
RESEARCH ARTICLE

MicroRNA regulation in colorectal cancer

tissue and serum

Lukasz Gmerek1,2☯, Kari Martyniak1☯, Karolina Horbacka2, Piotr Krokowicz2,

Wojciech Scierski3, Pawel Golusinski4,5, Wojciech Golusinski5, Augusto Schneider6*,

Michal M. MasternakID
1,5*

1 College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL,

United States of America, 2 Department of General and Colorectal Surgery, Poznan University of Medical

Sciences, Poznan, Poland, 3 Department of Otorhinolaryngology and Laryngological Oncology in Zabrze,

Medical University of Silesia, Katowice, Poland, 4 Department of Otolaryngology and Maxillofacial Surgery,

University of Zielona Gora, Zielona Gora, Poland, 5 Department of Head and Neck Surgery, Poznan

University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland, 6 Faculdade de

Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil

☯ These authors contributed equally to this work.

* augustoschneider@gmail.com (AS); michal.masternak@ucf.edu (MMM)

Abstract

Colorectal cancer is recognized as the fourth leading cause of cancer-related deaths world-

wide. Thus, there is ongoing search for potential new biomarkers allowing quicker and less

invasive detection of the disease and prediction of the treatment outcome. Therefore, the

aim of our study was to identify colorectal cancer specific miRNAs expressed in cancerous

and healthy tissue from the same patient and to further correlate the presence of the same

miRNAs in the circulation as potential biomarkers for diagnosis. In the current study we

detected a set of 40 miRNAs differentially regulated in tumor tissue when comparing with

healthy tissue. Additionally, we found 8 miRNAs differentially regulated in serum of colorec-

tal cancer patients. Interestingly, there was no overlap in miRNAs regulated in tissue and

serum, suggesting that serum regulated miRNAs may be not actively secreted from colorec-

tal tumor cells. However, four of differentially expressed miRNAs, including miR-21, miR-17,

miR-20a and miR-32 represent the miRNAs characteristic for different tumor types, includ-

ing breast, colon, lung, pancreas, prostate and stomach cancer. This finding suggests

important groups of miRNAs which can be further validated as markers for diagnosis of

tumor tissue and regulation of carcinogenesis.

Introduction

Cancer development encompasses alterations in cell growth, differentiation and regulation of

apoptosis. Over a decades of cancer research many oncogenes and tumor suppressor genes

have been identified and extensively studied for its role in the pathogenesis and malignancy of

different types of cancer [1, 2]. In this scenario, the discovery of short small non-coding RNAs

(sncRNAs) unveiled new potential molecular regulators of tumorigenesis [3]. MicroRNAs

(miRNAs) are a class of sncRNAs that interact with the RNA Induced Silencing Complex
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(RISC) to bind to the 3’ untranslated region (UTR) of mRNA molecules and regulate tran-

scription and mRNA stability [4, 5]. miRNAs have been shown to have an active role in cell

growth and proliferation, being also implicated in tumorigenesis by regulating oncogenes and

tumor suppressor genes expression [6, 7]. Tumor produced miRNAs are also regarded as pre-

dictors of malignancy and response to chemotherapy [3, 6].

miRNAs are produced in the nucleus and regulate gene expression in the cytoplasm of the

cell [4]. However, miRNAs can be also found in the extracellular environment, including in

serum, suggesting that it does not have an exclusively intracellular role [8–10]. The origin of

extracellular miRNAs may include passive leakage from apoptotic or damaged cells and/or

through secretory activity mainly within extracellular vesicles which includes exosomes [11].

Circulating miRNAs can have a role in intercellular communication, affecting gene expression

in distant or adjacent target cells [11], or serve as biomarkers for pathological conditions [8].

Therefore, it is hypothesized that the signature of circulating miRNAs provide high sensitivity,

success and reproducibility in the diagnostics of different types of cancer using a non-invasive

approaches [8, 12, 13]. Despite previous work on miRNA signatures in serum or tissue of vari-

ous types of cancer, including colorectal, very few studies approach tissue and serum variations

of miRNAs simultaneously in the same patients. This paired method can suggest if the changes

in circulating miRNA signatures are derived from the main tumoral tissue or are due second-

ary causes.

Due to high rate of colorectal cancer-related deaths worldwide [14, 15], the miRNA profile

in biopsies and serum has been extensively studied for this condition [16–20] but the lack of

more comprehensive studies in both tissue and serum from the same patients and the repeat-

ability for the identified miRNAs in different conditions is needed. Therefore, the goal of our

study was to investigate the populations of miRNAs expressed in colorectal cancerous tissue

when compared with a healthy adjacent tissue and serum from the same patients, to determine

potential new biomarkers for early detection, prediction of patient recovery and future more

personalized therapeutic approaches.

Results

After sequencing and processing, 12,540,784 adapter cleaned reads/sample with a 64.6% align-

ment rate to the human genome (hg19) for tissues was obtained in average. In the serum sam-

ples, 1,341,762 adapter cleaned reads/sample resulted in a 43.7% alignment rate to the human

genome (hg19) in average. Principal component analysis (PCA) from the 500 miRNAs with

the most variation in tissue and serum samples indicates a different and very clear pattern of

expression between healthy and cancer tissue and serum samples (Fig 1).

Following the initial analysis, the samples with< 3 reads per million (rpm) in more than

half of tested samples were removed, which resulted in identification of final 388 different

miRNAs expressed in tissue (S1 Table) and 110 miRNAs in the serum samples (S2 Table).

Comparison of the expression patterns of miRNAs in tumor and healthy tissue identified 40

differentially expressed miRNAs. Out of these 40 miRNAs, 20 were downregulated, while 20

indicated increased expression (False Discovery rate—FDR<0.05 and Fold Change–FC<0.5

or>2.0; Table 1). For serum samples 8 miRNAs were differentially expressed (4 down- and 4

up-regulated; FDR<0.05 and FC<0.5 or >2.0; Table 2). There was no overlap in the differen-

tially expressed miRNAs between tissue and serum. Only one miRNA regulated in serum was

not found as overall expressed in tissue samples (hsa-miR-486-3p), the other seven serum reg-

ulated miRNAs were also found in tissue samples, although not differentially regulated.

Pathway and GO term enrichment analysis was performed using the miRNAs differentially

regulated in serum (40 miRNAs–see Table 1) and tissue (8 miRNAs–see Table 2) allowed us to

miRNAs in colorectal cancer
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identify several known cellular processes regulated by these differentially expressed tissue and

serum specific miRNAs. Importantly, the analysis indicated that cancer related pathways are

among the top miRNA-regulated pathways in analyzed tissue (Table 3) and serum (Table 4).

Additionally, several pathways involving well known oncogenes were significantly targeted by

the regulated miRNAs in biopsies samples, as TGF and Foxo signaling pathways (Table 3 and

Figs 2 and 3, respectively). GO Terms for biological process and molecular function are pre-

sented in S3 and S4 Tables.

Discussion

In the current study we detected a set of 40 miRNAs differentially regulated in tissue and 8

miRNAs differentially regulated in serum of colorectal cancer patients. There was no overlap

in miRNAs regulated in tissue and serum, suggesting that serum regulated miRNAs may be

not actively secreted from colorectal tumor cells. However, the differential regulated miRNAs

in serum may be leaking passively from damaged cells into circulation [11]. Additionally, this

suggests that other cancer driven conditions, i.e. systemic inflammation, oxidative stress, may

be driven changes in serum miRNAs to be used as biomarkers.

Some miRNAs are consistently differentially regulated in a myriad of solid cancers (i.e.,

breast, colon, lung, pancreas, prostate and stomach cancer), with 21 miRNAs identified as reg-

ulated in at least three different types of cancer [6]. Interestingly, four of these miRNAs over-

lapped with miRNAs we currently identified as regulated in colorectal cancer tissue samples,

including miR-21, miR-17, miR-20a and miR-32. All these four miRNAs were also identified

as differentially expressed in colorectal cancer tissue [6], and miR-21 and miR-17 were identi-

fied as regulated in at least five different types of cancer, including breast, lung, prostate, pan-

creas and stomach [6], suggesting a consistent marker for diagnosis of tumor tissue and

involved in carcinogenesis. Additionally, a recent review paper identified several tissue

Fig 1. Principal component analysis of the 500 most variable miRNAs in the tissue and serum samples (healthy tissue—H and tumor tissue—T) from patients

diagnosed with colorectal cancer.

https://doi.org/10.1371/journal.pone.0222013.g001
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Table 1. MicroRNAs differentially expressed between tumor and healthy adjacent tissue in six patients diagnosed with colorectal cancer.

miRNA1 Healthy Tumor FC2 P Value FDR3

Down-regulated

hsa-miR-133b 214 ± 309433 13 ± 6 0.06 <0.0001 0.0007

hsa-miR-1-3p 49721 ± 309318 4077 ± 702 0.08 <0.0001 0.0003

hsa-miR-133a-3p 4053 ± 309299 405 ± 151 0.10 <0.0001 0.0003

hsa-miR-363-3p 1440 ± 19226 170 ± 52 0.12 <0.0001 0.0013

hsa-miR-143-3p 2341934 ± 309469 294834 ± 51415 0.13 <0.0001 0.0008

hsa-miR-145-5p 44128 ± 309313 5646 ± 1232 0.13 <0.0001 0.0003

hsa-miR-129-5p 190 ± 19225 25 ± 12 0.13 <0.0001 0.0013

hsa-miR-135a-5p 60 ± 36501 10 ± 4 0.16 0.0012 0.0168

hsa-miR-504-5p 234 ± 309469 42 ± 12 0.18 <0.0001 0.0007

hsa-miR-145-3p 9463 ± 309435 1771 ± 328 0.19 <0.0001 0.0007

hsa-miR-139-3p 60 ± 19225 12 ± 4 0.20 <0.0001 0.0012

hsa-miR-139-5p 949 ± 309434 200 ± 50 0.21 <0.0001 0.0007

hsa-miR-143-5p 10052 ± 19253 2317 ± 547 0.23 0.0003 0.0065

hsa-miR-30c-2-3p 160 ± 19246 43 ± 7 0.27 0.0001 0.0017

hsa-miR-30a-3p 1127 ± 19232 309 ± 76 0.27 <0.0001 0.0015

hsa-miR-195-3p 241 ± 36519 72 ± 10 0.30 0.0009 0.0135

hsa-miR-9-5p 951 ± 19245 293 ± 46 0.31 0.0001 0.0020

hsa-miR-378i 36 ± 36720 11 ± 2 0.32 0.0038 0.0396

hsa-miR-138-5p 40 ± 36749 15 ± 4 0.37 0.0030 0.0325

hsa-miR-378d 900 ± 36720 368 ± 69 0.41 0.0040 0.0406

Up-regulated

hsa-miR-135b-5p 149 ± 19248 1101 ± 348 7.38 0.0002 0.0048

hsa-miR-592 39 ± 36519 263 ± 107 6.68 0.0004 0.0071

hsa-miR-503-5p 13 ± 36500 64 ± 25 5.03 0.0009 0.0135

hsa-miR-424-5p 57 ± 36501 284 ± 147 4.94 0.0011 0.0159

hsa-miR-514a-3p 12 ± 36766 58 ± 24 4.67 0.0021 0.0261

hsa-miR-584-5p 37 ± 36520 163 ± 54 4.37 0.0004 0.0065

hsa-miR-20a-5p 1869 ± 19237 7150 ± 1639 3.83 0.0001 0.0017

hsa-miR-708-5p 68 ± 36750 257 ± 136 3.76 0.0029 0.0318

hsa-miR-1277-3p 2 ± 36769 10 ± 2 3.65 0.0017 0.0226

hsa-miR-18a-5p 25 ± 19248 87 ± 20 3.54 0.0001 0.0029

hsa-miR-625-3p 115 ± 36769 403 ± 201 3.52 0.0013 0.0179

hsa-miR-224-5p 602 ± 36517 2117 ± 537 3.51 0.0005 0.0081

hsa-miR-21-5p 198267 ± 19264 660219 ± 187444 3.33 0.0004 0.0065

hsa-miR-450b-5p 61 ± 7568 200 ± 67 3.30 0.0044 0.0428

hsa-miR-17-5p 988 ± 19248 2971 ± 572 3.01 0.0003 0.0058

hsa-miR-32-5p 473 ± 36518 1322 ± 180 2.80 0.0004 0.0065

hsa-miR-32-3p 13 ± 36764 35 ± 4 2.62 0.0022 0.0263

hsa-miR-148a-3p 374325 ± 36725 942026 ± 152194 2.52 0.0042 0.0415

hsa-miR-19a-3p 362 ± 36747 879 ± 148 2.43 0.0026 0.0306

hsa-miR-941 357 ± 36749 859 ± 191 2.41 0.0028 0.0314

1miRNAs are expressed as reads per million (rpm). miRNA with less than 3 rpm in more than 50% of the samples were removed from analysis.
2Fold change in Tumor compared to Healthy tissue
3False discovery rate. Only miRNAs with FDR lower than 0.05 were considered as significantly regulated.

https://doi.org/10.1371/journal.pone.0222013.t001
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expressed miRNAs associated to poor prognosis in colorectal cancer patients [17]. Our study

overlapped with 7 of these identified miRNAs, including miR-21, miR-195, miR-17, miR-20a,

miR-145, miR-224 and miR-139. It is interesting that overlapping our study with the previous

mentioned studies [6, 17], we can observe that miR-21, miR20a and miR-17 are both predic-

tors of cancer occurrence and poor prognosis in colorectal cancer patients, further indicating

their central role in cancer pathogenesis.

Previous studies indicated significant role of miR-21 regulation in colorectal cancer [6, 17].

In present study miR-21-5p was among the highest expressed miRNAs, and more importantly

Table 2. MicroRNAs differentially expressed in serum of tumor and healthy patients diagnosed with colorectal cancer.

miRNA1 Healthy Tumor FC2 PValue FDR3

Down-regulated

hsa-miR-375 120 ± 22 15 ± 4 0.13 <0.0001 <0.0001

hsa-miR-486-3p 97 ± 11 27 ± 9 0.27 0.0002 0.0056

hsa-miR-486-5p 13664 ± 1286 3995 ± 1097 0.29 <0.0001 0.0010

hsa-miR-1180-3p 20 ± 4 7 ± 1 0.34 0.0035 0.0477

Up-regulated

hsa-let-7d-5p 87 ± 15 266 ± 79 3.03 0.0010 0.0225

hsa-let-7a-5p 956 ± 146 2569 ± 606 2.69 0.0006 0.0161

hsa-miR-30e-3p 24 ± 2 63 ± 13 2.66 0.0019 0.0342

hsa-let-7f-5p 642 ± 128 1620 ± 415 2.53 0.0034 0.0477

1miRNAs are expressed as reads per million (rpm). miRNA with less than 3 rpm in more than 50% of the samples were removed from analysis.
2Fold change in Tumor compared to Healthy tissue
3False discovery rate. Only miRNAs with FDR lower than 0.05 were considered as significantly regulated.

https://doi.org/10.1371/journal.pone.0222013.t002

Table 3. Pathways of target genes from the 40 miRNAs differentially expressed between tumor and healthy tissue

of colorectal cancer patients.

KEGG pathway P value1 Genes2 miRNAs3

Prion diseases <0.0001 1 2

Morphine addiction <0.0001 44 10

Mucin type O-Glycan biosynthesis <0.0001 13 7

ECM-receptor interaction <0.0001 26 8

Fatty acid biosynthesis <0.0001 5 1

Signaling pathways regulating pluripotency of stem cells <0.0001 70 8

TGF-beta signaling pathway <0.0001 38 8

GABAergic synapse 0.0001 28 8

Axon guidance 0.0001 68 6

Thyroid hormone signaling pathway 0.0006 34 7

Proteoglycans in cancer 0.0007 64 5

Glioma 0.0050 28 7

FoxO signaling pathway 0.0131 56 5

Prolactin signaling pathway 0.01325 42 7

Estrogen signaling pathway 0.02071 24 4

Renal cell carcinoma 0.0211 28 5

1Only pathways with P values lower than 0.05 were considered as significant
2Number of genes affected in the pathway by the regulated miRNAs
3Number of miRNAs differentially expressed that have a target gene in the pathway

https://doi.org/10.1371/journal.pone.0222013.t003
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it was significantly upregulated in tumor tissue when comparing with healthy tissue. miR-21

was identified as overexpressed in six different types of cancer [6], and we have previously

detected miR-21 as highly abundant and overexpressed in a similar fold change in oral squa-

mous cell carcinoma samples [21]. miR-21 is associated with prognosis of colorectal cancer

patients [17], as overexpression of miR-21 shows negative correlation with patients responses

to chemotherapy as well as progression-free survival [22]. The central role of miR-21 may be

Table 4. Pathways of target genes from the 8 miRNAs differentially expressed between tumor and healthy serum of colorectal cancer patients.

KEGG pathway P value1 Genes2 miRNAs3

Prion diseases <0.0001 1 1

ECM-receptor interaction <0.0001 10 3

Mucin type O-Glycan biosynthesis <0.0001 4 3

Signaling pathways regulating pluripotency of stem cells 0.0004 17 3

Thyroid hormone signaling pathway 0.0005 16 4

Biotin metabolism 0.0013 1 1

Amoebiasis 0.0070 11 2

Glycosaminoglycan biosynthesis 0.0279 3 2

1Only pathways with P values lower than 0.05 were considered as significant
2Number of genes affected in the pathway by the regulated miRNAs
3Number of miRNAs differentially expressed that have a target gene in the pathway

https://doi.org/10.1371/journal.pone.0222013.t004

Fig 2. Schematic representation of the FOXO signaling pathway and the target genes of the microRNAs differentially regulated between tumor tissue and healthy

tissue from patients diagnosed with colorectal cancer. Yellow box–target gene of one down-regulated miRNA; Orange box–target gene of two or more down-

regulated miRNA.

https://doi.org/10.1371/journal.pone.0222013.g002

miRNAs in colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0222013 August 30, 2019 6 / 12

https://doi.org/10.1371/journal.pone.0222013.t004
https://doi.org/10.1371/journal.pone.0222013.g002
https://doi.org/10.1371/journal.pone.0222013


explained by its target genes which include cell growth and proliferation regulating PTEN, a

negative regulator of the Pi3k/Akt pathway [23]. Therefore, our study further confirms the

central role of miR-21 in cancer development in colorectal patients.

Previous studies have identified 32 miRNAs in serum as regulated in colorectal cancer

patients [17]. Comparing to our current study only one miRNA overlapped, miR-375. Others

have identified miR-375 as down-regulated in serum of cancer patients, and predictor of can-

cer recurrence [24], further suggesting its role in diagnosis. In our study miR-375 was ten-fold

down-regulated in the serum of cancer patients. A previous paper from our group with oral

squamous cell carcinoma patients also identified miR-375 as strongly down-regulated in tissue

samples [21]. The hsa-miR-375 is known to target MMP13, which is associated to increased

metastatic behavior and cancer aggressiveness [25]. Therefore, it is important to focus more in

depth on the role of serum miR-375 in the diagnosis of different types of cancer as well as in

the metastatic process, given its target genes and its systemic presence.

We identified miR-143 as strongly down-regulated in serum samples, as others have

observed in osteosarcoma, breast cancer and esophageal squamous cell carcinoma [26–28].

Fig 3. Schematic representation of the TGF-β signaling pathway and the target genes of the microRNAs differentially regulated between tumor tissue and healthy

tissue from patients diagnosed with colorectal cancer. Yellow box–target gene of one down-regulated miRNA; Orange box–target gene of two or more down-

regulated miRNA.

https://doi.org/10.1371/journal.pone.0222013.g003
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miR-143 targets the FOSL2 gene, promoting cell proliferation and metastasis and inhibiting

apoptosis [26]. miR-143 constitute a functional cluster along miR-145 [27], which we also

identified as down-regulated in our current study, further consolidating both as serum mark-

ers for diagnosis. miR-486-5p also was highly expressed and strongly down-regulated in serum

of colorectal cancer patients in the current study. miR-485-5p was identified as biomarker of

colorectal cancer and malignancy when locally expressed in tumorous tissue [29, 30]. How-

ever, serum miR-486-5p was not identified as regulated in a recent review paper on many stud-

ies with colorectal cancer patients [17]. One recent study identified both miR-486-3p and -5p

as down-regulated in late stage colorectal cancer patients serum but not in early stages patients

[31]. This suggests that miR-486 it is not a good marker, as it is not an indicator of early stage

cancer, which would constitute a better diagnostic tool for intervention.

miR-148 was strongly up-regulated in serum of colorectal cancer patients in our study. This

is controversial, as others have found that miR-148 overexpression inhibited colon cancer cell

proliferation and migration [32]. miR-148 expression in tissue samples was down-regulated in

a cohort of colorectal cancer patients [33]. More studies are necessary to better understand the

role of miR-148, and the effects of cancer type and stage in its regulation to better understand

its role in cancer pathogenesis. We also observed that members of the let-7 family were up-reg-

ulated in serum of colorectal cancer patients. This is controversial as a previous study has

found let-7 to be down-regulated and negatively correlated with metastasis in serum of breast

cancer patients [34]. Interestingly, it is suggested that a metastatic gastric cancer line actively

secrets members of the let-7 family in the extracellular environment via exosomes to maintain

their oncogenesis [35]. Therefore, although let-7 is a tumor suppressor miRNA, its presence in

serum may be an indication of increased tumorigenesis and metastatic activity in cancerous

tissue, providing a new approach to understand regulation of these biomarkers.

In sum, we detected a set of 40 miRNAs differentially regulated in tissue and 8 miRNAs dif-

ferentially regulated in serum of colorectal cancer patients. There was no overlap in miRNAs

regulated in tissue and serum. Therefore, our study further validates previous miRNAs

observed as important in colorectal cancer and other types of cancer and suggests that serum

regulated miRNAs may not be the same locally regulated in tissue samples.

Materials and methods

Sample and tissue collection

Tissue and serum samples were obtained during surgical procedure from six patients diag-

nosed with colorectal cancer (4 men and 2 women) with average age of 67.3 years (from 44 to

76 years old). All samples included in the study consisted of tumors in stage G2 (adenocarci-

noma tubulare invasivum coli, G2). Recurrences and patients initially treated with radiother-

apy were excluded from the study. The details including TNM, Dukes and Astler-Coller

classification are presented in Table 5. Additionally, blood samples from six healthy patients

were collected for RNA extraction.

Table 5. Characteristics of the samples used in the study.

Sample TNM Dukes Astler-Coller

1 pT3, pN2b C C2

2 pT3, pN1b C C2

3 pT1, pN0 A B1

4 pT3, pN1b C C2

5 pT3, pN0 B B2

6 pT4a, pN1a C C2

https://doi.org/10.1371/journal.pone.0222013.t005
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Blood samples (n = 12, six colorectal cancer patients and six healthy subjects, never diag-

nosed with any type of tumor, with the average age of 66.6 years) were collected approximate-

ly24hours prior to any surgical intervention, in BD Vacutainer Serum Separation Tubes,

incubated 15 minutes in room temperature, centrifuged for serum separation and then stored

in -80o C. Additionally, from every colorectal patient two separate tissue specimens were

obtained during surgical resection. Core biopsy from the tumor and healthy adjacent tissue

within the range of 15–20 cm distal from tumor tissue were collected to allow comparison of

tumor site versus non-tumor healthy tissue, in the same cancer patient. Specimens were imme-

diately frozen in liquid nitrogen and then stored in -80 o C.

This study was carried out in accordance with the recommendations and approval by Insti-

tutional Review Board of the University of Medical Sciences in Poznan. All subjects gave writ-

ten informed consent in accordance with the Declaration of Helsinki.

RNA extraction and miRNA library preparation

Previously frozen tissues samples (n = 12) were homogenized with Qiazol (Qiagen, Valencia,

CA, USA) using zirconium oxide beads (0.5 mm) in the Bullet Blender 24 (Next Advance,

Averill Park, NY, USA). Total RNA was extracted from tissue samples using a commercial col-

umn purification system (miRNeasy Mini Kit, Qiagen) and on-column DNase treatment

(RNase-free DNase Set, Qiagen) following manufacturer’s instructions. RNA extraction from

serum samples (n = 12) was performed with the miRNEasy Serum/Plasma kit (Qiagen) also

following manufacturers instructions.

TruSeq Small RNA Sample Prep Kit (Illumina Inc., San Diego, CA, USA) following the

manufacturer’s instructions as adjusted by Matkovich, Hu [36] was used to prepare the miR-

NAs libraries. Briefly, small RNAs from serum and tissue samples total RNA were ligated with

30 and 50 adapters, followed by reverse transcription to produce single stranded cDNAs. Adap-

tor-ligated miRNAs were then amplified by 14 cycles PCR using indexes to allow individual

libraries to be processed together in a single flowcell lane during the sequencing step (12 tissue

and 12 serum samples). Samples were mixed and a 6% acrylamide gel was used to size-select

and purify the amplified libraries.

BioAnalyzer and RNA Nano Lab Chip Kit (Agilent Technologies, Santa Clara, CA, USA)

was used to determine the quality and quantity of the libraries. Following the quality check all

samples were pooled into one tube and sent for sequencing on a HiSeq 2500 instrument (Illu-

mina Inc.).

miRNAs libraries analysis and statistical analyses

Alignment and quantification of miRNA libraries was performed using sRNAtoolbox as

described before [37]. Statistical analyses of differentially expressed miRNAs was performed

using EdgeR [38] on the R software (3.2.2) and miRNAs with a FDR<0.05 and FC>2.0

were considered as up-regulated; and FDR<0.05 and FC<0.50 were considered as down-

regulated.

miRNAs target prediction and enriched pathways and GO Terms

Target genes of the differentially regulated miRNAs were predicted using the mirPath tool

(version 3.0) and the microT-CDS v. 5.0 database [39]. Gene ontology (GO) terms (biological

processes) and KEGG molecular pathways [40, 41] were also retrieved using the same tool.

Pathways and processes regulated with P values lower than 0.05 were considered as significant.
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