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THE BIGGER PICTURE Deciphering high-dimensional patterns hidden in large datasets is a formidable un-
dertaking due to the combinatorial explosion of the number of possible groups. A popular approach for tack-
ling this challenge is network modeling, as it is a powerful and versatile technique that can be applied in a
myriad of domains. A network is an abstraction of data in which each object is represented by a node,
and an edge between a pair of nodes represents a relationship between the corresponding object pair. How-
ever, the full potential of this domain is not realized by current implementations due to several subtle, yet
menacing, oversights. Here, we elucidate these flaws and provide commonsense solutions. Key issues
include overextensions of the transitivity assumption, intolerance of subset heterogeneity, clustering biases,
and mishandling of missing data. Solutions range from simple permutations and network scaffolding expan-
sion to close examination and selections of pairwise relationship metrics and clustering algorithms. Applica-
tion of these strategies reduces false-positive and false-negative signals and opens up opportunities to tease
previously unidentified patterns concealed in the torrent of data produced across the sciences, industry, and
government.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY

Network modeling transforms data into a structure of nodes and edges such that edges represent relation-
ships between pairs of objects, then extracts clusters of densely connected nodes in order to capture high-
dimensional relationships hidden in the data. This efficient and flexible strategy holds potential for unveiling
complex patterns concealed within massive datasets, but standard implementations overlook several key is-
sues that can undermine research efforts. These issues range from data imputation and discretization to cor-
relation metrics, clustering methods, and validation of results. Here, we enumerate these pitfalls and provide
practical strategies for alleviating their negative effects. These guidelines increase prospects for future
research endeavors as they reduce type I and type II (false-positive and false-negative) errors and are gener-
ally applicable for network modeling applications across diverse domains.
INTRODUCTION

Humans have aspired to infer knowledge by collecting and

analyzing data for millennia. Such works include an ancient Su-

mer scientist c. 2000 BCE who created a data table, including

row and column headers, and delineated information for a num-

ber of animals.1 As the size of our global datasphere approaches

100 zettabytes, researchers in virtually every domain strive to

harvest valuable information buried in a deep ocean of numerical

and categorical data. Monumental data analysis advances have

been achieved using machine learning, statistical, and opera-

tions research methods, yet accurately capturing complex pat-

terns continues to challenge progress due to multiple factors.

Key impediments include the sheer size of the search space,
This is an open access article under the CC BY-N
due to the combinatorial explosion of feasible patterns, and sub-

tle assumptions underlying data analysis methods that may

compromise outcomes.

Identification of high-dimensional patterns in data is inherently

difficult due to the combinatorial explosion of the number of

possible patterns (Table 1). Network modeling, also known as

community detection, has emerged as a leading strategy in

this conquest due to its scalability, flexibility, and ability to cap-

ture any order of relationship size. In this realm, a dataset is

modeled as a network composed of nodes representing objects

and edges representing relationships between the objects

(Figure 1B).2 In general, the edges can be directed to capture

asymmetric relationships. In this article we are interested in un-

directed pairwise relationships and clustering methods based
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Table 1. Example of combinatorial explosion
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Shown are the number of unique combinations for patterns comprising 1, 2, 3, 4, and k objects drawn from n objects, along with an example for a

dataset with n = 1,000,000 objects.
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on undirected edges, so we focus on symmetric relationships.

Network analyses typically involve data pre-processing, compu-

tation of pairwise relationships, network construction, identifica-

tion of clusters/communities within the network, and validation

of results (Figure 1A).

Figure 1B illustrates Facebook and gene co-expression

networks and Figure 1C describes characteristics for these

networks, along with networks representing warehouse order

picking and weather prediction. These examples illustrate the

versatility of networkmodeling and provide illustrations for trans-

ferring real-world problems to a network structure. The Face-

book network is a case in point of the strengths of network

modeling. The input data are simply a list of an individual’s Face-

book friends and a list of pairs of these individuals that are Face-

book friends with each other. Once these data are transformed

into a network, clusters spontaneously arise. The numerous

intra-cluster edges within a cluster indicate a high-ordered rela-

tionship and is the basis of the ‘‘guilt-by-association’’ postulation

in this domain.3 The transitivity assumption is at the heart of

network modeling and provides the mechanism to infer high-or-

dered relationships from simple pairwise information.

Network modeling is capable of efficiently capturing high-or-

dered relationships, yet each step, from data pre-processing

to validation of results, holds subtle impediments that arise

due to intrinsic and extrinsic characteristics that may confound

research progress. Here, we examine benefits and encum-

brances of network modeling and demonstrate these character-

istics in a popular application domain, gene co-expression

analysis.2,4–11 A brief description of this application follows.

Example network modeling problem: Gene co-
expression analysis
A vigorous application domain for network modeling is gene co-

expression analysis, which explores gene expression level

data to identify patterns of genes that are synchronously ex-

pressing within one group of individuals more than another

(Figure 1C).12–15 Complex traits, such as disease states, arise

due to aberrant biological pathways, many of which are not

well understood. For example, the characteristic plaques that

are hallmarks of late-onset Alzheimer disease are comprised of

amyloid-b that is being overproduced,misfolded, and/or ineffec-

tively cleared.16–18 Identification of the deviant pathways under-

lying such processes facilitates understanding of the pathogen-

esis of diseases, revelations of unknown genetic functions, and

recognition of potential drug targets.

Given expression levels of genes for a group of affected cases

and a group of normal controls, the goal is to find patterns of co-

expressed genes that appear significantly more often in one

group than the other. Note that each individual gene may have
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similar mean levels in both groups. The challenge is twofold.

First, synchronized patterns of multiple, perhaps hundreds, of

genes that are co-expressing together within individuals must

be extracted. Second, if an association with a trait is pursued,

the percentages of individuals carrying the synchronized genetic

pattern must be significantly different between the two groups.

Exhaustive enumeration is not feasible due to the combinatorial

explosion (Table 1). Gene co-expression analysis typically casts

genes as nodes and places edges between pairs of genes that

exhibit correlated expression across the individuals

(Figure 1C). Clusters of co-expressed genes are identified and

then evaluated for potential interactions and/or associations

with the trait of interest.

The organization of this article follows the steps usually taken

for networkmodeling, with caveats for each step highlighted and

potential remedies presented. We begin with data pre-process-

ing, then discuss pairwise relationship computations, network

construction, clustering, and validation. A brief discussion con-

cludes the article.

DATA PRE-PROCESSING

Due to the massive size of most datasets of interest, it is not

possible to manually inspect data before starting an analysis.

Typos and improperly formatted data can silently sabotage a

study, so it is important that software packages exit with mean-

ingful error messages when encountered. Furthermore, outliers

and missing data hold potential to quietly distort results. In gen-

eral, data cleaning is challenging, and many steps are domain

specific.19 Here, we consider matters of general concern for

network modeling: missing data and discretization, the latter of

which palliates outliers.

Missing data
Missing data reduce power and potentially may lead to spurious

correlations. Furthermore, some downstream analyses may

require complete data. An approach that is receiving increasing

popularity is data imputation, whereby the missing values are

imputed based upon information drawn from the data. A

wide range of methods have been developed, from simply re-

placing the missing values with the mean or median, to sophisti-

cated methods designed to minimize the root-mean-squared

error.20–22 Local methods, such as K-nearest neighbors

(KNNimpute)23 and local least squares (LLSimpute),24 identify

similar objects via correlation metrics or Euclidean distance, to

infer missing values. Global methods, such as Bayesian principal

component analysis (BPCA),25 disassemble the data and impute

while rebuilding it. Classical methods, such as expectation

maximization (EMimpute),26 utilize incremental refinementswhile



Figure 1. Network modeling examples
(A) Typical steps in a network analysis.
(B) An example Facebook network (left) and gene co-expression network (right). For the Facebook network, each node represents a Facebook friend of a given
individual, and an edge is placed between two nodes if the corresponding individuals are Facebook friends. For the gene co-expression network, nodes rep-
resenting genes and edges are placed between two genes that exhibit correlated expression across a set of individuals.
(C) Four example network modeling applications. ‘‘Hub nodes’’ are nodes with exceptionally high degree.
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iteratively maximizing likelihood. In general, these sophisticated

methods outperform replacement withmean ormedianwhen as-

sessed using the root-mean-squared error of the imputed values

with the true values.However, this improvementmaycomewith a

cost for subsequent analyseswhich rely oncorrelationswithin the

data.We next discuss three studies that investigate the impact of

imputation error on downstream analyses.

Souto et al.21 ran a series of trials to assess the impact of the

four aforementioned imputation methods on downstream ana-
lyses. Using 12 cancer gene expression datasets, they imputed

values with each method and then evaluated results for three

network clustering algorithms. Interestingly, they observed that

simply replacing values with the mean or median held similar

performance as the four more elaborate techniques. They sug-

gested that this observation may be due to the fact that clusters

of co-expressed genes tend to be highly correlated and are likely

to have some genes with no missing data, hence high accuracy

of imputed values is not critical in downstream analyses.
Patterns 2, December 10, 2021 3
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We propose an alternative viewpoint. A key stumbling block

for data imputation prior to network modeling is that error in the

imputations is not random for approaches that use correlations,

such as KNNimpute, LLSimpute, BPCA, and EMimpute. When

relationships within the data are used, exceptions to the trends

are erroneously replaced with values that match the observed

patterns. These biased errors can falsely boost pairwise rela-

tionships that are used to create edges for the network. In

short, while the overall root-mean-squared error may be lower

when one of these methods is utilized as opposed to simply us-

ing the mean or median, the inaccuracies that do arise tend to

increase downstream correlation values and false-positive

errors.

A second study focused on the effects of imputation on an

analysis of questionnaire data based on stress and health for

older adults.22 This 20-page survey instrument included ques-

tions for computing scores for symptoms of depression, anxi-

ety, and self-assessed health. A set of 96 cases with no missing

data had the computed score for symptoms of depression

removed from the data, along with 19.5% of data points used

to compute this score. The missing data were imputed using

simple regression (SR), regression with added error term

(RET), and expectation maximization (EM), and the imputed

score for depression symptoms obtained. The correlation be-

tween the imputed depression score and three of the variables

included in the score calculations—sex, age, and self-assessed

health—were computed for the original data and for the data

following the three imputation methods. The authors also

computed correlations between the depression score and

two scores not included in the imputations: anxiety and

functional health. While these two scores had strong correla-

tions with the depression scores (p % 0.001 for anxiety and

p % 0.01 for functional health) in the original data, the imputed

depression scores exhibited dramatic differences. EM showed

high significance (p % 0.01) in the opposite direction for anxiety

and SR showed high significance (p % 0.05) in the opposite di-

rection for functional health. The three variables with the

imputed values sex, age, and self-assessed health did not

exhibit this type of reversed correlation. The correlation be-

tween depression scores and sex for EM imputation was

similar to the original score, while SR and RET failed to capture

any significant correlation. Both age and self-assessed health

demonstrated strong inflation of the correlation. Age was not

correlated with depression for the original data and was signif-

icantly correlated for RET (p % 0.05) and EM (p % 0.01) in the

imputed data. Self-assessed health was significantly anti-corre-

lated (p % 0.05) with depression in the original data, uncorre-

lated for RET, and jumped to very strong anti-correlation for

both SR and EM (p % 0.001). In short, the variables with

imputed values tended to boost correlation values, while those

without imputations exhibited unpredictable correlations with

the imputed depression score.

The third study examined the effects of imputation on mass

spectrometry data taken across various tissues.27 For each tis-

sue, data values were imputed using seven different imputation

methods (half minimum substitution, mean substitution, k-near-

est neighbors, local least-squares regression, BPCA, singular

value decomposition, and random forest). Following imputations

at levels of missingness ranging from 10% to 50%, correlations
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between the matrices were computed and MANOVA trials were

run. The authors observed two primary outcomes. First, the

magnitude of the pairwise inter-matrix correlations declined

and in some cases reversed in direction. Presumably this is

due to erroneous inflation of the correlation patterns within

each of the matrices induced by the imputations. Second, the

number of false-positive errors in the MANOVA tests increased

in accordance with the level of missingness for all seven imputa-

tion methods.

In summary, data imputation methods that draw on patterns

that exist in the known data points tend to reinforce these rela-

tionships, thereby inflating correlation structures, and hold po-

tential to produce false-positive edges in network models.

Data imputation may be more useful in approaches that are

not based on network construction. For example, genome-

wide association studies, whereby each genetic marker is

directly analyzed for association with a trait and the relationships

between themarkers are not computed, may bemore resilient to

bias in imputation error.

In lieu of imputation, a common approach is to remove any

rows or columns of the data table with excessive missing

data values.28 The downside is that a lot of known data points

are lost in this process. It should be noted that starting with a

relaxed threshold for missingness and iteratively removing

rows and columns in an alternating fashion while gradually

tightening the threshold often leads to higher data retention

than applying the target threshold to all rows and columns

simultaneously. We use an Alzheimer disease gene expression

dataset29 generated by Amanda Myers’ lab to demonstrate.

These data include expression levels for 8,650 genes drawn

from 363 individuals’ postmortem brain. Directly cleaning to a

maximum of 5% missing values for all individuals and for all

genes eliminates 1,243 genes and 46 individuals. On the other

hand, using the iterative procedure while striving to retain indi-

viduals eliminates 1,219 genes and 6 individuals. We offer

open-source software for facilitating this iterative process at

www.blocbuster.org.

Another consideration is the relative distribution of the missing

values between the two objects being measured for a relation-

ship, as will be presented in the next section.

Discretization
Discretization of data values, whereby real values are binned into

a set of discrete values such as low, average, and high, is

performed in many analyses. Such techniques can facilitate

computations, tolerate differences in scales across objects,

and eliminate outlier concerns.30,31 However, the choice of dis-

cretization thresholds may have dramatic effects on results.30

When re-running entire analyses using different discretization

thresholds is impractical, it is advisable to check the sensitivity

of the results using different thresholds. While network analysis

methods may benefit from the use of discretized data, it may

be practical to assess the results found using the original contin-

uous-valued data. When this type of validation is conducted,

outliers should be carefully treated using an appropriate method

that accounts for specific intricacies arising in the given research

area. For example, in the gene expression domain, rare genetic

variants can yield outlier gene expression values that are indeed

biologically relevant.32

http://www.blocbuster.org


Figure 2. Subset heterogeneity, effective
sample size, and permutation examples
Examples for pairs of objects, each with ten attri-
bute values. Red upward arrow, dash, and blue
downward arrow indicate high, neutral, and low
data values, respectively. An ‘‘3’’ indicates missing
data value.
(A) The first five attribute values are perfectly
correlated for objects A and B, while the other five
are not correlated at all. Such a situation may be
expected in the presence of subset heterogeneity.
The absolute value of Pearson’s correlation coeffi-
cient is only 0.44 due to the uncorrelated values.
Duo returns a high score of 0.80 for the high/low
relationship and low scores for high/high, low/high,
and low/low relationships.
(B) Objects C, D, E, and F each have 20% missing
data. When computing a pairwise correlation mea-
sure for objects C and D, 40% of the value pairs
contain missing values and do not contribute to the
score. On the other hand, only 20% of the value
pairs contain missing values for objects E and F.
(C) A0 and B0 represent random permutations of
objects A and B, respectively. Each object retains
the same values while the inherent correlation be-
tween A and B is broken up.
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PAIRWISE RELATIONSHIP CALCULATIONS

After pre-processing data, pairwise relationships are computed

to generate edges in the network. The number of computations

to assess all pairs is equal to (n2 � n)/2, where n is the number

of objects. Given an efficient algorithm and adequate resources,

this number is feasible for many datasets of interest. When the

computation time is too burdensome, these independent pair-

wise computations can be run in parallel across many proces-

sors, and cloud services are readily available for such tasks.

As illustrated in Figure 1C, edges may be binary or carry a

discrete or real-valued weight. The Facebook network example

includes binary edges, where an edge exists if the individuals

are Facebook friends and does not exist otherwise. Most

network models of interest require a more complex evaluation

of pairwise relationships. Similarity or correlation measures

computed across arrays of values representing each object,

such as Euclidean distance or Pearson’s correlation coefficient

(PCC),33 are commonly utilized, but some applications may

require a domain-specific relationship computation. We discuss

four challenges regarding this step: subset heterogeneity, sam-

ple size, spurious correlations, and edge retention.

Subset heterogeneity
Many network modeling domains exhibit subset heterogeneity,

and such heterogeneity should be addressed by the correlation

metric utilized. Examples of subset heterogeneity include

different weather patterns preceding a common severe weather

event and subtypes of diseases, such as breast cancer, in which

different biological pathways are manifesting a shared cancer

phenotype. Not only is it valuable to tease out these different

subgroups to increase weather prediction accuracy and facili-

tate precision medicine, failure to account for this heterogeneity

can yield false-negative correlations, as shown in Figure 2A.

Prominent correlation measures, such as PCC and Euclidean

distance, return a single scalar value that must account for the

correlation over all of the data points in the arrays. This is prob-
lematic as when heterogeneity exists, one subgroup may exhibit

high correlation, but there is no reason to expect other sub-

groups to hold any correlation, and this lack of correlation tends

to weaken the correlation score. The only correlation measures

that we are aware of that account for subset heterogeneity are

Hamming distance34 and its variants, and the two vector-based

correlation measures that we have introduced: custom correla-

tion coefficient35,36 for single-nucleotide polymorphism data

and Duo11 for general real-valued data.

Sample size
Inadequate sample size increases the likelihood of observing

spurious correlations and false-positive signals. Spurious corre-

lations generally fall into two categories: those that arise from an

indirect relationship and those that arise by mere chance. The

first of these types can be expected in network analysis. For

example, two genes may be exhibiting high expression together

due to an underlying biological condition. Here, we consider

spurious correlations that arise by mere chance.

In general, a sample size that will adequately diminish spurious

correlations can be difficult to correctly ascertain, as it is highly

dependent upon the properties of the given dataset and the cor-

relation metric employed. Moreover, for a given sample size and

correlation metric, the effective sample size can be reduced due

to missing data, with the reduction being dependent upon the

relative locations of the missing data values. For example,

consider PCC. This popular correlation measure is based on

the covariance of the two arrays divided by the product of the

standard deviations for the arrays. It should be noted that the

percentage of missing values for each object is only a lower

bound on the level of missing values used in correlation compu-

tations, as they range from the maximum percentage of the two

objects to the sum of the percentages for the two objects, as

shown in Figure 2B. In essence, the effective sample size can

vary between each pair of objects. It is desirable for software

to report warnings when the effective sample size drops below

a given threshold, yet such features are rare.
Patterns 2, December 10, 2021 5



Figure 3. Duality node
Assume that low values of object A are correlated with low values of object B,
high values of object A are correlated with low values of object C, and no other
correlations exist for objects A, B, and C.
(A) In a standard network for which each object is represented by a single
node, the transitivity assumption would falsely suggest that B and C are
correlated.
(B) In an expanded network for which each object is represented by two nodes,
one for high values and one for low values (red and blue, respectively), B and C
are not joined by an intermediate node.
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Spurious correlations
In addition to inadequate effective sample size, spurious correla-

tions can arise due to characteristics of the data and the algo-

rithm employed. An agile approach to dynamically test for these

errors is to run permutation trials for each pair of objects, thereby

testing the null hypothesis for the given pair. For each correlation

measurement above a given threshold, the corresponding pair of

objects has their values permuted as shown in Figure 2C for an

adequately large number of trials (e.g., 1,000). These permuta-

tions break up inherent correlations that might exist while retain-

ing sample size and other statistical properties of each array,

such as median and variance, as they are composed of exactly

the same values but in different relative ordering. Correlation is

measured over the permuted arrays and sorted to yield a p value

for the degree of correlation for the array pair.

Edge retention
The number of possible edges in a network with n nodes is

(n2 � n)/2. As it is not practical to hold all edges of a complete

network in main memory for all but small n, a large proportion

of edges is not retained. Assuming permutation trials are run,

a minimum criterion for edge retention might be to require a

p value of less than 0.05.

NETWORK CONSTRUCTION

The construction of a network once the edges have been identi-

fied is relatively straightforward. However, there is an insidious

fundamental mistake that is practiced nearly universally, as

described in this section. Another challenge is assessing the

structure of the network, which is also addressed herein.

Duality nodes
Networks are normally constructed by assigning a node to repre-

sent each object and placing edges between pairs of nodes that

are correlated. This practice leads to false-positive signals due to
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the transitivity assumption upon which network modeling is

based. For a given object, correlations with other objects can

arise due to high or low values in the object’s array of data. For

instance, high and low values of temperature, atmospheric pres-

sure, wind, precipitation, cloudiness, and/or humidity are each

associated with different weather events. Note that high values

for one object and low values of another may be involved in

important anti-correlations. Typical scalar correlation metrics

indicate the degree of correlation/anti-correlation but do not indi-

cate whether high or low values are contributing to the relation-

ship, creating an environment for the generation of what we refer

to as duality nodes (Figure 3).11 Duality nodes lead to themerging

of unassociated clusters. Moreover, these clusters may be the

opposite of each other. For example, if high expression of

gene A is correlated with a cluster of genes that lie in a biological

pathway leading to disease progression and low expression of

A is correlated with a healthy biological pathway, the genes

for both of these opposing pathways will be connected via

A. Consider the b-site amyloid precursor protein (APP)-cleaving

enzyme 1 (BACE1). BACE1 competes with a-secretase ADAM10

for cleaving APP.37 While ADAM10 cleavage has not been asso-

ciated with deleterious effects, BACE1 cleavage yields b-amy-

loid peptides, which aggregate to form the amyloid plaques

that are characteristic of Alzheimer disease.38 High expression

of BACE1 has been observed in peripheral blood of Alzheimer

disease cases when compared with normal controls.39 Conse-

quently, a network in which each gene is represented by a single

node will tend to connect the pathological pathway yielding pro-

duction of excess b-amyloid peptides with analytes in healthy

pathways that include low BACE1 levels. We have addressed

this issue by expanding network scaffolding to include two no-

des per object, representing high and low values, respectively.11

As illustrated in Figure 3B, this expansion separates the clusters

and justifies the use of transitivity.

Allocating two nodes for each object doubles the number of

nodes needed, but the number of edges is not increased. Indeed

the resulting network is somewhat sparsified, and large con-

nected components may be separated into smaller connected

components. Network clustering is typically the most computa-

tionally demanding step during a network analysis, and each

separate connected component can be clustered independently

without any loss of accuracy. Identification of the connected

components can be quickly computed using a modified

breadth-first search (BFS) that runs in O(n + e) time, where n is

the number of nodes and e is the number of edges.40 (We provide

open-source code for this purpose at www.blocbuster.org.) In

summary, while network expansion doubles the number of no-

des, it eliminates false-positive signals due to duality nodeswhile

retaining the same number of edges andmay reduce the compu-

tational demands for downstream clustering analyses.

Network structure assessment
Large-scale networks are difficult to visualize due to their

complexity and high dimensionality. Many visualization tools

exist, such as Gephi41 and Cytoscape,42 along with Python, R,

and MATLAB tools, but they tend to be computationally

demanding and typically are unable to render large networks

of interest. Moreover, these programs attempt to flatten a

high-dimensional network into two-dimensional (2D) space,

http://www.blocbuster.org
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and this dimension squashing can obscure interesting charac-

teristics. There are many different algorithms for laying out a

network in two dimensions, such as Force Atlas,41 Fruchter-

man-Reingold,43 and Yifan Hu,44 and these methods generally

yield vastly different visualizations that do not even appear to

represent a common network. Consequently, it is advisable to

view multiple layouts and to also consider other resources, as

follows.

To gain insights into large-scale network structure, one can

identify properties such as edge density, node degree distribu-

tions, reciprocity, bridge counts, and centrality.45 In our genetics

research, we have observed many networks that contain large

numbers of singleton nodes without any edges connecting

them to any other nodes, and completely disconnected compo-

nents, in which no edges connect the components to each other.

Knowledge of such structures can simplify downstream analysis

by removing singletons and assessing each component sepa-

rately, thereby reducing computational burden. As previously

mentioned, a BFS of the network can be adapted to explore

the network, thereby providing the numbers of nodes and edges

for each disconnected component and a count of singleton no-

des. Networks with disconnected subcomponents can be sepa-

rated into smaller networks, each of which may be manageable

for visualization tools.

CLUSTERING

Typical clustering algorithms are not easily parallelized, and the

computational bottleneck in a study may arise in this step. For

this reason, it is common for researchers to prune the objects

that appear the least promising. However, it is difficult to know

a priori which objects to choose, as excluded objects may play

roles in valuable synergistic interactions. An alternative

approach is to increase the edge retention stringency to

decrease the number of edges until the network breaks into

disconnected components. After the components are identified,

the discarded edges within each component can be replaced.

Consequently, each component will require less computation

time than the original network and can be run in parallel on

different processors.

Identifying an unknown number of clusters, also referred to as

communities or modules, each with an unknown number of

tightly connected nodes, can be a daunting task. A plethora of

algorithms have arisen using diverse computational tools.

Once an algorithm is selected, there are typically multiple adjust-

able parameters yielding a great variety of outputs. Taken

together, there is a vast number of clustering results possible,

which presses the question: which is correct for your network?

Many researchers rely on precedence and simply use clustering

algorithms and parameter settings that have been published in

their domains previously. However, those previous selections

may have been somewhat arbitrary and/or differences in

network structures may invalidate this reuse.

For algorithms that are not based on a specific objective, un-

derlying assumptions and objectives are often difficult to assess,

despite their importance for method selection. For example,

many popular clustering methods, including k-means46 and hier-

archical clustering,47 assume clusters have hyperspherical

shapes and tend to minimize the overall diameters of the clus-
ters. Many practical applications may yield elongated or com-

plex structures that are likely to be cut apart by the sphericity

assumption. Also, differences in densities of clusters within a

single network can impede some algorithms, such as

DBSCAN.48,49

Some clustering methods are based on clearly stated objec-

tives. For example, a large group of clustering algorithms aim

to maximize the modularity function that was proposed by New-

man and Girvan in 2004.50 Modularity measures the numbers of

edges within assigned clusters minus the numbers expected if

the edges are placed randomly, while node degrees remain con-

stant. This objective does not enforce sphericity and gained

rapid popularity. Optimally maximizing the modularity objective

function is NP-hard51 so many approximation implementations

have arisen, including greedymethods,50 divisive optimization,52

simulated annealing,53 hierarchical clustering,54 and spectral

partitioning.55 Sixteen different modularity implementations

have been compared by Danon et al.56 Fortunato and

Barthélemy observed a resolution limit for modularity wherein

distinct clusters will be merged together when the network size

is adequately large.57 We have observed that modularity is

strongly biased against singletons, regardless of network size,

and will sometimes split a dense cluster in two to avoid creating

a singleton cluster. Consequently, modularity-based methods

may be problematic for networks in which singletons are ex-

pected and for very large networks.

In many research endeavors it is not clear what clustering

objective is suitable, and it is tempting to apply many different

clustering methods. However, multiple testing corrections

should be applied, making this expedition prohibitive. Lea and

Climer developed a solution to this dilemma by applying many

different clustering techniques and sorting the clusters by

desirable properties to select the most promising for validation

testing, thereby managing multiple testing corrections.58

Another resource is VICTOR (http://bib.fleming.gr:3838/

VICTOR/). This website provides visualizations of various clus-

tering algorithms to aid in cluster selection.59

VALIDATION

Using an adequate number of permutation trials for pruning

false-positive correlations, representing each object by two

nodes to eliminate duality nodes, and utilizing an appropriate

correlation metric and clustering technique will increase the like-

lihood of correct results. However, noise in the data and overfit-

ting can sabotage outcomes, and it is imperative that results are

validated.

Depending on research design, validation via data generated

by a different study may be problematic due to differences in

data collection. In the realm of gene expression data, differences

in platforms used to measure gene expression alone can be

drastic enough to undermine efforts, as different variants of

each gene may be captured. Furthermore, sample preparation,

technician experience, and equipment settings can yield incon-

sistencies between studies.60 Alternatively, many publications

report gene enrichment p values as validation of the results.

Various reference databases, such as DAVID61 and Meta-

scape,62 provide software to estimate the probability of seeing

a group of biologically related genes appearing in a givenmodule
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of genes.63 These results are dependent upon the clustering al-

gorithm utilized by the software and the number and sizes of

clusters.10 Furthermore, the analysis is based entirely on known

biological relationships and, consequently, novel discoveries will

not fare well in these evaluations.

In general, it is ideal to split the data samples into discovery

and validation sets, use the discovery data to generate the

network and clusters, and test these clusters in the held-out vali-

dation data. For example, 70% of the samples can be used to

build the network and discover patterns associated with the trait

of interest, then each of these patterns can be tested for associ-

ations on the held-out samples, with multiple testing corrections

applied. Unfortunately, this approach can diminish the power

needed to identify true correlations and clusters in the discovery

dataset while ensuring that the validation dataset is adequately

large to be representative of the true patterns in the data. How-

ever, many data collection methods are becoming increasingly

more affordable, and datasets are growing to suitable sizes in

many domains.

DISCUSSION

The pearls and pitfalls of network modeling are numerous. The

beauty of the approach is that arbitrarily high-dimensional pat-

terns can be identified based upon simple pairwise relationships.

Given an efficient implementation and adequate computational

resources, it is feasible to build and analyze networks for most

datasets of interest. Another advantage is that components of

a network can be visualized using 2D and 3D plotting software.

These visualizations capture complex interactions and may

reveal interesting characteristics worthy of further exploration,

such as hub nodes that are connected to large numbers of other

nodes and/or dense subclusters that are loosely connected.

As detailed herein, there are numerous caveats that are

commonly overlooked in network modeling. First, imputation of

missing data can lead to false-positive signals for downstream

correlationmeasurements. An alternative strategy is to iteratively

remove objects and attributes with excessive numbers of

missing values while gradually tightening the threshold until a

desired threshold is reached.

Second, discretization of data values, when utilized, needs to

be evaluated for robustness of the discretization thresholds

utilized.

Third, the pairwise relationship metric must align with the spe-

cific properties of the domain. In particular, a common error is to

apply a general-purpose correlation measure when subset het-

erogeneity exists, thereby leading to false-negative signals.

Fourth, the ‘‘sample size’’ for a study is not necessarily equal

to the effective sample size. For each pairwise relationship

computation, the effective sample size is dependent upon the

amount and the relative positioning of the missing data for

the pair.

Fifth, spurious correlations may arise. A straightforward strat-

egy for assessing significance to use permutation trials and then

base edge retention on the p values derived from an ample num-

ber of such trials.

Sixth, duality nodes are pervasive and dicey actors hidden in

the networkmodeling realm. It is natural to represent each object

as a node, yet, in hindsight, it is clear that ‘‘high’’ and ‘‘low’’
8 Patterns 2, December 10, 2021
values of an object should not be compressed into a single

node, as it invalidates the transitivity assumption upon which

network modeling is based.

Seventh, although plotting network subcomponents can be

insightful, visualization of high-dimensional networks in 2D

space is somewhat arbitrary. Evaluating network properties

can yield meaningful information while providing statistical char-

acteristics to inform the next step: clustering.

Eighth, properly clustering the network can be a daunting task.

It is possible to ameliorate computational demands using divide-

and-conquer strategies. However, selection of a valid clustering

algorithm from the profusion of offerings, along with appropriate

parameter settings, is challenging and requires careful consider-

ations of the particular structure of the given network.

Finally, despite best practices in network analysis, false-posi-

tive signals may arise due to noise in the data and overfitting.

Stringent unbiased validation is indispensable and can be

achieved using independent data.

While these many challenges can be assuaged using the pre-

scribed techniques, one pressing issue is that regardless of the

perfection of the analysis, network modeling is an approximation

method. Even if a dataset is analyzed a very large number of

times using many different choices, there is never any guarantee

that all useful patterns are revealed, and the most beneficial sig-

nals may remain hidden within the sea of values. The number of

possible patterns grows exponentially with the pattern size (e.g.,

patterns of sizes 2, 3, and k have the order of n2, n3, and nk

possible patterns for n nodes, as shown in Table 1). Conse-

quently, ensuring optimality is expected to be intractable for

problem sizes of interest given currently available methods.

Fortunately, when properly applied, the guilt-by-association ba-

sis of network modeling provides a scalable and flexible vehicle

for releasing insightful high-dimensional relationships from

otherwise incomprehensible datasets.
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