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Background:Gastric cancer (GC) is themost commonmalignant tumor. Due to

the lack of practical molecular markers, the prognosis of patients with advanced

gastric cancer is still poor. A number of studies have confirmed that the

coagulation system is closely related to tumor progression. Therefore, the

purpose of this study was to construct a coagulation-related gene signature

and prognostic model for GC by bioinformatics methods.

Methods:We downloaded the gene expression and clinical data of GC patients

from the TCGA and GEO databases. In total, 216 coagulation-related genes

(CRGs) were obtained from AmiGO 2. Weighted gene co-expression network

analysis (WGCNA) was used to identify coagulation-related genes associated

with the clinical features of GC. Last absolute shrinkage and selection operator

(LASSO) Cox regression was utilized to shrink the relevant predictors of the

coagulation system, and a Coag-Score prognostic model was constructed

based on the coefficients. According to this risk model, GC patients were

divided into high-risk and low-risk groups, and overall survival (OS) curves

and receiver operating characteristic (ROC) curves were drawn in the training

and validation sets, respectively. We also constructed nomograms for

predicting 1-, 2-, and 3-year survival in GC patients. Single-sample gene set

enrichment analysis (ssGSEA) was exploited to explore immune cells’ underlying

mechanisms and correlations. The expression levels of coagulation-related

genes were verified by real-time quantitative polymerase chain reaction (qRT-

PCR) and immunohistochemistry (IHC).

Results: We identified seven CRGs employed to construct a Coag-Score risk

model using WGCNA combined with LASSO regression. In both training and

validation sets, GC patients in the high-risk group had worse OS than those in

the low-risk group, and Coag-Score was identified as an independent

predictor of OS, and the nomogram provided a quantitative method to

predict the 1-, 2-, and 3-year survival rates of GC patients. Functional
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analysis showed that Coag-Score was mainly related to the MAPK signaling

pathway, complement and coagulation cascades, angiogenesis,

epithelial–mesenchymal transition (EMT), and KRAS signaling pathway. In

addition, the high-risk group had a significantly higher infiltration

enrichment score and was positively associated with immune checkpoint

gene expression. Conclusion: Coagulation-related gene models provide new

insights and targets for the diagnosis, prognosis prediction, and treatment

management of GC patients.

KEYWORDS
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Introduction

Gastric cancer (GC) is the fifth most common cancer and the

third leading cause of cancer death worldwide, with

approximately one million new cases of GC every year, and

about 784,000 patients died of GC (Smyth et al., 2020). The

current detection methods are limited, resulting in a low

diagnosis rate of early GC. Most patients have advanced GC

when they are diagnosed. The prognosis of patients with

advanced GC is abysmal, and the 5-year survival rate is less

than 30% (Sung et al., 2021). With the aging of the social

population, the incidence and mortality of GC continue to

increase year by year, and tumor metastasis is the leading

cause of high mortality. Cancer invasion and metastasis is a

complex process controlled by multiple molecular determinants,

whichmay involve activation of oncogenes, inactivation of tumor

suppressor genes, and abnormalities in related signaling

pathways (Hanahan and Weinberg, 2000). Biomarkers

developed for key molecules play an essential role in the

diagnosis, prognosis prediction, and the selection of treatment

strategies for GC.

Traditional biomarkers such as CEA and CA19-9 lack

sufficient specificity and sensitivity in current clinical

applications. Drugs targeting Her-2 significantly prolong

survival in patients with Her-2-positive GC, but their

prognostic and predictive value performance remains

ambiguous (Xiao and Zhou, 2017; Matsuoka and Yashiro,

2018). Therefore, the development of novel and effective GC

biomarkers is necessary.

Venous thromboembolism (VTE) is often an underlying

clinical symptom of cancer, and it remains one of the leading

causes of cancer-related morbidity and mortality. Many studies

have proved that patients with malignant tumors are in

hypercoagulable and hyperfibrinolytic states, and the disorder

of the coagulation system is related to tumor progression and

prognosis (Repetto and De Re, 2017). The presence of tumors

may strongly influence host coagulation and hemostasis systems

by altering the molecular context to promote tumor cell growth,

progression, and metastasis. Tumor-driven coagulation pathway

activation leads to increased FGB of Fibrinopeptide A (FpA),

accompanied by fibrin lysis and D-dimer (DD) release. Blockade

of coagulation, fibrinolysis, and platelet activation pathways can

effectively prevent tumor progression (Repetto and De Re, 2017).

Numerous individual coagulation-related biomarkers revealed

correlations with prognosis prediction in GC. Many laboratory

data and clinical studies have shown that coagulation-related

factors, such as tissue factor (TF), thrombin, plasminogen (PLG),

FpA, DDs, TAFI, and thrombin–antithrombin complex, are

involved in angiogenesis, tumor cell invasion, tumor

progression, and metastasis (Dupuy et al., 2003; Buller et al.,

2007). Coagulation-related factors are considered as diagnostic

FIGURE 1
Flowchart of experimental design and main procedures.
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and therapeutic evaluation tools for thrombosis in patients with

GC and are also regarded as independent factors and indicators

to predict the prognosis of GC (Tas et al., 2013). A retrospective

clinical study showed that rivaroxaban, a coagulation factor-

targeted drug, could increase the efficacy of immune checkpoint

inhibitors (ICIs) by restoring host antitumor immunity (Haist

et al., 2021). Therefore, we hypothesized that coagulation-related

biomarkers play a crucial role in evaluating the prognosis of GC.

As far as we know, there are few studies on coagulation-related

genes and the prognosis of GC.

In this study, we identified coagulation-related genes (CRGs)

associated with the clinical features of GC through weighted gene

co-expression network analysis (WGCNA), integrated

expression profiles, and clinical information from multiple

datasets of TCGA and GEO databases. We constructed a risk-

score model based on seven CRGs, which provided a new model

for accurately predicting the prognosis and individualized

treatment of GC patients. The current research workflow is

shown in Figure 1.

Methods

Data acquisition

We obtained the RNA expression data and clinical data of

GC samples from the UCSC Xena database (http://xena.ucsc.

edu/) based on the Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/). The GEO database included the

GSE15459 dataset and GSE84433 dataset. The TCGA-STAD

dataset, GSE15459 dataset, and GSE84433 dataset included

323, 200, and 357 tumor samples, respectively. According to

the annotation file provided by the platform, we used the mean to

represent the expression level for a gene containing multiple

probes.

Coagulation-related co-expression
network construction by WGCNA

AmiGO 22 is a web-based set of tools for searching and

browsing gene ontology databases (http://amigo.geneontology.

org/amigo). We obtained 216 gene symbols related to

coagulation from AmiGO 2. Then 200 CRGs were obtained

through the comprehensive analysis of TCGA-STAD,

GSE15495, and GSE84433 datasets. To calculate the Z-score

of the clinical information of the TCGA-STAD dataset, we used

the “WGCNA” package in the R software to perform aWGCNA

on the CRGs in the TCGA-STAD dataset (Langfelder and

Horvath, 2008). The operational process of WGCNA

includes cluster analysis of expression profiles and

calculation of associations between each cluster module and

clinical phenotypes. We used the soft threshold method for the

Pearson correlation analysis of the expression profiles to

construct a weighted network. In this study, the hub

threshold was set to 0.9 and the minimum number of

modules was set to 15. A cluster dendrogram was used to

display the results of gene merging and classification. Finally,

we analyzed the relationship between MEs and clinical traits,

and identified the relevant modules. CRGs in modules

associated with clinical features were selected as candidate

genes.

Coag-Score model construction

LASSO regression is a compression estimation method. By

constructing a penalty function, the variable coefficients can

be compressed so that the regression coefficients of some

variables become 0 to achieve the purpose of screening

variables (Wang et al., 2020). The “glmnet” package was

used in the R software; we applied the LASSO regression

method to construct a Coag-Score model of CRGs with

optimal weighted coefficients. The CV curve was further

drawn, the cross coefficient λ was derived using the cross-

validation method, and the λ value with the best cross-

validation error was selected. The regression coefficient of

the best model was extracted to fit the new model. The final

Coag-Score was calculated based on the expression of the gene

multiplied by the corresponding regression coefficient. Based

on the expression of genes in the model, PCA was carried out

with the “prcomp” function of the “stats” R package.

Coag-Score model verification

First, the Coag-Score of each sample in the TCGA-STAD

dataset was calculated, and the patients were categorized into

high-risk and low-risk groups according to the cutoff value; the

constructed Coag-Score model was verified internally. We used

the “Survival” and “KMsurv” packages in R software to conduct

the Kaplan–Meier (KM) survival analysis and draw survival

curves. We integrated the GSE15495 and GSE84433 datasets

into the GEO cohort. External validation of the Coag-Score

model was performed using the GEO cohort validation

dataset. Receiver operating characteristic (ROC) curves were

used to evaluate the Coag-Score’s accuracy and predictive

power using the “survivalROC” package.

Gene set enrichment analysis

Enrichment analysis between the high-risk and low-risk

groups of GC patients was performed by Gene Set

Enrichment Analysis (GSEA, https://www.gsea-msigdb.org/
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gsea/index.jsp) v4.3.1 software (Mootha et al., 2003;

Subramanian et al., 2005). We selected the KEGG and

HALLMARK gene sets for GSEA. Permutation testing

(1000 permutations) was used to calculate enrichment scores

(ES) and normalized enrichment scores (NES). NES with p

values <0.05 and FDR <25% were considered to be

significantly enriched.

Construction and assessment nomogram
for GC patients

A predictive nomogram of GC patients was constructed

using the TCGA-STAD training set variables. The nomogram

was constructed by using the “survival” and “RMS” packages, and

Harrell’s Concordance Index (C-index) was used to estimate the

prognostic effect of the prediction model.

Correlation of immune cell infiltration and
immune checkpoint gene expression with
Coag-Score

Single-sample gene set enrichment analysis (ssGSEA) in the

“GSVA” R package was used to quantify the infiltration level of

16 immune cells in each GC patient (Zuo et al., 2020). The

TIMER database (http://timer.cistrome.org/) was used to analyze

the correlation between Coag-score and immune cells. Moreover,

the “ggpubr” package was used to plot violins to describe the

correlation between Coag-Score and immune checkpoint gene

expression.

Tissue samples

In this study, paired GC tissues and adjacent non-cancer

tissues were acquired from the Lanzhou University Second

Hospital. Cohort 1: ten pairs of fresh GC tissues and adjacent

non-cancer tissues were cryopreserved and were used for the

quantitative analysis of the expression of CRG mRNAs by qRT-

PCR. Cohort 2: 84 pairs of GC tissues and adjacent non-cancer

tissues were formalin-fixed and paraffin-embedded, which were

used to detect the expression of SERPINE1 protein in GC and

adjacent tissues by immunohistochemistry (IHC). All patients

signed an informed consent form. The Ethics Committee

approved the study of Lanzhou University Second Hospital

(Ethical Application Ref: 2019A-321).

qRT-PCR

The total RNA of GC tissues and adjacent non-cancer

tissues was extracted using TRIzol reagent (Thermo

Scientific, United States) according to the product

instructions. cDNA synthesis was performed using the

PrimeScript™ RT reagent kit (Takara, Japan). qRT-PCR

was performed using the SYBR Primix Ex Taq™ II

(Takara, Japan) on ABI-7500 instrument (Applied

Biosystems, United States). GAPDH was used as an

internal reference gene, and the 2-△△Ct method was used to

compare the differential expression of genes. The primers are

listed in Supplementary Table S1.

Immunohistochemical staining

Immunohistochemical staining was performed according to

the standard procedure. GC tissues were embedded into wax

blocks, and then sections were prepared, which were dewaxed in

xylene, and hydrated in gradient concentration alcohol, which

were then washed with PBS buffer. Antigen repair was performed

with citrate buffer in a water bath. Then the sections were

incubated with the primary antibody anti-mouse SERPINE1

(1:200, abcam) overnight at 4°C. The sections were washed

with PBS the next day and incubated with the secondary

antibody for 60 min at room temperature. Then, the DAB kit

(MXB biotechnologies, Fujian, China) was used to stain tissue

samples.

After staining of GC tissue, an IHC score was performed by

pathologists. According to the proportion of positive cells and

staining intensity, the scores were divided as follows: 0 was

negatively stained or <5% positive cells, one was weakly

stained or 6–25% positive cells, two was moderately stained or

26–50% positive cells, and three was strongly positive or >50%
positive cells. We defined the final staining score ≥3 as a high

expression of SERPINE1, and the patients were divided into the

high expression group and low expression group based on this

staining score.

Statistical analysis

Data were presented as mean ± SEM. We used the Student’s

t-test to examine the difference in mean between the two groups.

Non-abnormal distribution data were analyzed using a

nonparametric test. The Kaplan–Meier method was used to

compare the survival times of different CRG expression levels.

Univariate Cox regression analysis was used to analyze the

prognostic value of a single gene; for factors with a p-value <
0.05, we performed multivariate Cox regression to analyze the

independent risk factors that affect GC patients.

p-value <0.05 was considered to be statistically different. *

represents p < 0.05 and ** represents p < 0.01. Statistical

analysis was performed using the SPSS software package

(version 24.0, IBM SPSS) and GraphPad Prism (version 8.0,

GraphPad Software).
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FIGURE 2
Construction of the co-expression modules of coagulation genes related to clinical characteristics of GC. (A) Venn diagram of CRGs in GC. (B)
Sample clustering of CRGs. (C) Sample dendrogram and corresponding clinical traits. (D) The soft threshold of the CRG module is defined by scale
independence and mean connectivity. (E) Correlation between sample clustering and modules. (F) The relationship between CRG module and
clinical features of GC.
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Results

Defining CRGs associated with clinical
features

A total of 974 GC patients from five cohorts were included in

this study, including the training set TCGA-STAD, the validation

sets GSE15495 and GSE84433, cohort 1, and cohort 2 from the

Department of Oncology of Lanzhou University Second

Hospital. CRGs were obtained from the AmiGO 2 database

and compared with TCGA-STAD, GSE15495, and

GSE84433 datasets. A total of 200 overlapping CRGs were

selected (Figure 2A).

To better understand the gene expression network during

GC development, we used WGCNA to construct co-expression

networks and identify co-expression modules associated with

FIGURE 3
Coag-Scoremodel construction. (A,B) Seven CRGswere screened based on LASSO regression analysis. (C–E) The distributions of the risk score
for each patient (top panel), survival status of patients (middle panel), heatmaps for seven-gene signature between high-risk group and low-risk
group (bottom panel).
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clinical features. The hierarchical clustering method was first

used to obtain the GC sample cluster diagram, and the outlier

samples were eliminated (Figure 2B). We analyzed the sample

dendrogram and corresponding clinical traits (Figure 2C). The

network analysis was performed, and an appropriate adjacency

matrix weight parameter β was selected to satisfy the scale-free

distribution as much as possible. We determined the

appropriate soft threshold from the scale-free topology

model fit-R2. We selected β from the first approach of

0.09 to construct the gene module (β = 4) and divided CRGs

into five modules (Figures 2D,E). After obtaining different gene

modules, a correlation analysis was conducted between the

clinical features of GC and the module eigengene (ME) value

of each module. Among them, the genes in the blue and

turquoise modules were highly correlated with the age,

weight, tumor size, the number of lymph nodes, and tumor

grade of GC patients (Figure 2F). Therefore, the blue and

turquoise module genes were selected for further analysis.

The blue module contains 87 CRGs, and the turquoise

module contains 54 CRGs.

FIGURE 4
Evaluation and validation of the prognostic performance of Coag-Score in training and validation sets. (A,C) KM survival curves of Coag-Score in
TCGA-STAD and GEO cohort. (B,D) ROC curves of Coag-score in TCGA-STAD and GEO cohort.
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FIGURE 5
Nomogram of the Coag-Score model. (A,B) The nomogram and calibration curve of the Coag-Score model. (C,D) Univariate and multivariate
Cox regression analyses for a single gene in the Coag-Score. (E) KM survival curves of a single gene in the Coag-Score model.
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Construction of Coag-Score prognostic
model based on CRGs associated with
clinical features

In order to construct a simple and effective prognostic model,

the LASSO Cox regression analysis was used to reduce the

dimension of CRGs further. Seven CRGs were included in the

model: Serpin Family E Member 1 (SERPINE1), von Willebrand

factor (VWF), Coagulation Factor II Thrombin Receptor (F2R),

Annexin A5 (ANXA5), CD59, AXL Receptor Tyrosine Kinase

(AXL), and Multimerin 1 (MMRN1) (Figures 3A,B). The hazard

ratios of SERPINE1, VWF, F2R, ANXA5, CD59, AXL, and

MMRN1 were 1.234, 1.274, 1.303, 1.456, 1.403, 1.312, and

1.298 (p < 0.05), respectively. Based on the expression values

and correlation coefficients of these seven CRGs, the prognostic

risk score of each GC patient sample was calculated. Coag-

Score = (0.110×expression level of SERPINE1) +

(0.012×expression level of VWF) + (0.0460×expression level

of F2R) + (0.167×expression level of ANXA5) +

(0.092×expression level of CD59) + (0.026×expression level of

ANXA5) + (0.097×expression level of MMRN1). GC patients

were divided into high-risk and low-risk groups according to

Coag-Score. Figures 3C–E show the risk curves of high-risk and

low-risk groups (top panel), survival status (middle panel), and

heatmap of single gene expression (bottom panel). The PCA

indicated the patients in different risk groups were distributed in

two directions (Supplementary Figure S1A-C).

Comparison of prognostic models in the
training set and the validation set

In the training set TCGA-STAD, compared with patients in

the low-risk group, the OS of GC patients in the high-risk group

was significantly lower (Figure 4A). In order to verify the

prediction performance of Coag-Score on different datasets,

GSE15495 and GSE84433 datasets were used as validation sets.

We integrated GSE15495 and GSE84433 datasets into the GEO

cohort for analysis. The validation set survival analysis was

consistent with the training set TCGA-STAD results

(Figure 4C). The log-rank p values of the KM curve were

0.0083 and 0.0022, respectively. ROC curves were used to

evaluate the sensitivity and specificity of the Coag-Score

signature for the prognosis of GC patients (Figures 4B,D).

The results show that the areas under the curve (AUCs) of

the training set TCGA-STAD 1, 2, 3, 4, and 5 years were 0.607,

0.644, 0.669, 0.692, and 0.721, respectively. The AUCs of the

validation set were 0.648, 0.65, 0.655, 0.642, and 0.647,

respectively. Univariate and multivariate Cox regression

analyses showed the Coag-Score was an independent risk

factor affecting the prognosis of GC patients, and the Coag-

Score had better predictive power and accuracy than other

prognosis-related metrics (Supplementary Figure S2A-E).

Construction of nomogram for GC
patients

We constructed a nomogram based on the seven CRGs and

Coag-Score (Figure 5A). Predictions of 1-, 2-, and 3-year

survival probabilities for GC patients in the training set were

shown in the calibration plot (Figure 5B). We performed

univariate and multivariate Cox regression analyses for a

single gene in the Coag-Score, and seven CRGs affected the

prognosis of GC patients. Interestingly, the multivariate Cox

regression analysis showed that SERPINE1 was an independent

risk factor affecting the prognosis of GC patients (Figures

5C,D). To stabilize the results, we added age, gender, pTNM

stage, and grade as covariates; SERPINE1 remained an

independent risk factor for prognosis (Supplementary Figure

S3A, B). In addition, we performed a survival analysis for a

single gene in the Coag-Score in the GEPIA online database

(Figure 5E), and the OS of patients in the high expression group

was significantly lower than that of those in the low expression

group.

Analysis of enriched pathways between
high-risk and low-risk cohorts

To further explore the underlying mechanism of CRGs,

HALLMARK and KEGG gene sets were analyzed between the

high-risk and low-risk groups; the positive and negative

correlation pathways are shown in Table 1. The genes in the

high-risk group were enriched in focal adhesion, MAPK

signaling pathway, complement and coagulation cascades,

angiogenesis, coagulation, epithelial–mesenchymal transition,

and KRAS signaling pathway. Low-risk group genes are

enriched in RNA degradation, spliceosome, cell cycle, E2F

targets, and G2M checkpoint (Figure 6).

Analysis of tumor immune cell infiltration
and immune checkpoint gene expression
levels

In order to investigate the relationship between Coag-

Score and tumor immune cell infiltration, ssGSEA was

performed in the TCGA cohort. Fifteen immune cells had

significantly higher infiltration enrichment fractions in the

high-risk group: aDCs, B cells, CD8+ T cells, dendritic cells

(DCs), immature dendritic cells (iDCs), mast cells,

neutrophils, NK cells, plasmacytoid dendritic cells (pDCs),

T helper cells, follicular helper T cells (Tfh), helper T cells 1

(Th1 cells), helper T cells 2 (Th2 cells), tumor infiltrating

lymphocytes (TIL), and regulatory T cells (Tregs) (Figure 7A).

We further analyzed the Coag-Score in the TIMER database,

and we found that the Coag-Score was positively correlated
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with B cell, T-cell CD4+, T-cell CD8+, neutrophil, and myeloid

dendritic cell (Figure 7B). In addition, we compared the

expression of several critical immune checkpoints between

high-risk and low-risk groups. The expression levels of PD-L1,

PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT were significantly

increased (Figure 7C), indicating that patients in the high-

risk group may respond better to immune checkpoint

inhibitors.

TABLE 1 Result of Gene Set Enrichment Analysis (GSEA) between high-risk and low-risk groups.

Name ES NES p-value

FOCAL_ADHESION 0.76913476 2.37036 0.001

MAPK_SIGNALING_PATHWAY 0.5525822 2.2472603 0.006

KRAS_SIGNALING_UP 0.6791901 2.1400163 0

ANGIOGENESIS 0.7791254 1.7455677 0.012145749

COAGULATION 0.651279 2.2354453 0

COMPLEMENT_AND_COAGULATION_CASCADES 0.7084431 2.2053964 0.012

EPITHELIAL_MESENCHYMAL_TRANSITION 0.8335778 2.0261042 0

RNA_DEGRADATION −0.69585156 −2.1742415 0.018

SPLICEOSOME −0.6367163 −2.092218 0.044

CELL_CYCLE −0.67737764 −1.8732674 0.22

G2M_CHECKPOINT −0.7602773 −1.9721214 0.002070393

E2F_TARGETS −0.84644043 −1.9255103 0

FIGURE 6
Gene Set Enrichment Analysis (GSEA) for high-risk and low-risk groups in the KEGG and HALLMARK datasets. (A) Enrichment pathways in the
KEGG dataset of high-risk and low-risk groups. (B) Enrichment pathways in HALLMARK dataset of high-risk and low-risk groups.
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FIGURE 7
Correlation between Coag-Score and tumor immune infiltrating cells and immune checkpoints. (A) The ssGSEA scores between the high-risk
and low-risk groups in the TCGA cohort. (B) Correlation between Coag-Score and immune infiltrating cells in the TIMER database. (C) Levels of
immune checkpoint gene expression in high-risk and low-risk groups in the TCGA cohort.
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Validation of CRG expression in GC tissues

We verified the expression levels of seven CRGs frommRNA

levels. The GEPIA results showed that SERPINE1, ANXA5, F2R,

and VWF increased significantly in tumor tissue. Although AXL

was not statistically significant, there was a trend of high

expression in tumor tissue. While MMRN1 was lowly

expressed in tumor tissues, there was no significant difference

in the expression level of CD59 (Figure 8A). In 10 pairs of GC

samples, we performed qRT-PCR experiments, and the results

showed that the mRNA expression of SERPINE1, ANXA5, F2R,

and VWF was significantly higher than that in adjacent tissue.

MMRN1 was expressed low in tumor tissue. Although there was

no difference in AXL and CD59 mRNA in paired adjacent tissue

and cancer tissue (Figure 8B), we analyzed the expression of

seven CRGs in different pathological grades in the TCGA

database. We integrated the pathological grades G1 and G2 as

Group 1 (G1) and G3 as Group (G2). The results showed that the

mRNA expression levels of the CRGs increased significantly in

G2 compared to G1, except for ANXA5 (Figure 8C). But the

mRNA expression of ANXA5 increased significantly in IV stage

compared to II and III stages in the TCGA database

(Supplementary Figure S4). The multivariate Cox regression

analysis showed that SERPINE1 was an independent risk

factor affecting the prognosis of GC patients. We used GC

tissue samples from our center to verify the expression of

SERPINE1 in GC and its prognostic value by IHC. In

84 cases, the expression of SERPINE1 was significantly

increased in GC tissues compared with adjacent tissues

(Figures 9A,B). Moreover, SERPINE1 was positively expressed

in tissues with positive lymph node metastasis (Figures 9C,D). In

survival analysis, the SERPINE1 high expression group had a

worse prognosis than the low SERPINE1 expression group

(Figure 9E).

Discussion

The morbidity and mortality of GC are increasing year by

year. Despite the continuous improvement in therapeutic drugs

and treatment methods, once GC recurs or metastasizes, the 5-

year survival rate of patients decreases significantly (Guggenheim

and Shah, 2013). Therefore, identifying effective prognostic

biomarkers is crucial for predicting the occurrence and

FIGURE 8
Verification of the expression of seven CRGs in normal and tumor tissues. (A)mRNA expression of sevenCRGs in GEPIA online tool. (B) qRT-PCR
verified the expression of seven CRGs in 10 pairs of GC clinical samples. (C) mRNA expression of seven CRGs in G1 and G2 groups.
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FIGURE 9
Expression and prognostic value of SERPINE1 in GC. (A) Positive staining of SERPINE1 in GC tissues. (B)Negative staining of SERPINE1 in adjacent
tissues. (C) Positive staining of SERPINE1 in positive lymph node metastasis tissues. (D) Negative staining of SERPINE1 in negative lymph node
metastasis tissues. (E) The survival analysis SERPINE1 low and high expression groups.
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controlling disease progression in GC. There has been a great

deal of interest in understanding tumor-related molecular

pathways, with a focus on finding biomarkers associated with

early diagnosis of cancer, tumor progression, chemotherapy,

targeting, and immunotherapy responses, and influencing

overall survival. Some of these studies have focused on

characterizing genes and proteins associated with coagulation

and fibrinolytic systems in carcinogenesis (Singh and Malviya,

2022).

Coagulation is a dynamic system in which the balance

between coagulation and bleeding is always maintained in

normal physiological conditions and often changes in disease

conditions (Palta et al., 2014). Since 1960, hyperfibrinogen and

hypercoagulability have been associated with rapidly growing

tumors (Brugarolas and Elias, 1973). Systemic activation of

hemostasis and thrombosis has been exhaustively implicated

in cancer pathogenesis, progression, and metastasis (Langer

and Bokemeyer, 2012; Lima and Monteiro, 2013).

Disturbances of the coagulation system occur in GC. VTE is

responsible for 10–20% of GC deaths. The incidence of clinically

related VTE in GC patients was >5% in the first year after

diagnosis and reached 12–17% in late GC, and the 2-year

cumulative incidence of VTE in advanced GC increased to

24.4% (Lee et al., 2010; Larsen et al., 2015). The coagulation

system is pivotal as a reservoir of tumor response markers and

tumor angiogenesis, and the development of more effective

antiangiogenic drugs.

We focused on the relationship between coagulation-related

genes and the prognosis of GC, screened genes related to the

clinical characteristics of GC by WGCNA, and then constructed

a risk model of seven CRGs by LASSO regression. SERPINE1 is a

member of the serine superfamily and encodes plasminogen

activation inhibitor 1 (PAI-1). PAI-1 inhibits fibrinolysis and

regulates plasminogen-induced extracellular matrix degradation

and signal transduction by binding to the serine active center of

uPA and tPA, resulting in a loss of plasminogen activity

(Sprengers and Kluft, 1987). Many studies have found that

SERPINE1 is abnormally expressed in GC tissue through

bioinformatics analysis, and the expression level of

SERPINE1 is negatively correlated with the prognosis of GC

(Yang et al., 2019; Meng et al., 2020; Nie et al., 2020; Wu et al.,

2020). Sakakibara found that the level of SERPINE1 increased

significantly with the increase in tumor stage, leading to the

occurrence of the malignant phenotype of tumors (Sakakibara

et al., 2008). Downregulation of SERPINE1 can effectively reduce

peritoneal metastasis and tumor progression in GC (Nishioka

et al., 2012). SERPINE1 overexpression promotes malignant

progression and poor prognosis in GC (Chen et al., 2022).

ANXA5 is an anticoagulant protein that acts as an indirect

inhibitor of the thromboplastin-specific complex, which is

involved in the blood coagulation cascade (Ravassa et al.,

2005). ANXA5 is a calcium-dependent lipid-binding protein

secreted in the extracellular matrix (Bauwens, 2016),

commonly used to detect apoptosis, drug transport, or as an

adjunct to chemotherapy because of its high affinity for

phosphatidylserine (PS) binding ability (Gerke and Moss,

2002). ANXA5 played a role in developing ovarian cancer,

cervical cancer, and colorectal cancer. It was considered a

diagnostic and prognostic marker (Xue et al., 2009; Li et al.,

2012; Hassan et al., 2018). However, studies on ANXA5 in GC are

limited, and the prognostic value of ANXA5 in GC is unclear.

Wang et al. showed that ANXA5 might act as an anticancer

protein, inhibit cell proliferation and metastasis, and promote

cell apoptosis via the MEK/ERK signaling pathway (Wang et al.,

2021). F2R (coagulation factor II thrombin receptor) F2R is a

member of the G protein-coupled receptor family that encodes

proteinase-activated receptor 1 (PAR1). High affinity receptors

for activated thrombin coupled to G proteins that stimulate

phosphoinositide hydrolysis may play a role in platelet

activation and vascular development (Gao et al., 2020).

PAR1 has been found to contribute to cell growth and

invasion of tumor-derived cells (Even-Ram et al., 1998), and

PAR1 is associated with poor prognosis in GC patients (Fujimoto

et al., 2008). Further investigation revealed that PAR1 activation

could trigger a cascade of responses that promote tumor cell

growth and invasion. The activation of PAR1 leads to

overexpression of NF-κB, EGFR, and TN-C, and TN-C

induces EGFR activation by the autocrine mode. Therefore,

PAR1 is a potentially important therapeutic target for GC

(Fujimoto et al., 2010).

VWF is the largest polymeric glycoprotein in human blood.

It is thought to be synthesized only in endothelial cells and

megakaryocytes/platelets (Bongers et al., 2006). VWF is

important in the maintenance of hemostasis; it promotes

adhesion of platelets to the sites of vascular injury by forming

a molecular bridge between sub-endothelial collagen matrix and

platelet–surface receptor complex GPIb-IX-V. It also acts as a

chaperone for coagulation factor VIII, delivering it to the site of

injury, stabilizing its heterodimeric structure, and protecting it

from premature clearance from plasma (Pagliari et al., 2021).

VWF as a primary platelet ligand has been widely used as a

biomarker for cancer and associated inflammation. Cancer-

derived VWF enhances gastric adenocarcinoma metastasis

through experiments in vivo and in vitro (Yang et al., 2018).

Confusingly, Yin et al. (2021)found that ADAM28 from

endothelial cells and GC cleaved VWF to eliminate VWF-

induced apoptosis in GC cells. AXL is a member of the

TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine

kinases (RTKs) that can be activated by the ligand Gas6, which is

closely associated with tumor progression (Stitt et al., 1995).

With respect to hemostasis, all three TAM receptors are located

on platelets and mediate thrombogenesis and platelet

stabilization. Platelet stabilization occurs after integrin

activation, granule secretion, and platelet aggregation through

platelet-to-platelet contact. Without this mechanism, platelet

plugs disaggregate prematurely (van der Meer et al., 2014).
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Gas6/AXL contributes to GC cell survival and invasion by

activating the Akt pathway (Sawabu et al., 2007). He et al.

similarly found that the Gas6/AXL/ZEB1 axis was upregulated

in GC cell lines and negatively correlated with OS in GC patients.

Upregulation of ZEB1 enhanced AXL-mediated EMT, invasion,

and proliferation (He et al., 2020). In platelets, MMRN1 acts as a

binding protein for factor V, a key regulator of coagulation,

affecting factor V function and storage (Jeimy et al., 2008).

MMRN1 is secreted from platelet α-granules and

Weibel–Palade bodies of endothelial cells. MMRN1 platelet-

related functions include platelet adhesion, factor V

regulation, and MMRN1 deficiency associated with bleeding

risks in Quebec platelet disorder (Posner, 2022). Laszlo et al.

(2015) made a point that MMRN1 could be used as a newmarker

to refine pediatric acute myeloid leukemia. Sun et al. (2020)

found that MMRN1 is one of the characteristic genes associated

with GC prognosis. CD59 is a glycosylphosphatidylinositol

(GPI)-anchored membrane protein that regulates complement

activation by inhibiting membrane attack complex (MAC)

formation (Zhang et al., 2018). CD59 deficiency was identified

as a pro-thrombotic factor (Tabib et al., 2018). CD59 is highly

expressed in various tumor tissues and cells, such as pancreatic

cancer (Bongers et al., 2006) and colorectal cancer (Watson et al.,

2006). The high expression of CD59 on cancer cells can inhibit

the function of complement and directly protect cells from the

apoptotic cascade through various signaling pathways. Recent

studies have found that CD59 has also been shown to affect

tumor cell behavior and immune cell activity (Zhang et al., 2018).

Kiso et al. (2002) found that CD59 expression was enhanced in

intestinal metaplasia, gastric adenocarcinoma, and intestinal-

type gastric cancer but not in diffuse-type GC. How

CD59 functions in GC has not been further studied.

Meanwhile, we constructed a nomogram of OS in GC

patients based on coagulation-related genes for the first time,

and the calibration curve and C-index showed good agreement.

To further explore the underlying molecular mechanisms

between high-risk and low-risk groups based on Coag-Score,

the GSEA was performed in the HALLMARK and KEGG

pathway datasets. The results indicated that high-risk

individuals were enriched in focal adhesion, MAPK signaling

pathway, complement and coagulation cascades, angiogenesis,

coagulation, epithelial–mesenchymal transition, and KRAS

signaling pathway. Jin et al. found that celecoxib exerts

anticancer effects through focal adhesion (Jin et al., 2016).

The MAPK signaling pathway is widely expressed in

multicellular organisms and plays a crucial role in multiple

biological processes such as cell proliferation and death,

differentiation, migration, and invasion. The MAPK signaling

pathway is usually involved in the occurrence and progression of

cancer when it is dysregulated (Yang and Huang, 2015). The

KRAS oncogene plays a crucial role in tumor initiation and

maintenance, and its signaling network represents a significant

target for therapeutic intervention. Many inhibitors targeting

kinase effectors in various Ras signaling pathways have been

developed (Luo, 2021). Activation of coagulation and

complement and coagulation cascades correlates with

chemotherapy sensitivity and OS in cancer patients (Zhang

et al., 2020). Blocking the coagulation pathway with

anticoagulants and other drugs reduces the incidence of deep

vein thrombosis and effectively prolongs the survival of cancer

patients. EMT is one of the hallmarks of carcinogenesis and

involves the redifferentiation of epithelial cells into mesenchymal

cells, thereby changing the cellular phenotype to malignant cells.

EMT has been shown to play a role in malignant transformation,

and when it occurs in the tumor microenvironment, it

significantly affects the aggressiveness of GC (Kozak et al.,

2020). In conclusion, GC patients with high-risk scores are

characterized by a hypercoagulable state, and therefore,

according to risk scores, anticoagulation therapy for high-risk

groups may improve patient outcomes.

Tumor immunotherapy stimulates the body’s immune

function by increasing the immunogenicity of tumor cells and

the sensitivity of effector cell killing, thereby inhibiting and

killing tumor cells. The coagulation system plays an essential

role in innate and adaptive immunity. Recent studies have found

that the coagulation factor Xa (FXa) synthesized by monocytes

and macrophages can promote tumor metastasis and immune

escape by activating PAR-2. The FXa inhibitor, rivaroxaban, and

PD-L1 inhibitor have synergistic anti-tumor effects (Graf et al.,

2019). Elizabeth et al. found that increasing CD8 infiltration is

correlated with impaired PFS and OS. Patients with higher CD8+

T-cell densities also have higher PD-L1 expression, indicating an

adaptive immune resistance mechanism may be occurring

(Thompson et al., 2017). Key gene SERPINE1 in the Coag-

Score model may predict the efficacy of PD-1 antibody in

patients with advanced melanoma (Ohuchi et al., 2021). We

further explored the correlation between Coag-Score and

immune cell infiltration. ssGSEA showed a higher enrichment

score of various immune cell infiltrations in the high-risk

group. TIMER analysis Coag-Score was positively

correlated with CD8+ T cells, while PD-L1 expression was

elevated in patients in the high-risk group. Therefore, high-

risk patients may benefit from immunotherapy. Coag-Score

may predict the efficacy of immune checkpoint inhibitors in

GC patients. In addition, blockade of coagulation-related

pathways may synergistically increase the effectiveness of

immunotherapy.

The advantage of our study is to correlate the molecular

dialogue between host cell coagulation factors and GC. We

focused on coagulation-related genes to evaluate the

prognostic value of GC patients. We explored the relationship

between the Coag-Score model and immune infiltrating cells, and

immune checkpoint expression, which provides a new predictive

model and therapeutic strategy for the immunotherapy of GC.

More clinical samples and further mechanistic studies are needed

to verify the benefits and value of the Coag-Score model.
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