methodol-
ogy, called expression Quantitative Trait Loci (eQTL) anal-
ysis, is highly successful in identifying DNA variants and
their ‘associated genes’ (3), but cannot as yet reveal the
mechanisms translating between a variant and transcrip-
tional diversity in a population. A critical prerequisite for
understanding expression diversity is knowledge of the sig-
naling pathways through which DNA variants perturb the
functionality of the molecular network. In this article we re-
fer to a signaling pathway as a ‘branch’ within a network;
a ‘perturbed branch’ is a network branch whose function-
ality is altered as a consequence of direct interaction with a
DNA variant.

Several approaches have been developed to identify the
perturbed branch of a DNA variant within a given interac-
tion network. The underlying assumption in these methods
is that the network of protein–protein and protein–DNA
interactions spread the signals from the perturbed branch
toward the associated genes. Accordingly, for each variant
these algorithms prioritize network branches that are proxi-
mal to the associated genes (e.g. using a random walk model
(4) or an electric circuit (5)). Although these methods per-
form well when applied on eQTL data measured in a sin-
gle condition (e.g. a baseline cell state), their biological rel-
evance is limited in the case of changing environments. In
particular, when these algorithms are used to identify per-
turbed branches, the assumption is that the associations
hold under all experimental stimulations, whereas in fact,
genes are found to associate only in a subset of these stim-
ulations (6).

In attempting to identify the perturbed branch of a DNA
variant in a given network, both the position of the associ-
ated genes in the network and the stimulus specificity of the
associations should be considered. We recently developed
a powerful approach called InCircuit, which utilizes eQTL
data across multiple stimulations to improve the quality of
predictions (6). InCircuit relies on a typical signaling net-
work that transfers environmental stimulations through a
series of reactions and interactions. Using the known posi-
tions of the stimulation components within this network, it
is possible to infer the set of stimulations whose signals are
transferred through each of the network’s branches. Given a
variant, InCircuit predicts one or more perturbed branches
based on a full agreement between (i) the subset of stimu-
lations in which the target genes associate with the variant
and (ii) the subset of stimulations whose signals propagate
through the network branch. This deterministic approach
provides a list of predicted perturbed branches but cannot
assess the statistical significance of these predictions.

Here we present PINE (‘Perturbations In NEtworks’),
an algorithm that combines prior knowledge about a sig-
naling network together with transcription data across sev-
eral stimulations and multiple genotyped individuals so as
to provide statistically significant hypotheses about network
branches perturbed by particular DNA variants (Figure 1).
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Figure 1. An overview of the PINE approach. (A) PINE takes as input
transcriptional responses of multiple genes (g1, g2) under several stimula-
tions (s1, s2) across a population of individuals (i1−i6; left). Each individ-
ual is further accompanied by genotyping data of the DNA variant un-
der study (variant x; middle; since we focus on fully homozygous lines,
the allele in one chromosome is sufficient). In addition, PINE takes as in-
put a signaling network (right). (B) For each candidate perturbed branch
(b1−b5) PINE calculates a statistical significance score, the ‘PINE P-value’
score, which evaluates the match between model predictions, genotyping
data and transcriptional response measurements. PINE P-value calcula-
tions of candidate perturbed branches b2 and b4 are detailed in Figure 2.
(C) In the exemplified case, only a single high-scoring branch exists. The
output is therefore an extended signaling network model that includes an
embedding of variant x within the network branch b2. When multiple high-
scoring branches exist, the PINE framework allows additional analyses
(not shown in this illustration) to resolve the best-fit perturbed branch.

Our algorithm assumes that DNA variants affect the func-
tionality of network branches when transmitting stimula-
tion signals and that the network positions of all transcribed
genes associating with these variants are known. PINE is
currently designed for the analysis of fully homozygous re-
combinant inbred strains that are commonly investigated
in genetic studies (1). Notably, several benchmarks indicate
the high quality of the PINE algorithm. First, we demon-
strate the good performance of the PINE method on simu-
lated data, outperforming existing methods. Secondly, we
demonstrate PINE’s robustness in the case of erroneous
prior knowledge about the transcribed genes in the signal-
ing network. Finally, we applied PINE to gene-expression
data in a large population of (genotyped) recombinant in-
bred BXD mouse strains (7,8), obtained during the in vitro
response of immune bone marrow-derived dendritic cells
(DCs) to three pathogenic-like stimulations: synthetic tria-
cylated lipoprotein Pam3CSK4 (PAM), lipopolysaccharide
(LPS) and polyinosinic-polycytidylic acid (poly I:C) (6).

These stimulations affect the Toll-like and Retinoic acid-
like receptors (TLR/RLR), and share downstream network
branches and transcribed genes along several inflamma-
tory and antiviral signaling pathways (9,10). Using this net-
work as input, PINE suggests a single most-significant per-
turbed branch for four different variants, thereby providing
an in-depth view of inherited variation in the mammalian
TLR/RLR signaling network.

MATERIALS AND METHODS

Overview of the PINE algorithm

We developed PINE, a probabilistic graphical model (11)
to reconstruct the network branch perturbed by a particu-
lar DNA variant. Our model is focused on DNA variants
that alter the propagation of responses to stimulations, but
have no effect in the absence of stimulation. Given a certain
variant, the input for the PINE algorithm should include:
genotyping data for the DNA variant across a group of in-
dividuals from a given collection of fully homozygous lines
(Figure 1A, middle); a list of environmental stimulations;
a group of genes that all associate with the requested vari-
ant following at least one of the environmental stimulations
under study; and transcription responses of all genes in this
group, following each of the input stimulations and across
the same cohort of individuals (Figure 1A, left). In par-
ticular, such transcriptional ‘responses’ are defined as the
changes (increase or decrease) in the levels of gene expres-
sion following stimulation, relatively to the baseline gene ex-
pression levels.

Another important input for the PINE algorithm is a de-
tailed predictive model of a signaling network that medi-
ates transcriptional responses to stimulations (Figure 1A,
right). The network’s components (nodes) are the stimula-
tions, the associated genes and the proteins that mediate
between them; branches (edges) in this network represent
the influence of one component on another component in
response to stimulations. Similarly to standard predictive
modeling approaches, the network describes how each of
the stimuli triggers a certain response signal that propagates
through the network until it influences the transcriptional
responses of its downstream genes. When adding a vari-
ant to a certain branch, the network can also describe how
the alleles of this variant determine (‘perturb’) the propaga-
tion of signals through this branch, which in turn trigger in-
herited variation in the transcriptional responses of down-
stream genes (see demonstration in Supplementary Figure
S1).

Given these inputs, the PINE algorithm searches exhaus-
tively for a perturbed branch that can explain the measured
transcriptional responses to various stimulations across in-
dividuals and across genes (Figure 1B and C). The underly-
ing rationale of PINE is that when the causal DNA variant
is added to affect a particular branch, it improves the match
between the model’s predicted responses and the measured
responses of the differently genotyped individuals. Based on
this premise, the ‘PINE P-value’ evaluates the fit between
model predictions and measurements and is used to guide
the search for significant hypotheses. All branches that at-
tain PINE P-values that are lower than a certain threshold
are referred to as ‘significantly-perturbed branches’.
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As an example, Figure 2 provides a detailed illustration
showing how the PINE P-value score is attained in the
dataset presented in Figure 1A. In this dataset, each indi-
vidual carrying the ‘AA’ genotype in a variant x shows a
lower response of genes g1 and g2 to stimulation s2 com-
pared to those individuals carrying the ‘GG’ genotype. Such
an effect is observed under stimulation s2 but not under
stimulation s1 (Figure 1A, left). Given a stimulus, it is pos-
sible to determine the predicted response of each network
component and examine the fit of these predictions to the
measured transcriptional responses of the genes. Notably,
the general model, which does not include the functional
variant x, cannot successfully predict the entire population
and the result is a poor PINE P-value (in this case, high
predicted responses in all genes and stimuli, which do not
fit the low responses of individuals i1−i3 to the s2 stimu-
lus; Figure 2A). However, a model that includes variant x
interacting with branch b2 fits well with the response data
and yields a highly significant PINE P-value (Figure 2B).
Upon interaction of variant x with a wrong branch, which
has a different profile of triggering stimuli and downstream
genes, the resulting P-value is non-significant because of the
lack of fit between model predictions and data (e.g. branch
b4; Figure 2C). Taken together, the PINE algorithm gener-
ates hypotheses of the form ‘DNA variant x perturbs a cer-
tain component within a network branch b2, which is trig-
gered by stimulation s2 and affects its downstream signal-
ing branches b3, b4, b5 and the transcriptional responses of
downstream genes g1 and g2’ (Figures 1C and 2B).

The analysis of network branches falls in one of three
main classes. In the first class, a network includes only a
single branch that improves the fit between model predic-
tions and data (e.g. Figures 1 and 2), suggesting a single
mechanism for the network perturbation. The second class
considers the presence of two or more highly-significant
perturbed branches, where none of these branches out-
performs the remaining branches. This may reflect several
branches that cannot be prioritized, possibly due to multi-
ple variant-network interactions, or alternatively, an incom-
plete prior network model or multiple branches that act in
a degenerate fashion. The third class also consists of several
significantly-perturbed branches, but in this case, one of the
branches outperforms the remaining branches; this suggests
that though several branches propagate the variation in re-
sponse, only one ‘leading branch’ directly interacts with the
variant and hence likely provides a better model compared
to all other branches. As the leading branch may not be ap-
parent using the PINE P-value score (which cannot be used
to compare different branches), we further suggest a ‘lead-
ing P-value’ score that is capable of directly comparing two
candidate branches.

Both the PINE and the leading scores are required
to achieve a comprehensive view of perturbed branches:
whereas the second class of branches can only be captured
by the PINE P-value score, the leading P-value score is
essential for identifying the leading branches of the third
class. In accordance, the PINE framework is applied as fol-
lows: we first calculate the PINE P-values (as exemplified in
Figure 1A and B) thus identifying significantly perturbed
branches that fall in all three classes. In case of multiple

branches with highly significant PINE P-values, further pri-
oritization can be achieved using the leading P-value score.

The PINE algorithm

The PINE input. Given a certain variant x and a collection
of m individuals I = {i1,, ..., im}, PINE takes as input three
types of data:

(i) Transcriptional response data for a given group of
genes G(x) = {g1,, ..., gt}, such that t is the number of
genes that are associated with variant x. We indicate
the response dataset for the gene group G(x) by RG(x).
This dataset includes the responses of all genes in G(x)
following a group of n stimulations measured across
all m individuals. The ‘response’ of a gene following a
stimuli in a given individual is defined as the log ra-
tio between that gene’s expression level after stimula-
tion and its baseline expression level. Importantly, each
measurement in RG(x) is annotated with the actual ex-
periment that was performed, encompassing the com-
bination of states of all n stimulation variables, referred
to as a ‘stimulation configuration’ S = {s1,, ..., sn}. A
stimulation state can be either 0 (absence of stimula-
tion) or 1 (presence of stimulation). For example, if our
dataset consists of three different stimulations, the con-
figurations would be {1,0,0}, {0,1,0} and {0,0,1}.

(ii) Genotyping data of the causal DNA variant x of group
G(x) across the same m individuals, where x(i) denotes
the genotype of variant x in individual i. Here x(i ) ∈
{a, ā}assuming fully homozygous lines (i.e. two possi-
ble genotypes for each variant).

(iii) Signaling network model MG(x) consisting of the stim-
ulation variables, signaling variables, the group of
genes G(x) and the regulatory relations between the
variables. The model is based on prior knowledge
about the biological components and the relationships
among them. To formalize the network we utilized a
Bayesian network modeling approach that extends the
MetaReg approach (12,13). The input signaling net-
work is constructed in two steps. In step 1 we define
variables and states. In particular, the network con-
sists of three types of components: the environmen-
tal ‘stimulations’, which trigger ‘signaling components’
(such as receptors and transcription factors) that sub-
sequently control changes in the transcriptional re-
sponses of downstream ‘genes’ (e.g. Figure 1A, right).
A fourth type of component, the ‘DNA variant’, is
then added to the model as part of the PINE algorithm
(e.g. Figure 1B). Each component may attain one of
several discrete ‘states’: a DNA variant can be in one
of two states, corresponding to its two genotypes (a
or ā). A stimulation variable also has two states, in-
dicating whether the environmental stimulation is ap-
plied or not. A signaling component or a gene can be
in one of several ‘response states’, representing the ac-
tivity (of the signaling component) or the transcrip-
tional response (of the gene). In this study we focus
on stimulation-specific variants, which have no effect
in the absence of an upstream stimulation and may
only perturb the propagation of response to stimula-
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tion signal through a signaling branch. In accordance,
all signaling components and genes can be in one of
three response states, referred to as the ‘no-response’,
‘a-response’ and ‘ā-response’ states: the no-response
state refers to the absence of stimulation, whereas the
a- and ā-response states refer to a response to stimu-
lation that is determined by the particular genotype of
the perturbing variant.

In step 2, for each variable we define a ‘regulation func-
tion’ that describes how the state of a given variable changes
with the changing state of its regulatory variables. In partic-
ular, each variable is associated with a certain set of regula-
tory variables and a deterministic regulation function (e.g.
Supplementary Figure S2, left and middle). The determin-
istic function is then translated into a conditional probabil-
ity function, which represents our confidence as to the bio-
logical assumptions through the ‘network confidence level’
β parameter (Supplementary Figure S2, right). Notably, in
our simplified graphical representations (e.g. Figures 1 and
2) the nodes correspond to variables and the branches to
regulatory relationships among the variables, but the under-
lying regulatory functions are omitted.

Formalizing the effect of a DNA variant on the functional-
ity of a branch. To test the effect of a DNA variant on the
functionality of each branch, we further extend the input
network model. For each branch we define a ‘proxy node’,

which is a predecessor or successor variable of the branch,
such that the out- or in-degree (respectively) of the proxy is
exactly 1. If no proxy node exists (i.e. both the out-degree of
the direct predecessor and the in-degree of the direct succes-
sor are >1), an intermediate mock node will be introduced
within that branch and will serve as a proxy. The effect of
a DNA variant on the functionality of a branch is mod-
eled by altering the regulatory function of its proxy node.
Several types of such alterations are considered. First, the
variant may have ‘no effect’ on the proxy node, i.e. individu-
als carrying distinct genotypes will attain the same state. In
contrast, a certain genotype may increase or decrease the
activity of the proxy node, meaning that one genotype will
lead to a higher or lower activity level than the other geno-
type. We refer to such alterations as the ‘perturbation effect’
(in short, ‘effect’): effects of ‘type a’ and ‘type ā’ refer to
a higher activity in a- or in ā-carrying individuals, respec-
tively. Collectively, we define the three types of effects as E
= {no effect, type a, type ā}.

Formalizing the likelihood function. Let MG(x)
x,b,e be the net-

work MG(x) after adding the DNA variant x to perturb a
branch b ∈ B, assuming perturbation effect e ∈ E (where
B is the collection of branches and E is the group of effect
types). The likelihood of data RG(x) and variant x given the
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Figure 2. An illustration of the PINE P-value score (assuming the input data from Figure 1 with a single correct branch b2). The input of the calculation
includes a known network (first layer) along with the measured responses of multiple genes, individuals and stimulations (fifth layer). The third layer shows
the predicted responses of the network-regulated genes under each of the variant’s genotypes and the stimulations triggering the network, as depicted in
the second layer. High/low predicted and measured responses are in dark/light orange. The PINE P-value (sixth layer) is calculated on the basis of the
goodness of fit between the predicted and measured responses (fourth layer). (A) A general network model without any DNA variant. Following stimulation
s2, individuals i1−i3 have low responses compared to the high responses of individuals i4−i6 (fifth layer), producing a non-significant PINE P-value. (B,C)
A network model harboring a variant perturbing the correct branch b2 (B) or an incorrect branch b4 (C). When a branch is perturbed by a DNA variant,
the model’s predictions consider not only the different stimuli but also the distinct genotypes. Using branch b2, but not branch b4, a good fit can be attained
and the PINE P-value score is improved, allowing correct identification of the perturbed b2 branch.
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model MG(x)
x,b,e is defined as:

L(RG(x)|MG(x)
x,b,e, θ

G(x)) =
∏

g∈G(x)

∏
s∈S

∏
i∈I

L(Rg,s
i |MG(x)

x,b,e, θ
g) (1)

where Rg,s
i is the ‘measured response’ of gene g follow-

ing stimulation configuration s in individual i. We assume
that each gene g is modeled by a mixture of three Gaus-
sians that correspond to its three transcriptional response
states: the no-response,a- and ā-response Gaussians refer
to the no-response state (in the absence of stimulation) as
well as a- and ā-response states in a- and ā-carrying indi-
viduals, respectively; these three response states and three
Gaussians are hereby denoted K = {0, a, ā}, where θG(x) =
{θ g|g = 1, ..., t} and θ g = {μg

0, μ
g
a, μ

g
ā, σ

g
0 , σ

g
a , σ

g
ā } are the

means and variances of the three Gaussians associated with
a gene g. The likelihood of each measured response is:

L(Rg,s
i |MG(x)

x,b,e, θ
g) =

∑
k∈K

Pg,s
x(i )(k) · f (Rg,s

i , μ
g
k, σ

g
k ) (2)

where f is the normal probability density function and the
mixture coefficient Pg,s

x(i )(k) is the ‘predicted response’. A pre-
dicted response Pg,s

x(i )(k) denotes the probability that variable
gene g will have a response state k ∈ K following the stimu-
lation configuration s in individual i carrying genotype x(i)
in the DNA variant x. The stimulation configuration and
the genotypic state of the variant are the observed variables
used to infer the predicted responses for each genotype and
gene level, based on an inference algorithm applied to MG(x)

x,b,e
(here we used a variable elimination procedure (11) using
the ‘Bayes Net Toolbox’ (BNT) implemented for Matlab
(14)). Note that the model’s predicted responses Pg,s

x(i )(k) do
not use information about the measured response. Since the
predicted responses are independent of the data, the likeli-
hood function allows a reliable comparison between model
predictions and measured responses.

The predicted responses are used to calculate θ̂
g
k =

{μ̂g
k, σ̂

g
k }, the maximum likelihood estimators for response

state k in gene g (g = 1,..,t and k = 0, a, ā):

μ̂
g
k =

∑
s∈S

∑
i∈I Rg,s

i ·Pg,s
x(i )(k)∑

s∈S

∑
i∈I Pg,s

x(i )(k) ,

σ̂
g
k =

√∑
s∈S

∑
i∈I (Rg,s

i −μ̂
g
k)2·Pg,s

x(i )(k)∑
s∈S

∑
i∈I Pg,s

x(i )(k)

(3)

The PINE procedure. We next define a generalized likeli-
hood ratio (LR) test that compares two hypotheses with re-
spect to the existence (or non-existence) of a perturbation
effect of a candidate variant x in a branch b. The null hy-
pothesis assumes that the DNA variant does not affect the
branch (in other words, the ‘no effect’ perturbation applies).
The alternative hypothesis assumes that the DNA variant
does affect the branch, through the perturbation effect of
either ‘type a’ or ‘type ā’. A significant LR value is obtained
only if the effect of the variant on the branch improves the

fit of the model to the measured data. Formally,

LR(b|x, RG(x), MG(x)
x,b ) =

max
θG(x) ,e∈E L(RG(x)|MG(x)

x,b,e,θ
G(x))

max
θG(x),e=no−e f f ect L(RG(x)|MG(x)

x,b,e,θ
G(x))

(4)

where for each effect type e ∈ E we consider a different
model MG(x)

x,b,e that is used to optimize θG(x) as detailed in
Equation no. 3. The statistical significance of this LR value
is calculated empirically by repeatedly permuting the labels
of strains and re-calculating the LR values for the permuted
dataset. The P-value is the fraction of permutation-based
LR values that are at least as extreme as the original LR val-
ues. These P-values are referred to as the ‘PINE P-values’.
A significant PINE P-value for a particular branch b and
a variant x suggests an effect of the variant on a certain
component along this branch; such a branch is termed a
‘significantly-perturbed branch’.

In some cases two or more branches may attain signifi-
cant PINE P-values for the same variant. A best-fit branch
can then be revealed using an additional statistical test that
compares two alternative branches b’ and b” for the same
variant x:

LR(b′, b′′|x, RG(x), MG(x)
x,b′ , MG(x)

x,b′′ ) =
max

θG(x) ,e∈E L(RG(x)|MG(x)
x,b′ ,e,θ

G(x))

max
θG(x) ,e∈E L(RG(x)|MG(x)

x,b′′ ,e,θ
G(x))

(5)

We use this LR statistic to calculate a ‘leading P-value’
based on a permutation test (reshuffling the labels of
strains). A branch is called a ‘leading branch’ if its least
significant leading P-value (when compared to all remain-
ing branches) is significant. Notably, the leading P-value is
designed for the case of a single branch outperforming the
remaining branches; its utility is therefore limited for the
case of several degenerated branches in a network or a lack
of data to discriminate between multiple branches that at-
tained significant PINE P-values.

Overall, given a variant x, the PINE algorithm exhaus-
tively calculates PINE P-values for each candidate branch
b ∈ B in an input network. When multiple significantly-
perturbed branches exist, it is possible to further test the
presence of a single leading branch using the leading P-
value score.

Synthetic data

Data construction. The analysis builds on a group of 13
synthetic signaling networks with n = 2, 3, 4 and 5 stim-
ulations (Supplementary Figure S3), as well as on a syn-
thetic genotyping dataset of 100 DNA variants across 100
individuals (assuming homozygous lines and equal prob-
ability for sampling one of the two genotypes). We gener-
ated synthetic data ‘collections’, each collection consists of
130 ‘sample datasets’: 10 sample datasets for each of the 13
networks. In particular, for each network only five sample
datasets are affected by a variant (w > 0) whereas the re-
maining five samples are not affected by any variant (w =
0). Thus, in total, a single collection consists of 65 perturbed
and 65 non-perturbed sample datasets. Each of the sample
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datasets was created as follows: we first randomly chose one
DNA variant and one perturbed branch. We then gener-
ated the group of genes and positioned them as targets of
the transcription factors that are downstream of the selected
perturbed branch (choosing the same number of genes for
each such downstream transcription factor). The transcrip-
tional response of each gene was sampled for each indi-
vidual and stimulation according to three possible Gaus-
sian distributions: no-response, a-response and ā-response
Gaussians (using μ0,μa ,μā and σ0,σa ,σā , respectively). The
no-response Gaussian indicates the absence of a stimulation
signal, whereas the a-response and ā-response Gaussians
indicate the response to stimulation in individuals carrying
a and ā genotypes, respectively. Without loss of generality,
we assume that the a-carrying individuals exhibit a reduced
response compared to the ā-carrying individuals, thus as-
suming μ0 = 0, μā = 2 and μ0< μa< μā . The ‘effect size’ of
the variant (the strength of difference between the two geno-
types) is therefore defined as w = μā - μa . Notice that while
μ0 and μā are fixed (0 and 2, respectively), μa is determined
according to the desired effect size.

We generated a large number of synthetic collections,
each collection was constructed using a particular number
of individuals (m = 2, 10, 20, 30, 50 or 100), a certain num-
ber of genes that associate with a given variant (t = 2, 10,
20, 30, 50 or 100) and a selected ‘effect size’ value (w =
0.1, 0.2, 0.3, 0.4 or 0.5); unless stated otherwise, we used
σ0 = σa = σā = 0.5, 1, 1.5 or 2.

To further test inaccuracies introduced by altering the in-
formation related to genes downstream to the perturbed
branches, we generated two additional types of such syn-
thetic samples: in a ‘gene exchange’ sample, a certain per-
centage of the genes downstream to the perturbed branch
are switched with genes that are not downstream to that
branch; alternatively, in a ‘false targets’ sample, a cer-
tain percentage of the genes downstream to the perturbed
branch are not affected by any variant (w = 0).

Comparison of methods. We compared the performance of
the PINE P-value to that of two alternative methods––the
InCircuit algorithm (6) and a dummy random solution.
We chose to focus on the PINE P-value (rather than on
the joint usage of the PINE and leading P-value scores)
based on the observation that the overall performance of
PINE can only be improved with additional discriminative
scores. The InCircuit algorithm uses two input parameters:
a cutoff for a significant association and a cutoff for deter-
mining enrichment of genes downstream of a certain tran-
scription factor in a network. We used association cutoff
0.1 and enrichment cutoff 0.9 that performed better than
any other parameter combination (Supplementary Figure
S4; see ‘Performance analysis’ section below). The random
method selects the branch arbitrarily, assuming equal prob-
ability for all branches in the given network. Whereas our
algorithm calculates a PINE P-value for each of the can-
didate branches, the output of the InCircuit and random
methods is a deterministic (binary) decision about each of
the branches. Notably, in our multiple-stimulation synthetic
dataset, many of the associations exist in one stimulation
but not in another stimulation. Several existing methods

(4,5) assume a single-condition dataset and hence could not
be applied on our synthetic dataset.

Performance analysis. The quality of prediction was eval-
uated using standard performance metrics. Each of the syn-
thetic data collections comprised 130 sample datasets, in
which each sample c associates with a specific selected per-
turbed branch cb. Half of the samples were created using
zero effect size (w = 0; denoted ‘non-perturbed’ branch
cb), whereas the remaining 65 samples were generated using
a non- zero effect size (w > 0; denoted ‘perturbed’ branch
cb). Given a sample c, each of the compared algorithms
was applied on branch cb, providing either a ‘positive’ or
a ‘negative’ decision on this branch (for the PINE algo-
rithm, we used a PINE P-value cutoff of 0.05 to split be-
tween positives and negatives). The true-positive (TP), false-
positive (FP), true-negative (TN) and false-negative (FN)
measures were defined according to the correct (perturbed
or non-perturbed) simulated solution compared to the pos-
itive and negative predictions, allowing to calculate the ‘ac-
curacy score’ as (TP + TN)/(TP + TN + FP + FN). No-
tably, using the PINE P-value we can also calculate the area
under the receiver operating characteristic curve (the ‘AUC
score’).

Real data

We compiled a previously published bone marrow-derived
DCs dataset (6) of gene expression measured at steady state
and at 6 h after in vitro pathogenic stimulations with PAM,
LPS and poly I:C (agonists of TLR2, TLR4 and TLR3
or RIG-I receptors, respectively), spanning 43 BXD mouse
strains. The dataset was measured using a meso-scale as-
say (the NanoString nCounter system; (15)) and consists of
only 422 genes that were previously selected so as to rep-
resent associations with a large variety of genetic variants
regardless of their effect sizes (6). The response of a gene
(in a given strain and following a specific stimulation) was
calculated as the log-ratio between the expression level af-
ter exposure to stimulation and at steady state. The input
signaling network includes the TLR and RIG-I signaling
pathways (9,10) and consists of two transcription factors
(NF�B and Irf3), as shown in Supplementary Figure S5A.
The formal Bayesian network model is presented in Supple-
mentary Figure S5B (network confidence level β = 0.995).
To allow biological interpretability, the results are presented
using signaling pathways as visualized in Figure 5; the visu-
alization includes seven different signaling pathways, each
of these pathways reflects one or a few Bayesian network
branches that share a certain proxy node, as shown in Sup-
plementary Figure S5C. We conducted separate analyses for
each of five DNA variants #1−#5 (Supplementary Table
S1), where the variants, the associated genes and their net-
work positions downstream to NFkB and Irf3 were previ-
ously identified in (6). Genotyping data were downloaded
from WebQTL (8). The analysis was performed using 2000
permutations for all P-values calculations. Unless stated
otherwise, the reported leading P-value of a branch is the
largest (least significant) leading P-value of that branch
(across comparisons with all remaining branches); all re-
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ported P-values were corrected for multiple testing using the
Holm-Bonferroni method (16).

RESULTS

PINE accurately identifies perturbed branches in signaling
networks

We used synthetic datasets to evaluate the performance of
the PINE algorithm. The synthetic data is based on 13 dif-
ferent signaling networks that are triggered by 2–5 extracel-
lular stimulations (Supplementary Figure S3). For the gen-
eration of synthetic gene expression data, we used four pa-
rameters: (i) number of individuals (2, 10, 20, 30, 50 and
100); (ii) number of genes (2, 10, 20, 30, 50 and 100); (iii)
genetic effect size (0.1, 0.2, 0.3, 0.4 and 0.5); and (iv) stan-
dard deviation (0.5, 1, 1.5 and 2). In all cases, different ge-
netic influences were generated under different stimulations,
depending on the selected position of the variant and the
positions of its target genes within the synthetic signaling
network (Materials and Methods section).

We first tested the PINE P-value score across varying
method parameters using the AUC score (Materials and
Methods section). The analysis was performed using two
data collections that have either effect size of 0.2 or 0.3 (30
genes, 50 individuals and standard deviation = 1 in all col-
lections), suggesting that 150 permutations are sufficient for
attaining valid PINE P-values (Supplementary Figure S6A,
e.g. Supplementary Figure S7). AUC levels improve with in-
creasing confidence in the signaling network (Supplemen-
tary Figure S6B), consistently with the design of the PINE
framework based on prior knowledge about the biological
system under study. In the following we therefore first ana-
lyze performance in the case of high confidence in the input
network (β = 0.995) and then present the performance in
cases of inaccuracies in this input (in all cases we use 150
permutations).

We compared the PINE P-value score with two alter-
native approaches: the InCircuit algorithm and a random
selection method (Materials and Methods section). Here-
after, the quality of predicted perturbed branches was eval-
uated using an accuracy score, defined as the ratio between
true predictions (true positives and true negatives) and the
total number of predictions; the higher the accuracy, the
better the performance (assuming PINE P-value cutoff =
0.05; ‘Materials and Methods’ section). The InCircuit algo-
rithm was applied using a combination of parameters that
attained the best performance (Materials and Methods sec-
tion). We first demonstrate the results using synthetic data
of 50 individuals and 30 genes across varying effect size val-
ues, with standard deviation of 1 (Figure 3A). Both PINE
and InCircuit appear to best perform with high effect sizes,
but the InCircuit and random solutions attain comparably
lower accuracy scores in all effect sizes. PINE was compa-
rable to the InCircuit method only in the case of high ef-
fect size as 0.5, where there is a clear difference between the
genotypes. Similar results were obtained when using vary-
ing numbers of genes and individuals (Figure 3B and C)
and using different standard deviation values (Supplemen-
tary Figure S8): although PINE’s accuracy is reduced with
a lower number of genes or individuals and with a higher
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Figure 3. Performance analysis on synthetic data. (A) Shown is the accu-
racy metric (y-axis) across different effect sizes (x-axis), using synthetic
datasets of 30 genes, 50 individuals and standard deviation 1. (B,C) The
accuracy scores for varying numbers of genes (B; using 50 individuals) and
individuals (C; using 30 genes) for synthetic datasets with effect size of 0.3
(left) and 0.2 (right) using standard deviation 1. In all cases, results are
shown for three methods: the PINE, InCircuit and random selection algo-
rithms (color coded; using PINE P-value cutoff = 0.05). The plots indicate
the superiority of the PINE score over the InCircuit and random methods,
showing PINE’s robustness to varying data parameters.

standard deviation, it still maintains higher accuracy than
those of the InCircuit (and random) algorithm.

The simulations further allow us to assess the robustness
of the PINE scoring scheme to erroneous prior informa-
tion related to genes downstream to the perturbed branches.
To this end, we generated synthetic ‘gene exchange’ collec-
tions with varying percentages of genes downstream to the
perturbed branch that are switched with genes that are not
downstream to that branch (0–100%, ‘Materials and Meth-
ods’ section). The accuracy values of both PINE and InCir-
cuit declined with higher percentages of exchanged genes;
notably, however, PINE maintained higher accuracy than
InCircuit, comparable only at a high percentage (>60%)
of exchanged genes (Figure 4A). For example, PINE’s and
InCircuit’s accuracy drops below 0.8 and 0.65 when more
than 40% of the genes were exchanged. Next, we further
tested synthetic ‘false targets’ collections with varying per-
centages of genes that are located downstream to the per-
turbed branch but are not affected by the genetic variant (0–
100% of the target genes, ‘Materials and Methods’ section).
Notably, PINE revealed a stronger robustness for high per-
centage of false targets compared to the InCircuit method
(Figure 4B). For example, for 40% false target genes, accu-
racy = 0.88 and 0.64 for the PINE and InCircuit methods,
respectively.

Taken together, our results suggest that the PINE P-value
is a robust score, performing well over a broad range of
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Figure 4. Robustness to erroneous prior knowledge. Testing erroneous
prior knowledge due to switching between genes downstream to the per-
turbed branch and genes that are not downstream to that branch in the
network (‘gene exchanges’, A) or due to introducing non-perturbed genes
downstream to the perturbed network branches (‘false targets’, B). Shown
is the accuracy metric (y-axis) across synthetic data collections carrying
varying percentages of gene exchanges (A) or false targets (x-axis, B) for
the PINE (purple) and InCircuit (orange) methods, assuming 30 genes, 50
individuals, effect size 0.3 and standard deviation 1 (using PINE P-value
cutoff = 0.05). The plots indicate the robustness of PINE compared to the
InCircuit method across different percentages of gene exchanges or false
gene targets.

effect sizes, numbers of genes, numbers of individuals and
standard deviations.

Identification of perturbed branches in murine DCs in re-
sponse to pathogenic components

We next turned to investigating the mechanisms of vari-
ants in the TLR/RLR signaling pathway in DCs. Our net-
work model comprised of TLRs and RLRs that recognize
pathogenic ligands and trigger activation of the inflamma-
tory and antiviral pathways as well as transcription regu-
lators such as NF�B and Irf3 (Figure 5A and Supplemen-
tary Figure S5A; ‘Materials and Methods’ section). Within
this model we used PINE to test a list of seven candi-
date network branches (Supplementary Figures S5B and
C). We analyze the transcription responses of 422 genes
in bone marrow-derived DCs after stimulations with three
pathogenic-like ligands (PAM, LPS and poly I:C), spanning
43 genotyped recombinant inbred mouse strains (data from
(6), ‘Materials and Methods’ section). We demonstrate the
application of PINE in the cases of five known DNA vari-
ants (termed #1−#5) and their stimulation-dependent as-
sociated genes (91 genes, 22% of 422; Supplementary Table
S1 and Figure 5B). Notably, PINE provides significant pre-
dictions of perturbed branches for each of these variants
(PINE P < 0.05), with significant leading branches for two
variants (#1 and #2, leading P < 0.034) and a leading ten-
dency (though not significant) for branches of two other
variants (leading P < 0.052 [#4] and P < 0.06 [#5]; Fig-
ure 5C and Supplementary Table S1). For each variant we

first present PINE’s predictions, and then use it to exem-
plify the PINE methodology and its ability to reconstruct
biologically-relevant hypotheses.

Variant #1 exemplifies the method’s ability to identify a
single network branch as a significantly-perturbed branch
that likely propagates the signal to its 30 downstream genes.
We first augmented the signaling network with 30 genes that
are associated with variant #1. The genes were added down-
stream of the transcription factors Irf3, NF�B or both,
based on the response of each of the genes to the vari-
ous stimulations (Supplementary Table S1). For example,
16 genes (e.g. Iigp2) were positioned downstream of Irf3
based on their transcriptional response to LPS and poly I:C
stimuli but not to PAM. Similarly, 11 genes (e.g. Stat2) were
positioned downstream of both Irf3 and NF�B according
to their significant response to all three triggering stimula-
tions. By applying PINE on this expanded network, only a
single branch––the poly I:C–Traf3 branch––attained a sig-
nificant PINE P-value (PINE P < 0.015). In agreement,
the poly I:C–Traf3 branch achieved significant leading P-
values compared to any other branch (leading P < 0.034;
Figure 5C and Supplementary Table S2). This prediction
for variant #1 is supported by a previous study that identi-
fied the likely causal gene Rgs16 and demonstrated its spe-
cific functionality following poly I:C but not PAM or LPS
stimuli (6), which is indeed the stimulation in the upstream
region of the poly I:C–Traf3 branch.

Variant #2 demonstrates the ability of PINE to pin-
point a single leading branch among several significantly-
perturbed branches. The poly I:C-Traf3 is suggested as the
leading branch (PINE P < 0.015, leading P < 0.034, Fig-
ure 5C), further supported by the match between the poly
I:C stimulation, following which strong associations of the
target genes to variant #2 are found (Figure 5B) and the up-
stream stimulations signature of the poly I:C-Traf3 branch
(Figure 5A). One additional branch (Traf3-Irf3) that re-
sponds to both poly I:C and LPS is suggested as a non-
leading significantly-perturbed branch (PINE P < 0.027,
leading P > 0.1; Supplementary Table S2), consistently with
the partial agreement between the upstream stimuli of this
branch (poly I:C and LPS) and the poly I:C-dependent as-
sociations of target genes to this variant (Figure 5A and B).
All remaining branches, which respond to PAM or LPS (but
not to poly I:C), did not achieve significant P-values (PINE
P > 0.05), as expected (Figure 5C).

Variant #3 illustrates PINE’s ability to identify several
significantly-perturbed branches (poly I:C-traf3, Traf3-irf3,
Myd88-NF�B, PINE P < 0.03 in all cases) whereas none of
these branches is a leading branch (leading P > 0.1; Fig-
ure 5C and Supplementary Table S2). Indeed, the target
genes of variant #3 are mostly associated with both PAM
and poly I:C (Figure 5B), which do not appear together in
the upstream region of any candidate branch; instead, each
of these stimuli appears separately in the upstream region
of the predicted branches, supporting PINE’s identification
of several partly significant branches rather than a single
leading branch.

Variants #4 and #5 indicate that our methodology can
identify downstream network branches that integrate infor-
mation from several stimuli. The suggested leading branch
(Myd88-NF�B, leading P < 0.052 [#4], 0.06 [#5]) is af-
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Figure 5. Variation in the TLR/RLR signaling network of mouse DCs in response to pathogenic components. (A) The TLR/RLR signaling pathways,
together with the leading perturbed branches inferred by PINE framework for variants #1, #2, #4 and #5 (as detailed in C). The Bayesian network
formalism is shown in detail in Supplementary Figure S5. (B) Stimulation-dependent associations of gene targets and genetic variants. The histogram shows
the median genetic association P-value (y-axis, ANOVA test, log-scaled) over all genes that are associated with a DNA variant (x-axis) following at least
one stimulation. P-values were calculated using transcription data following the PAM (blue), LPS (red) and poly I:C (yellow) stimulations. Variants #1-#3
have the strongest associations with their targets following poly I:C stimulus, whereas associations of variants #4-#5 are mostly pronounced following the
PAM and LPS stimulations. (C) A perturbed branch matrix based on the PINE algorithm. The matrix consists of a color-coded representation of PINE’s
prediction for a particular branch (column) and a variant (row): white: non-perturbed branches (PINE P > 0.05); light brown: significantly-perturbed
branches (PINE P < 0.05); dark brown: significant leading branches (leading P < 0.05 for variants #1 and #2) or leading P < 0.06 (for variants #4 and
#5). (D) A perturbed branch matrix based on InCircuit’s binary predictions, where black/white indicates predicted perturbed/non-perturbed branch.

fected by both PAM and LPS (Figure 5A, C and Supple-
mentary Table S2) and the target genes are also mostly as-
sociated with variants #4-#5 following the same combina-
tion of stimuli (Figure 5B), thus supporting the placement
of these variants in the Myd88-NF�B branch.

Overall, the results demonstrate the utility of using
both the PINE and leading P-values: the leading P-value
is tailored for identifying a single leading branch (us-
ing the PINE P-value scores as a filtering stage; variants
#1,#2,#4,#5), whereas the PINE P-value is unique in pro-
viding insights about the presence of two or more plausible
perturbed branches (variant #3).

We next compared the PINE and the InCircuit algo-
rithms (6) (Figure 5C versus D). Of the four branches that
were identified by InCircuit in variants #1−#5, PINE pro-
vided support for only three branches (leading P < 0.034
[#1], 0.052 [#4], 0.06 [#5]). Importantly, whereas InCircuit
predicted a single branch for variant #3, PINE suggested
that three alternative significantly-perturbed branches exist
but none of them is substantially better than the remaining
two branches (PINE P < 0.03; leading P > 0.1). Variant
#3 therefore exemplifies PINE’s ability to compare between
competing branches in a quantitative manner, unlike the
(qualitative) InCircuit approach. Furthermore, PINE suc-
ceeded in finding additional significant leading branch (for
variant #2; leading P < 0.034) that could not be detected by

the InCircuit algorithm. These results exemplify the advan-
tage of PINE over extant methods in that it enables users to
systematically and reliably evaluate statistical significance
values for candidate branch hypotheses.

DISCUSSION

Despite the importance of DNA variants in mammalian
genomes, an in-depth understanding of their effects on sig-
naling pathways has remained elusive. In fact, the compu-
tational tools required to predict which network branches
are perturbed by such variants are still in their infancy. In a
recent study it was proposed that this problem can be tack-
led by utilizing genetic genomic information across multiple
stimulations (6). That approach yielded testable hypotheses
about the effects of variants on a molecular network, but
could not evaluate their statistical meanings.

In this study we introduce PINE, a novel computational
approach for the statistical evaluation of branches through
which a DNA variant perturbs a given signaling network.
Significant hypotheses can then be selected for followup ex-
periments. We first applied PINE on synthetic data across
multiple stimulations, exemplifying its utility for different
data parameters, where we found PINE predictions to be
highly accurate and performing better than existing meth-
ods (Figure 3). We further showed that PINE is robust to
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inaccuracies in the prior knowledge about the target genes
downstream to the perturbed branches, unlike previous ap-
proaches (Figure 4). Finally, we examined the utility of
PINE on a mouse dataset, consisting of five DNA vari-
ants that underlie transcriptional response of immune DCs
during three pathogenic stimulations. The analysis supports
three previously identified perturbed branches (for variants
#1, #4, #5), predicted a new statistically significant pertur-
bation in a branch (for variant #2) and concluded that it is
impossible to distinguish the best-fit branch for one addi-
tional variant (#3, Figure 5A and C).

Our work offers the basis for future studies exploring the
molecular mechanisms underlying complex traits. First, our
framework can be further developed to reveal the position
of gene–gene interactions within the signaling network. Sec-
ondly, PINE relies on prior knowledge about the signaling
pathways that are downstream to the environmental stim-
ulations under study. Several different databases contain
manually-curated signaling networks (e.g. KEGG (17), Re-
actome (18) and the Ingenuity Knowledge Base (19)) that
can be used as prior knowledge. Although inaccuracies in
the signaling networks led to reduced PINE performance,
the accuracy loss was much lower compared to those of ex-
isting methods (Figure 4). In the future, we hope that the
PINE approach will lead to development of more sophisti-
cated algorithms with higher robustness to errors in prior
knowledge. For example, it may be possible to revise inac-
curacies in the signaling network based on inter-individual
variation in transcriptional responses.

Thirdly, application of PINE on different datasets and
their corresponding networks will prove that the method is
generic and compatible with different biological processes.
We are particularly interested in extending our approach to
handle outbred strains and human responses, which present
challenges such as heterozygosity and population struc-
ture. PINE is based on measurements of transcriptional re-
sponses across multiple stimulations, thus requiring RNA
profiling not only in the presence of various stimulations
but also in the absence of stimulation. As more appropriate
datasets become available, applying the PINE method may
yield new insights about the specific molecular mechanisms
through which genetic variants perturb signaling networks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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