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Abstract: Background: Although hydraulic support can help enterprises in their production activities,
it can also cause fatal accidents. Methods: This study established a composite risk-assessment method
for hydraulic support failure in the mining industry. The key basic event of hydraulic support failure
was identified based on fault tree analysis and gray relational analysis, and the evolution mechanism
of hydraulic support failure was investigated based on chaos theory, a synthetic theory model, and
cause-and-effect-layer-of-protection analysis (LOPA). Results: After the basic events of hydraulic
support failure are identified based on fault tree analysis, structure importance (SI), probability
importance (PI), critical importance (CI), and Fussell–Vesely importance (FVI) can be calculated.
In this study, we proposed the Fussell–Vesely–Xu importance (FVXI) to reflect the comprehensive
impact of basic event occurrence and nonoccurrence on the occurrence probability of the top event.
Gray relational analysis was introduced to determine the integrated importance (II) of basic events
and identify the key basic events. According to chaos theory, hydraulic support failure is the
result of cross-coupling and infinite amplification of faults in the employee, object, environment,
and management subsystems, and the evolutionary process has an obvious butterfly effect and
inherent randomness. With the help of the synthetic theory model, we investigated the social and
organizational factors that may lead to hydraulic support failure. The key basic event, jack leakage,
was analyzed in depth based on cause-and-effect-LOPA, and corresponding independent protection
layers (IPLs) were identified to prevent jack leakage. Implications: The implications of these findings
with respect to hydraulic support failure can be regarded as the foundation for accident prevention
in practice.

Keywords: hydraulic support failure; mining industry; fault tree analysis; chaos theory; synthetic
theory model; cause-and-effect-LOPA

1. Introduction

In 2005, the State Council of the People’s Republic of China proposed optimizing
the energy structure and vigorously developing clean energy [1]. However, coal is still
the main source of energy in China and has made an indelible contribution to economic
modernization [2,3]. Coal accounted for 56.8% of the total energy consumption in 2020 in
China, according to the National Bureau of Statistics [4]. With the progress of modern mech-
anized production in the mining industry, various accidents will inevitably occur [5–7].
Hydraulic support is a structure used to control the pressure on the coal-mining face and
can effectively prevent the gangue from entering the mining face. When the hydraulic
support of a coal mine fails, it seriously threatens the lives and safety of miners [8–10].
Therefore, a comprehensive analysis of possible failures of hydraulic support is helpful to
promote safe practices in coal mines.
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Fault tree analysis is a widely used risk-analysis method. Liu et al. investigated
risk factors leading to a blowout accident based on fault tree analysis and performed
dynamic risk analysis to evaluate the safety of well-control operations [11]. Yazdi and
Kabir performed a quantitative risk assessment based on fault tree analysis and identified
the most critical events in the fault tree [12]. After determining the basic event of hydraulic
support failure based on fault tree analysis, importance analysis can be adopted to identify
the key basic event. The importance of the basic event refers mainly to structural impor-
tance, probability importance, critical importance, and Fussell–Vesely importance [13–15].
Fussell–Vesely importance refers to the impact of basic event nonoccurrence on the oc-
currence probability of the top event [14]. However, Fussell–Vesely importance cannot
determine the comprehensive impact of basic event occurrence and nonoccurrence on the
occurrence probability of top events. In this study, a new type of importance was proposed
to investigate the comprehensive impact of basic event occurrence and nonoccurrence on
the occurrence probability of the top event.

Due to the limitations of human, material, and financial resources, it is impossible
to apply the same accident-prevention measures to all basic events. It is necessary to use
resources to their best advantage to prevent the occurrence of key basic events. Different
types of importance determine different aspects of the impact of basic events on the
top event, and it is necessary to determine the integrated impact of different types of
importance on the top event. Gray relational analysis is used to measure the degree of
correlation between factors based on the degree of similarity in the development trend
between factors. Weng et al. proposed a new method to design a recommender system
by employing gray relational analysis in heterogeneous social networks [16]. In this study,
gray relational analysis was used to determine the key basic event of hydraulic support
failure and provides a reference for accident-prevention measures.

The occurrence of accidents has the characteristics of suddenness, complexity, and
severity [17–19]. Chaos theory investigates mainly the order of behaviors in a system from
order to chaos and how to control chaos [20–22]. Ding et al. investigated the effect of
rotating speeds on running-in quality with the help of chaos theory [21]. Chaos theory is
very suitable for exploring the nature of accidents. Unfortunately, previous studies have
seldom focused on this issue. In this study, chaos theory was introduced into the field of
accident analysis to explore the evolutionary characteristics of hydraulic support failure.

According to Heinrich’s theory of accident causation, accidents are caused mainly
by the unsafe state of objects and the unsafe behavior of humans [23,24], both of which
are closely related to the social environment. Therefore, the logical relationship between
the social environment and accidents should be explored in depth. This study explores
the impact of the social environment on the occurrence of accidents with the help of the
synthetic theory model [25].

Accident-prevention measures should be taken for the identified key basic events to
protect employee health. Frequently used accident-prevention models include the bow tie
model [26–28] and cause-and-effect-layer-of-protection analysis (LOPA) [29]. Cause-and-
effect-LOPA is a composite method that can be used to identify the cause of an accident
and take corresponding prevention measures. Xu et al. proposed cause-and-effect-LOPA
to investigate the dangerous and harmful factors of foundry accidents in an effort to
protect employee health; they identified 19 sub-causes and 18 independent protection
layers (IPLs) [29]. To improve the safety level of coal mines, this study seeks to identify
prevention measures by identifying key basic events based on cause-and-effect-LOPA.

This study was organized as follows. The fundamental theories and analytical process
of the composite risk-assessment approach are summarized in Section 2. The application of
the proposed composite risk-assessment approach is illustrated by a case study in Section 3.
Discussions of the results and findings are presented in Section 4, and conclusions are
presented in Section 5.
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2. Methods
2.1. Framework of This Study

The main purpose of this study was to establish a new composite approach to risk
assessment, as shown in Figure 1. The basic events of hydraulic support failure can be
determined with the help of fault tree analysis [12]. Then, the minimal cut and path
sets and the occurrence probability of the top event [11] can be determined. Structure
importance (SI) [15], probability importance (PI), critical importance (CI) [30], Fussell–
Vesely importance (FVI) [14], and the proposed Fussell–Vesely–Xu importance (FVXI) can
be determined based on the structure of the fault tree and the occurrence probability of basic
and top events. FVI and FVXI can be calculated with the help of a Bayesian network [31–33].
To identify the key basic event, gray relational analysis [16] was introduced to calculate the
integrated importance (II) of the basic event. The evolutionary characteristics of hydraulic
support failure can be explored by chaos theory [21]. The social and organizational factors
of hydraulic support failure were investigated based on the synthetic theory model [25],
and the unsafe behaviors of humans were explored by failure mode and effects analysis
(FMEA) [34,35]. The prevention measures corresponding to the key basic event can be
determined by cause-and-effect-LOPA [29].
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Reliability refers to the possibility that the system can work normally. Reliability
analysis enables the system reliability to be maximized under certain conditions [36,37]. In
other words, reducing the probability of system failure can improve the reliability of the
system. After the key basic event of hydraulic support failure is determined based on fault
tree analysis [12] and gray relational analysis [16], the reliability of hydraulic support can
be improved by reducing the probability of the key basic event. In addition, the influence
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of the probability of the basic event on the probability of the top event is analyzed in detail
in the text.

2.2. Fault Tree Analysis

Fault tree analysis builds a logical relationship between atop event and the associated
basic events. The approximate occurrence probability of a top event can be calculated by
the minimal cut sets, as follows [12]:

P(T) = 1−
k

∏
r=1

Xi∈Er

(1− ∏
Xi∈Er

qi) (1)

where Er is the minimal cut set, qi is the occurrence probability of a basic event, Xi∈Er
denotes the ith basic event that belongs to the rth minimal cut set, and k is the number of
minimal cut sets.

2.2.1. Structure Importance

Structure importance assumes the occurrence probability of the basic events is the
same and refers to the impact of basic events on the top event based on structure [15].
Structure importance can be calculated as follows:

IS(i) =
1
k

k

∑
r=1

1
mr

(2)

where mr is the number of basic events of the rth minimal cut set.

2.2.2. Probability Importance

Probability importance refers to the impact of the occurrence probability of basic
events on the occurrence probability of the top event [30]. Probability importance is a type
of Birnbaum importance and can be calculated as follows:

IB(i) =
∂P(T)

∂qi
(3)

2.2.3. Critical Importance

Critical importance refers to the variation rate of the occurrence probability of the top
event caused by the variation rate of the occurrence probability of basic events [30]. Critical
importance can be calculated as follows:

IC(i) = lim
∆qi→0

∆P(T)/P(T)
∆qi/qi

=
qi

P(T)
· IB(i) (4)

2.2.4. Fussell–Vesely Importance

Fussell–Vesely importance is the variation rate of the occurrence probability of thetop
event caused by basic event nonoccurrence [14]. Fussell–Vesely importance can be calcu-
lated as follows:

IFV(i) =
P(T)− P(T|qi = 0)

P(T)
(5)

2.2.5. Fussell–Vesely–Xu Importance

Since Fussell–Vesely importance reflects only the impact of the nonoccurrence of the
basic event on the occurrence probability of the top event, we proposed Fussell–Vesely–Xu
importance to reflect the impact of both basic event occurrence and nonoccurrence on the
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occurrence probability of the top event. Fussell–Vesely–Xu importance can be calculated
as follows:

IFV(i) =
P(T|qi = 1)− P(T|qi = 0)

P(T)
(6)

2.3. Bayesian Network

The Bayesian network includes network nodes, directed links, conditional probabili-
ties of nodes, and a directed acyclic graph and can reflect uncertain relationships among
network nodes [31–33]. The Bayesian network is based on the Bayesian formula, and the
probability of event A under the occurrence of event B can be expressed as follows:

P(A|B) = P(B|A)× P(A)

P(B)
(7)

where P(A) is the prior probability of event A,P(A|B) is the posterior probability of event A
under the occurrence of event B,P(B|A) is the conditional probability of event B under the
occurrence of event A,P(B) is the prior probability of event B,P(A) is not related to event B,
and P(B) is not associated with event A.

Let the set of events A be A = {a1, a2, · · · , an}. Then, the Bayesian formula of P(B)
can be expressed as follows:

P(B) =
n

∑
i=1

P(B|ai)P(ai) (8)

The occurrence probability of a specific accident can be derived by the prior probability
of basic events with a Bayesian network, and the Bayesian network reflects the relationship
between prior and posterior probability.

2.4. Gray Relational Analysis

Gray relational analysis is used to identify the optimal item by calculating the gray
relational degree between the ideal item and the given items [16]. The procedure of gray
relational analysis is as follows.

Let the data of given items be A = [aij], where aij is the original data of the jth evaluation
indicator of the ith given item, m is the number of given items, and n is the number of
evaluation indicators. The matrix B = [bj] is the ideal item, where bj is the ideal value of the
jth evaluation indicator.

Let the ideal item, B, be the reference sequence and given items, A, be the sequences to
be compared. The gray relational coefficient of the jth evaluation indicator of the ith given
item can then be calculated as follows:

ξij =

min
1≤i≤m
1≤j≤n

∣∣bj − aij
∣∣+ max

1≤i≤m
1≤j≤n

|bj−aij|

2

∣∣bj − aij
∣∣+ max

1≤i≤m
1≤j≤n

|bj−aij|

2

(9)

Let the weights of the evaluation indicators be W = [w1, w2, . . . , wn]; then, the gray
relational degree of the given items can be determined as follows:

ri =
n

∑
j=1

ξij × wj i = 1, 2, · · · , m (10)

The larger the gray relational degree, the closer the given item is to the ideal item.
The order of the given items can be determined by this process to successfully identify the
optimal item.
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2.5. Cause-and-Effect-LOPA

Once the safety level of the casting workshop is achieved, corresponding safety
measures should be adopted. Cause-and-effect-LOPA [29] identifies factors that may lead
to accidents and describes IPLs that could be applied to prevent accidents (Figure 2).
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3. Results
3.1. Fault Tree Analysis of Hydraulic Support Failure

According to the production practices of coal mines, a fault tree of hydraulic support
failure can be described as shown in Figure 3 [38].In Figure 3, T denotes the top event,
namely hydraulic support failure; M1 denotes operating valve failure; M2 denotes upright
post failure; M3 denotes jack failure; M4 denotes pedestal failure; M5 denotes emulsion
pump failure; M6 denotes handle failure; M7 denotes safety valve failure; M8 denotes
pipeline failure; M9 denotes a pedestal break; M10 denotes unqualified emulsion; M11
denotes an inflexible handle that cannot self-lock; M12 denotes safety valve leakage; M13
denotes a pipeline defect; X1 denotes leakage outside the valve; X2 denotes that the handle
was not checked carefully; X3 denotes that the swinging angle of the handle is less than
80◦; X4 denotes work supervisor fatigue; X5 denotes too much coal dust on the handle;
X6 denotes upright post deformation; X7 denotes low safety valve pressure; X8 denotes
poor O-ring inspection; X9 denotes a damaged O-ring seal; X10 denotes spring failure;
X11 denotes jack deformation; X12 denotes inadequate pipeline inspection; X13 denotes
high-pressure flexible pipe leakage; X14 denotes a damaged flexible pipe connector; X15
denotes pipeline blockage; X16 denotes jack leakage; X17 denotes failure to find a break
in time; X18 denotes the main reinforcement break; X19 denotes a ball-and-socket break;
X20 denotes insufficient pump pressure; X21 denotes failure to test oil; and X22 denotes
polluted emulsion.

In the fault tree of hydraulic support failure, there are a total of 14 logic gates: nine
logic OR gates and five logic AND gates. Logic OR gates account for 64%, which shows
that the occurrence probability of a top event is greater; that is, the occurrence probability
of hydraulic support failure in the coal mine is high.

According to the fault tree of hydraulic support failure, the structural equation can be
obtained as follows:

T = M1+ M2+ M3+ M4+ M5
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There are 17 minimal cut sets in the fault tree of hydraulic support failure, according
to the Boolean algebra algorithm [39], as shown in Table S1. The minimal cut set indicates
the possible path of the top event; that is, there are 17 paths that may lead to hydraulic
support failure.

There are 32 minimal path sets in the fault tree of hydraulic support failure, according
to the Boolean algebra algorithm [39], as shown in Table S2. The minimal path set indicates
possible ways to prevent the occurrence of the top event; that is, there are 32 paths that
can be adopted to prevent the occurrence of hydraulic support failure. However, there
are many basic events in each minimal path set; thus, preventing all the basic events in a
minimal path set will be difficult.

To obtain the occurrence probability of hydraulic support failure, we must first deter-
mine the occurrence probability of each basic event. The occurrence probability of each
basic event is shown in Table 1.

The occurrence probability of hydraulic support failure can be achieved based on
Equation (1), and the result is P(T) = 0.066273.

3.2. Importance of Basic Events

The SI, PI, and CI of basic events can be calculated based on Equations (2)–(4), and the
results are shown in Table 2.

To determine FVI, it is necessary to calculate the occurrence probability of hydraulic
support failure based on basic event nonoccurrence, namely P(T|xi = 0). P(T|xi = 0) can be
determined with the help of the Bayesian network.

The fault tree of hydraulic support failure can be transferred into the Bayesian network,
as shown in Figure 4.

With the help of the forward reasoning ability of the Bayesian network, assuming that
the basic event of hydraulic support failure does not occur, the occurrence probability of
hydraulic support failure can be obtained in this case; that is, P(T|xi = 0), as shown in
Table 1.

The FVI of basic events can be calculated based on Equation (5), as shown in Table 2.
The FVXI of basic events can be calculated based on Equation (6), as shown in Table 2.
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Table 1. Probability of basic events and top event.

Basic Event Occurrence
Probability P(T|xi = 1) P(T|xi = 0)

X1 0.01 1 0.05684
X2 0.001 0.0802 0.06626
X3 0.005 0.06719 0.06627
X4 0.005 0.06719 0.06627
X5 0.005 0.06719 0.06627
X6 0.00001 1 0.06626
X7 0.005 1 0.06158
X8 0.001 0.0756 0.06626
X9 0.01 0.0672 0.06626
X10 0.001 1 0.06534
X11 0.0001 1 0.06618
X12 0.001 0.13055 0.06621
X13 0.05 0.06714 0.06623
X14 0.01 0.06714 0.06626
X15 0.01 0.06714 0.06626
X16 0.05 1 0.01713
X17 0.001 0.06646 0.06627
X18 0.0001 0.06721 0.06627
X19 0.0001 0.06721 0.06627
X20 0.001 1 0.06534
X21 0.001 0.0756 0.06626
X22 0.01 0.0672 0.06626

Table 2. Importance of basic events of hydraulic support failure.

Basic
Event

SI PI CI FVI FVXI II

Value R Value R Value R Value R Value R Value R

X1 0.0588 2 0.943157 2 0.142312 2 0.142348 2 14.2312 2 0.8667 2
X2 0.1765 1 0.014006 8 0.000211 8 0.000211 8 0.2103 8 0.5852 8
X3 0.0294 3 0.000934 10 0.00007 10 0.00006 9 0.0139 11 0.4891 13
X4 0.0294 3 0.000934 10 0.00007 10 0.00006 9 0.0139 11 0.4891 13
X5 0.0294 3 0.000934 10 0.00007 10 0.00006 9 0.0139 11 0.4891 13
X6 0.0588 2 0.933735 6 0.000141 9 0.000211 8 14.0891 6 0.5854 7
X7 0.0588 2 0.938418 3 0.070798 3 0.070827 3 14.1597 3 0.7851 3
X8 0.0294 3 0.009337 9 0.000141 9 0.000211 8 0.1409 9 0.5182 10
X9 0.0294 3 0.000934 10 0.000141 9 0.000211 8 0.0142 10 0.5066 11
X10 0.0588 2 0.934661 4 0.014103 4 0.014093 4 14.103 4 0.7207 4
X11 0.0588 2 0.933819 5 0.001409 5 0.001418 5 14.0903 5 0.6686 5
X12 0.1765 1 0.065363 7 0.000986 6 0.000966 6 0.9708 7 0.6341 6
X13 0.0294 3 0.000934 10 0.000705 7 0.000664 7 0.0137 12 0.5191 9
X14 0.0294 3 0.000934 10 0.000141 9 0.000211 8 0.0133 13 0.493 12
X15 0.0294 3 0.000934 10 0.000141 9 0.000211 8 0.0133 13 0.493 12
X16 0.0588 2 0.982869 1 0.741520 1 0.741528 1 14.8304 1 0.9733 1
X17 0.0588 2 0.000187 11 0.000003 11 0.00006 9 0.0029 14 0.4872 14
X18 0.0294 3 0.000934 10 0.000001 12 0.00006 9 0.0142 10 0.4846 15
X19 0.0294 3 0.000934 10 0.000001 12 0.00006 9 0.0142 10 0.4846 15
X20 0.0588 2 0.934661 4 0.014103 4 0.014093 4 14.103 4 0.7207 4
X21 0.0294 3 0.009337 9 0.000141 9 0.000211 8 0.1409 9 0.5182 10
X22 0.0294 3 0.000934 10 0.000141 9 0.000211 8 0.0142 10 0.5066 11

Note: R is ranking.

3.3. II Based on Gray Relational Analysis

Since different types of importance reflect the different properties of basic events,
the importance rankings of the different basic events differ in Table 1. Gray relational
analysis is used to determine the ranking of different indicators by calculating the gray
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relational degree [16]. Therefore, gray relational analysis was adopted to calculate the II of
basic events.
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In matrix A, the rows from top to bottom indicate the importance rankings of SI, PI,
CI, FVI, and FVXI, and the columns from left to right indicate the importance rankings of
basic events from X1 to X22.The optimal matrix of the basic event is B = [1 1 1 1 1]. Since
different types of importance reflect the different properties of basic events, we cannot
determine which type is most important. Therefore, the importance is assigned the same
weight; that is, W = [0.2 0.2 0.2 0.2 0.2].

The II of basic events can be calculated based on Equations (9)–(10), as shown in
Table 2.

Table 2 shows that the II of basic event X16 is maximal. That is, basic event X16
contributes the most to the occurrence of hydraulic support failure.

To test the reliability of the proposed method, contrastive analysis was carried out.
The II results indicate that basic event X16 contributes the most to hydraulic support failure
and that basic event X1 ranks second. Then, we investigated the influence of the rate of
change in the probability of these basic events on the probability of the top event, as shown
in Table 3.

Table 3. Influence of probability of basic event on probability of top event.

X16 P(T) X16 P(T) X1 P(T) X1 P(T)

+10% +7.41% −10% −7.41% +10% +1.42% −10% −1.42%
+20% +14.83% −20% −14.83% +20% +2.85% −20% −2.85%
+30% +22.25% −30% −22.25% +30% +4.27% −30% −4.27%
+40% +29.66% −40% −29.66% +40% +5.69% −40% −5.69%
+50% +37.08% −50% −37.08% +50% +7.12% −50% −7.12%
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As shown in Table 3, the probability of the top event changes with the probability of
each basic event, but basic event X16 has a more severe impact on the probability of the top
event, which is in line with the results of the importance analysis. Reducing the probability
of basic event X16 will significantly improve the reliability of hydraulic support.

This study proposed a new method to identify the key basic event in relation to the
top event. Each enterprise has limited manpower and material and financial resources. It
is impossible for enterprises to allocate the same safety input to every hazard factor. To
ensure safe production and reduce costs, more safety input is designated for more hazard
factors. The II determined by gray relational analysis can identify the key basic event more
accurately than other methods, thus reducing blindness to safety input.

Vaurio [40] described the calculation method for basic event importance to the top
event. Zhu et al. [15] calculated the basic event importance of the top event and determined
the critical basic event by comparing the numerical value of each type of importance of
basic events. Different types of importance are used to examine different aspects of the
impact of basic events on the top event. For the same top event, the ranking of basic events
obtained by different importance calculation methods also differs. To identify the key basic
event, this study proposed II based on gray relational analysis, which compensates for the
shortcomings of previous studies [38].

3.4. Evaluation Mechanism of Hydraulic Support Failure
3.4.1. Chaotic Characteristics in the Evaluation Process of Hydraulic Support Failure

(1) The sensitivity of the evolutionary process to initial conditions
The hydraulic support failure process is affected by the cross-coupling of the employee,

object, environment, and management subsystems, and a fault in any link of the system
may cause changes in the state of each subsystem. When this change disrupts the balance
of a subsystem, hydraulic support failure may occur, as shown in Figure 5.
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In Figure 5, the direction of an arrow indicates that one factor has an influence on
another factor. The butterfly effect means that, when a butterfly in the tropical rainforest of
the Amazon River in South America flaps its wings, it may cause a tornado in Texas, USA,
and even a slight deviation in the butterfly’s flapping wings will change the direction of
the tornado [41].

According to chaos theory, hydraulic support failure is the result of the cross-coupling
and infinite amplification of faults in the employee, object, environment, and management
subsystems, and its evolutionary process has an obvious butterfly effect (Figure 5). For
example, a hydraulic support failure accident occurred in the Shenghua coal mine [9].
The link faults in the system that led to hydraulic support failure accident included the
following aspects. First, the main roof broke in front of the working face. Second, the strata
became unstable. Third, these changes induced a sharp load increase on the hydraulic
support. Last, the hydraulic support failure accident occurred. These faults were amplified
after cross-coupling and eventually led to the hydraulic support failure, reflecting the
butterfly effect in the chaos theory of the evolutionary process of hydraulic support failure
(Figure 5).

In a nonlinear system, small errors in a certain factor are not always small. Under
appropriate conditions, such small errors will evolve and develop infinitely, leading to
consequences for the system that are difficult to estimate. According to chaos theory, a small
input error in the system can cause a substantial drift in output under certain conditions
in a nonlinear system. In the actual production process, since the system will inevitably
be disturbed by external factors, a small error at the initial moment will be amplified over
time, leading to unpredictable consequences.

The direct causes of the top event can be identified based on fault tree analysis [11].
Fault tree analysis focuses mainly on the hazard factors that may lead to the occurrence of
the top event. However, it is difficult for the fault tee to effectively analyze in-depth factors,
such as management and environmental factors [38]. With the help of chaos theory; the
human, object, environment, and management factors; and their interactions can all be
identified, compensating for the shortcomings of fault tree analysis [38].

(2) The inherent randomness of the evolutionary process
The occurrence of hydraulic support failure requires two conditions: periodic pressure

and the failure of the cylinder stroke of hydraulic support. The roof pressure of the working
face is relieved through the safety valve in a timely manner under normal circumstances.
However, dynamic changes in each subsystem may randomly affect the cylinder stroke of
hydraulic support. On the one hand, the hydraulic support system can bear such pressure
for a short period, prompting the working resistance of the upright post to increase rapidly
until it reaches or exceeds the rated setting force; the safety valve then releases the load to
maintain balance. However, when the hydraulic support safety valve discharges frequently,
the stroke of the upright post decreases, eventually causing the hydraulic support cylinder
stroke to fail. On the other hand, with developments in science and technology, the degree
of mechanization and automation of production has been greatly improved. However,
the safety knowledge and professional skills of employees may not match the degree
of mechanization and automation of the production process, which may cause random
hydraulic support accidents owing to such issues as illegal operation.

3.4.2. Synthetic Theory Model of Hydraulic Support Failure

The organizational errors of hydraulic support failure are initially caused by social
factors, and the hazard factors are then triggered by accident factors associated with
employees and objects. Hydraulic support failure is the result of the comprehensive effects
of internal and external coal-mine factors. The synthetic theory model of hydraulic support
failure is shown in Figure 6.
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According to accident causation theory, accidents caused by unsafe behaviors by
humans account for approximately 90% of all accidents [24]. Therefore, reducing the unsafe
behaviors of humans is of great significance for ensuring enterprise safety. Then, FMEA
can be adopted to analyze hydraulic support failure and to indicate how to control the
unsafe behaviors of humans, as shown in Table 4.

Table 4. FMEA of hydraulic support failure.

Subsystem Failure Modes Failure Reasons Failure Effects Countermeasures

Connector of
flexible pipe Breakdown

Connector of flexible
pipe falls off
Connector of flexible
pipe is not tightly
crimped
Seal connector of
flexible pipe is
damaged
Connector of flexible
pipe is blocked

No oil pressure
in pipeline
system
No action in
operation of
pipeline system

Fasten flexible
pipe connector
Replace seal
connector of
flexible pipe
Straighten
flexible pipe
connector
Replace flexible
pipe connector

Employee Mis-operation

Unfamiliar with
operational skills
Reduced equipment
sensitivity
Employee is
emotional
Environmental
factors

Hydraulic
support failure
Accident with
casualties

Strengthen
education and
training
Overhaul
equipment in a
timely manner
Keep employees
in a stable state
at work
Improve on-site
working
conditions
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As shown in Table 4, the modes, reasons, and effects of hydraulic support failure
and the unsafe behaviors of employees can be identified based on FMEA. Moreover,
countermeasures are presented to prevent hydraulic support failure and reduce the unsafe
behaviors of employees. Through FMEA, the unsafe behaviors of employees can be
reduced, and the reliability of hydraulic support can be improved.

The unsafe status of objects is a major cause of accidents, according to accident
causality theory [24]. Many pieces of equipment are used in the production process
of an enterprise, and the status of the equipment is of great significance in ensuring safe
production. Understanding the legal requirements and regulations for the use of equipment
can enable enterprises and employees to better carry out safe production activities.

The Safe Production Law is a special law regarding production safety in China [42].
The main purpose of the Safety Production Law is to strengthen the supervision and admin-
istration of production safety to prevent and reduce accidents, to protect people’s lives
and property safety, and to promote economic development. The Safe Production Law has
detailed regulations for the use of equipment, which are as follows. When using new
equipment, enterprises must understand and master its safety technical characteristics,
implement effective safety precautions, and conduct special safety education and training
for employees. Enterprises should install obvious safety warning signs on equipment with
hazard factors. The design, manufacture, installation, use, testing, maintenance, transfor-
mation, and disposal of equipment should comply with national standards. Enterprises
must conduct regular maintenance and testing of equipment to ensure normal operation.
The state has implemented an elimination system for equipment that seriously endangers
production.

One of the purposes of the Labor Law is to protect the legitimate rights and interests of
employees [43]. If equipment that affects production and public interests breaks down, it
must be repaired in time based on the Labor Law.

To ensure safe production, enterprises should strictly adhere to the laws and regulations.

3.4.3. Cause-and-Effect-LOPA of Basic Event X16

The basic event X16, jack leakage, is the key basic event according to the importance
analysis. Controlling hazard factors helps to promote the safe operation of coal mining
enterprises. To identify hazard factors that cause jack leakage and take corresponding
preventive measures, cause-and-effect-LOPA on jack leakage was carried out, as shown in
Figure 7.
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There are five reasons for jack leakage, and these five reasons can be further subdivided
into 16 subcategories, as shown in Table 5.

Table 5. Causes of jack leakage.

Cause Description Cause Description

Cause 1 Unreasonable design Sub-cause 7 Surface defects of seals

Cause 2 Quality of seal is
substandard Sub-cause 8 Poor storage environment

for seals

Cause 3 Processing technology Sub-cause 9 Coaxiality error between
components

Cause 4 Assembly process Sub-cause 10 Improper processing of
oversealing chamfering

Cause 5 On-site usage Sub-cause 11 Improper processing of
sealing fillets

Sub-cause 1 Inappropriate fit clearance
between moving parts Sub-cause 12 Dust between components

Sub-cause 2
Improper surface

roughness of sealing
groove

Sub-cause 13 Sharp burrs between
components

Sub-cause 3 Poor wear resistance of
seals Sub-cause 14 Damage to sealing lip

Sub-cause 4 Poor surface stability of
seals Sub-cause 15 Hard object percussion

Sub-cause 5 Poor hydrolysis resistance
of seals Sub-cause 16 Bump in coating of piston

rod

Sub-cause 6 Large dimensional
tolerance of seals

The preventive measures that should be taken to prevent the jack from leaking are
shown in Table 6.

Table 6. Countermeasures to prevent the jack from leaking.

IPL Description IPL Description

IPL 1 Improve product design IPL 7 Strictly follow processing
technology for manufacturing

IPL 2 Strengthen knowledge training for
designers IPL 8 Strictly clean parts before assembly

IPL 3 Choose high-quality seal materials IPL 9 Use special tools to assemble seals
IPL 4 Improve storage environment of seals IPL 10 Choose appropriate emulsifier

IPL 5 Optimize manufacturing process of
seals IPL 11 Replace emulsion in time

IPL 6 Optimize processing technology of
parts IPL 12 Keep piping system clean

In this cause-and-effect-LOPA, five causes and 16 sub-causes may lead to jack leakage,
and jack leakage can be prevented by 12 IPLs. The performance of hydraulic support can
be improved by preventing the jack from leaking.

4. Discussion
4.1. Comparison with Previous Studies

Fussell–Vesely importance can be used to investigate the impact of basic event nonoc-
currence on the occurrence probability of the top event [14]. However, Fussell–Vesely
importance cannot determine the comprehensive impact of the basic event occurrence
and nonoccurrence on the occurrence probability of the top event. This study proposed
Fussell–Vesely–Xu importance, which can simultaneously consider the comprehensive
impact of basic event occurrence and nonoccurrence on the occurrence probability of the
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top event. Fussell–Vesely–Xuimportance can be calculated with the help of a Bayesian
network [31–33], which reduces the difficulty of calculation. Fussell–Vesely–Xu importance
expands the ability to analyze the importance of the fault tree.

Each type of importance applies to different aspects of the influence of basic events on
the occurrence probability of the top event [14]. Due to the limitations of human, material,
and financial resources, it is impossible to apply the same accident-prevention measures to
all basic events. Ranking the importance of basic events may cause confusion for decision-
makers. Unfortunately, previous studies have not provided an appropriate method for
determining the comprehensive importance of basic events [14,38]. In this study, gray
relational analysis [16] was introduced to calculate the II of basic events and to provide a
reference for decision-makers to implement targeted prevention measures.

Fault tree analysis is used to identify the basic events based on possible accidents
or accidents that have occurred in the system [11]. However, hydraulic support failure
is a very complex phenomenon, and its occurrence is random and cannot be completely
determined by basic events. The occurrence of an accident is comprehensively affected
by human, machine, and environmental factors [15]. There are internal relations among
these factors, and an abnormality in a factor may cause hydraulic support failure. Ad-
ditionally, the evolutionary process has an obvious butterfly effect (Figure 5). Mao and
Liu [38] investigated only the basic events of hydraulic support failure and failed to explore
their interrelationships. In this study, chaos theory was introduced into the analysis of
hydraulic support failure to help improve our understanding of the complex characteristics
of accidents in coal mines.

According to Heinrich’s theory of accident causation, accidents are caused mainly by
the unsafe state of the object and the unsafe behavior of humans [24]. The unsafe state
of the object and the unsafe behavior of humans are only the external factors that lead
to the accident, while social factors and organizational factors are the underlying causes
(Figure 6). To fundamentally prevent hydraulic support failure in coal mines, it is necessary
to gradually improve the social and organizational factors. Previous studies on accident
causation theory have focused mainly on human and machine factors [23,24]. In this study,
a synthetic theory model was adopted to investigate the social and organizational factors
of accidents, which is helpful in fully understanding the causes of accidents.

Fault tree analysis has performed well in identifying the causes of accidents, but it is
insufficient in terms of accident-prevention measures [11,12]. Mao and Liu [38] identified
a combination of causes of hydraulic support failure based on fault tree analysis, that is,
the minimal cut set. What kind of prevention measures should be taken to prevent the
occurrence of causes in the minimal cut set? Although the fault tree analysis indicates
the direction, it does not have the corresponding processing function. Cause-and-effect
analysis cannot determine prevention measures for accident causes and is not effective
in preventing accidents [44]. LOPA is a semi-quantitative assessment method of accident
scenarios that analyses the initiating event, consequences, and IPL [45]. Cause-and-effect-
LOPA is a composite method that can identify the cause of an accident and determine the
corresponding prevention measures. The results show that cause-and-effect-LOPA can
determine prevention measures for identified accident causes and significantly reduce the
risk of an accident (Figure 7).

4.2. Implications

The direct causes of hydraulic support failure are mainly the unsafe behaviors of
employees and the unsafe status of objects based on synthetic theory analysis (Figure 6).
The main unsafe behaviors of employees are disobeying rules, operating in violation
of rules, and artificial operational errors. The unsafe status of objects refers mainly to
incomplete or defective safety protection equipment, production activities under severe
environmental conditions, and production activities under severe geological conditions.

To prevent the unsafe behaviors of employees, the following prevention measures
should be adopted: formulating operating procedures for production activities, punishing
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those who violate these procedures, conducting regular employee health checks, and
increasing the education and training for employees. Employees should wear the necessary
safety protection equipment. In addition, the frequency of work-site safety inspections
should be increased, and violations should be addressed in a timely manner.

To prevent unsafe object status, the following prevention measures should be adopted:
employees should use safety protection equipment based on operational requirements
and check the status of safety protection equipment. Production specifications should be
formulated for abnormal conditions, and production activities under severe conditions
should be prohibited. The environmental conditions required for on-site operations should
be specified. For the geological structure zone, the range of influence should be first
determined, and countermeasures should then be proposed.

Laws and regulations also have an important influence on the safe production of coal
mines, according to chaos theory (Figure 5). If an enterprise does not comply with laws
and regulations, hydraulic support failure may occur. During production activities, the
enterprise should protect employees’ lives and safety and adhere to the concept of safety
first. To resolve hazard factors at the source, comprehensive measures should be adopted.
The enterprise should strictly abide by the provisions of laws and regulations.

4.3. Limitations

To simplify the discussion, the weights of the importance of all different basic events
were set at the same level. If the weights of the importance of different basic events were
set at different levels, the ranking of the importance of basic events may also differ. Future
studies should focus on the influence of the weights of importance on the II of basic events.
For example, we could invite experts, such as university teachers and students, enterprise
managers, and employees engaged in production safety, to rate each type of importance
of basic events. According to the expert scores, the analytic hierarchy process [46] would
then be adopted to determine the weight of each type of importance, and a consistency test
should also be carried out.

5. Conclusions

This study proposed a composite risk-assessment method for hydraulic support failure
in the mining industry. The main conclusions are presented below.

Hydraulic support failure is the result of the cross-coupling and infinite amplification
of faults in the employee, object, environment, and management subsystems, and its
evolutionary process has an obvious butterfly effect. If hazard factors are triggered by
social and organizational factors, then hydraulic support failure may occur. The unsafe
behaviors of employees and the unsafe status of objects are the direct causes of hydraulic
support failure; organizational factors are the remote causes, and social factors are the basic
causes. For hydraulic support failure in this study, jack leakage is the key basic event. To
prevent jack leakage, 12 IPLs were adopted. Through the method used in this study, the
risk of hydraulic support failure can be greatly reduced.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21217240/s1, Table S1: The minimal cut sets of hydraulic support failure; Table S2: The
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