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Abstract: A series of quinoline–uracil hybrids (10a–l) has been rationalized and synthesized. The
inhibitory activity against hCA isoforms I, II, IX, and XII was explored. Compounds 10a–l demon-
strated powerful inhibitory activity against all tested hCA isoforms. Compound 10h displayed the
best selectivity profile with good activity. Compound 10d displayed the best activity profile with
minimal selectivity. Compound 10l emerged as the best congener considering both activity (IC50 = 140
and 190 nM for hCA IX and hCA XII, respectively) and selectivity (S.I. = 13.20 and 9.75 for II/IX, and
II/XII, respectively). The most active hybrids were assayed for antiproliferative and pro-apoptotic
activities against MCF-7 and A549. In silico studies, molecular docking, physicochemical parameters,
and ADMET analysis were performed to explain the acquired CA inhibitory action of all hybrids.
A study of the structure–activity relationship revealed that bulky substituents at uracil N-1 were
unfavored for activity while substituted quinoline and thiouracil were effective for selectivity.

Keywords: uracil; quinoline; carbonic anhydrase; anticancer; zinc-binding group

1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are a superfamily of metalloenzymes that
are distributed extensively throughout living organisms [1]. CAs are subclassified to
eight gene families (α, β, γ, δ, ζ, η, θ, and ι) [2]. As these enzymes are ubiquitously
represented in the body, they are major participants in reaction catalysis and physiological
processes. In addition to their physiological impacts, the modulation of the natural function
or upregulation of these enzymes demonstrate immense benefits for controlling many
pathological conditions [3]. The α-CA enzymes found in mammals are divided into four
subgroups consisting of several isoforms. The CA I and CA II isoforms belong to the
cytosolic subgroup of α-CA, while CA IX and CA XII isoforms are part of the membrane-
associated α-CAs subgroup [4]. For instance, sulfonamides were determined as potent
inhibitors of α-CAs and can be used to exploit many clinical applications such as diuresis,
antiglaucoma, anticonvulsant, antiobesity, analgesic, and anticancer activities [5].

Cancer one of the leading mortality-causing diseases, competing with cardiovascular
diseases for first place. It is also one of the overwhelming barriers to high life expectancy
owing to its social and economic consequences [6]. In 2020, 19.3 million people were
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diagnosed with cancer, with 10.0 million deaths reported. This number is expected to reach
28.4 million in 2040 [7]. Many molecular mechanisms and biological targets are connected
to the underlying mechanisms of cancer. Of these, human carbonic anhydrases (hCA) IX
and XII have been recognized as tumor-associated proteins in hypoxic and other solid
tumors where they actively contribute to the permanence and metastasis of the necrotic
cell [8]. Notably, a great number of scientists have emphasized that both are biomarkers
and therapeutic targets for various cancer types. Accordingly, dual targeting, i.e., inhibition,
of the two latter isozymes represent a remarkable challenge for the development of novel
anticancer drugs [9–12].

Following the successful impact of its modulation, the search for further pharmacophor
es—other than sulfonamides—that can fit/block the active site of CAs has become an inter-
esting topic in medicinal chemistry research [13–15]. Afterwards, many chemical moieties
have been revealed as isosteres for sulfonamides, such as hydroxybenzene, fullerenes, ben-
zopyrone, thiobenzopyrone, and boronic acids [3]. These new effective chemical pharma-
cophores have fostered the ability to design promising pharmacologically active candidates
that circumvent sulfonamide side effects. In addition, they support further understanding
of the underlying mechanisms of CAs and can be utilized for the rational drug design of
novel candidates as CAs modulators.

It is important to indicate that CAs are not the sole Zn-containing enzymes that ex-
tensively affect cancer physiology [16]. Histone deacetylases (HDACs) are Zn-containing
enzymes that play a crucial role in anticancer therapy [17]. Fortunately, the zinc-binding
groups (ZBGs) of HDAC inhibitors are different from those reported for CAs, as per the
recent reviews [18,19]. The ZBGs of HDACIs are classified into classical and nonclassical
groups. The classical ZBGs, such as hydroxamic acid [20] and benzamide [21], are character-
ized by potent activity, selectivity, toxicity, and in vivo instability [22]. Carboxylic acid [23]
and thiol [24] groups were also used as ZBGs in HDACI design. The nonclassical type
include imidazole-thione [25], tropolone derivatives [26], 3-hydroxypyridin-2-thione (3-
HPT) [27], chelidamic derivatives [28], benzoylhydrazide [29], trifluoromethyloxadiazolyl
(TFMO) [30], 2-(oxazol-2-yl)phenol [31], hydroxypyrimidines [32], and β-hydroxymethyl
chalcone [33] (Figure 1).
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Quinoline is an abundant pharmacophore in medicinal chemistry and exhibits re-
markable pharmacological efficacies such as antituberculosis [34], antimalarial [35], antivi-
ral [36,37], anticancer [35,38], antibacterial [37], antifungal [37,39], antileishmanial [40], and
anti-inflammatory [41] activity. Moreover, several quinoline-based candidates showed very
promising anticancer activities, including neratinib [42], bosutinib [43], foretinib [44], and
topotecan [45], which are currently in clinical trials. Additionally, kinase inhibitors [35,46,47],
apoptotic agents [35,48], microtubule-targeting agents [35,49], topoisomerase inhibitors [35,50],
epigenetic enzyme inhibitors [35,51], transcription factor inhibitors [35,52], and carbonic
anhydrase inhibitors [53] are represented (Figure 2).
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Similarly, the pyrimidine moiety is a well-documented pharmacophore in medici-
nal chemistry [53–56]. Anticancer pyrimidine-containing marketed drugs exhibit their
biological activity via assorted mechanisms, such as tyrosine kinase inhibition (imatinib,
dasatinib) [57], the inhibition of DNA synthesis (uracil mustard) [58], thymidylate synthase
(fluorouracil) [59], nucleoside metabolic inhibition (gemcitabine, trifluridine) [60], an-
timetabolite (floxuridine) [61], DNA polymerase inhibition (cytarabine) [62], DNA methyl-
transferase inhibitor (azacitidine) [63], inducing DNA hypomethylation and corresponding
alterations in gene expression (decitabine) [64], and transition state analog inhibition of
cytidine deaminase (zebularine) [65] (Figure 3).
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Primary benzenesulfonamide derivatives are well known for their CA inhibition,
which confers several biological activities, especially anticancer activity. In this regard,
quinoline-based sulfonamides have been recently reported with impressive CA inhibition,
where compound I displayed inhibitory activity against hCA I and II isoforms with Ki
ranges of 0.96–9.09 µM and 83.3–3.59 µM for hCA I and II, respectively [53]. Compound II
displayed potent inhibitory activity against the well-known cancer-related isozymes hCA
IX and XII with Ki values of 0.019 µM and 0.009 µM, respectively [66].

In all the investigated compounds, the quinoline backbone was important for the
biological activity; however, the zinc-binding group (primary benzenesulfonamide) is the
essential moiety [53,67–70]. Despite its key impact, the allergic response to sulfonamide
drugs is a very unfavorable reaction [71,72]. Thus, the search for an alternative bioisostere
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is of much interest in the field of medicinal chemistry. Notably, uracil compounds III and
IV are non-sulfonamide derivatives that show promising CA inhibitory activity and were
confirmed as leads for generating potent CAIs, triggering further isoforms [73]. From
the perspective of the structure–activity relationship, the uracil moiety with C=O, N, and
NH2 represents an active pharmacophore, rich with binding groups that can substitute the
sulfonamide interactions in the receptor (Figure 4).
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In light of the abovementioned findings, and by applying the tactic of pharmacophoric
hybridization, a novel series of quinoline-based uracil synthetic molecules has been rational-
ized, synthesized, and tested for their CA inhibitory and anticancer activities. The utilized
uracils with diverse functionality were similar to the primary benzenesulfonamide moiety
regarding the two sites for both H-bond donors and H-bond acceptors. This rationale
has promoted the exploration of such hybrids. These hybrid structures have been lined
chemically via an imine bond (Schiff’s base), which has been carefully selected as an anchor
based on the reported CA inhibitory activity of its derivatives (compound V) [74] (Figure 4).
An additional notable feature of our novel hybrids is the synthesis of quinoline-based
thiouracil to realize the power of sulfur-based compounds as a zinc-binding group [75].
Docking and in silico studies have been performed to determine the CA inhibitory profile
for the targeted quinolones.

2. Results and Discussion
2.1. Chemistry

The utilized protocol of our designed targets 10a–l consists of two key structural
features; first, the quinoline-3-carbaldehyde moiety (Scheme 1), and second, the 5,6-
diaminouracil/thiouracil pharmacophores (Scheme 2). The straightforward synthesis
leading to 2-quinolone-3-carbaldehyde derivatives (4a–c), which has benefit of concise-
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ness, is shown in Scheme 1. The acetylation of aniline derivatives 1a–c through glacial
acetic acid/acetic anhydride at a temperature of 0 ◦C furnished the corresponding anilides
(2a–c) [76,77]. These compounds underwent the Vilsmeier–Haack reaction to give the
2-chloroquinoline aldehyde derivatives (3a–c) [78,79]. The oxidation of the chlorine group
at position 2 into a ketone has been successfully performed under reflux in acidic conditions
(acetic acid) to deliver the desired synthons (4a–c). This reaction was initiated by oxidation
with acetic acid, then completed by the departure of chlorine as a good leaving group to
produce the favored product. The reaction appeared to be facilitated through the electron
withdrawing effect of nitrogenous heteroatom [78,79].
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As shown in Scheme 2, the variable 5,6-diaminouracil/thiouracil derivatives 9a–e
were prepared via consecutive cyclization of N-alkylurea/thiourea with ethyl cyanoacetate
in the presence of sodium ethoxide, which initially gave 6-aminouracil/thiouracils 7a–e.
This was readily followed by conversion via a nitrosation process using nitrous acid
and then reduction of nitroso uracil/thiouracils 8a–e via the reducing agent ammonium
sulfide [80,81].
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Condensation of diamino-uracil/thiouracils 9a–e with the appropriate quinoline alde-
hydes 4a–c under refluxing condition in ethanol for 1 h furnished the anticipated quinoline-
based uracils/thiouracils 10a–l (Scheme 3). The structures of these novel compounds were
also characterized by using thin-layer chromatography and melting point methods. Our
novel later hybrids were determined using 1H NMR, 13C NMR, elemental, and mass spec-
troscopic techniques. The 1H NMR spectra showed characteristic imino protons (N=CH) of
Schiff bases appearing in the range from 8.45–9.91 ppm as sharp singlets. The 13C NMR
spectra further supported the assigned structures. The 13C NMR shift of N=CH carbon
atoms appeared in the range from 161.32–164.41 ppm as a singlet signal.
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2.2. Biology
2.2.1. Carbonic Anhydrase Inhibition

Activities of all CA isoenzymes were estimated following the previously described
colorimetric method of Verpoorte et al. (1967) [82,83] using BioVision Carbonic Anhydrase
(CA) Inhibitor Screening Kit (Catalog # K473-100). As per Table 1, all candidates 10a–l
showed variable inhibitory activities against the tested CA isoforms. For hCAI, all the
synthesized candidates 10a–l demonstrated inhibitory activities. Compounds 10a, 10d,
10f, 10j, and 10l exhibited inhibitory concentrations in the nanomolar range (230–970 nM),
whereas the other compounds showed activity in the micromolar range (Table 1 and
Figure 5). Compounds 10d, 10f, and 10l displayed higher inhibitory activity (IC50 = 230, 330,
and 250 nM, respectively) than the reference standard acetazolamide (AAZ, IC50 = 760 nM).
It is shown that the placement of small lipophilic methyl groups at N-1 uracil (where X = O),
i.e., compound 10d, was preferred to X = S and the bulkier ethyl and benzyl groups.

In the case of the physiologically dominant hCA II, candidates 10a, 10c, 10d, and
10f showed potent inhibitory activity in the nanomolar range (IC50 = 520, 660, 260, and
790 nM, respectively, Table 1 and Figure 5). Similarly, compound 10d was found to be the
most potent hCA II inhibitor with a lower inhibitory concentration (IC50 = 260 nM) than
the reference standard acetazolamide (AAZ, IC50 390 nM). This highlights the effect of
bulkiness on the interaction with the hCA II binding site. Fortunately, tumor-linked hCA
IX was efficiently inhibited by most of our candidates in the nanomolar range, while three
candidates (10e, 10g, and 10k) showed inhibition in the low micromolar range (IC50 = 1.37,
1.08, and 1.28 µM, respectively). Moreover, compounds 10a, 10d, and 10f displayed su-
perior inhibitory activity against the hCA IX isozyme in the nanomolar range, with IC50
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values of 250, 220, and 270 nM, respectively. Thiouracil hybrid 10l represented the best
hCA IX inhibitor with a half-inhibitory concentration (IC50 = 140 nM) lower than the stan-
dard acetazolamide (AAZ, IC50 = 150 nM). In addition to its potent activity, hybrid 10l
showed higher selectivity (13.25-fold) towards the tumor-linked hCA IX enzyme than the
physiologically dominant hCA II and 1.75-fold higher selectivity to hCA I (Table 2 and
Figure 6). Similarly, compound 10h displayed very good selectivity to transmembrane
tumor-associated isoform hCA IX. A further tumor-related CA isoform (hCAXII) was
potentially inhibited by our quinoline–uracil hybrids. All our synthesized targets 10a–l
inhibited hCA XII in the nanomolar range. Compounds 10d, 10f, and 10l (where IC50 = 190,
170, and 190 nM, respectively) were more potent than acetazolamide (IC50 = 230 nM) while
compound 10i (IC50 = 230 nM) was equipotent to the standard acetazolamide.

Table 1. The inhibition values of novel quinoline–uracil hybrids 10a–l against human carbonic
anhydrase isoenzymes I, II, IX, and XII.

Compound
IC50 (µM) Ki (µM)

hCA I hCA II hCA IX hCA XII hCA I hCA II hCA IX hCA XII

10a 0.97 0.52 0.25 0.32 0.53 0.29 0.14 0.17
10b 1.01 1.14 0.63 0.35 0.56 0.63 0.35 0.19
10c 1.76 0.66 0.40 0.49 0.97 0.37 0.22 0.27
10d 0.23 0.26 0.22 0.19 0.13 0.14 0.12 0.11
10e 1.25 1.21 1.37 0.59 0.69 0.67 0.76 0.33
10f 0.33 0.79 0.27 0.17 0.18 0.44 0.14 0.09
10g 2.16 3.36 1.08 0.33 1.20 1.86 0.60 0.18
10h 3.23 4.50 0.60 0.40 1.78 2.49 0.33 0.22
10i 2.11 1.07 0.91 0.23 1.17 0.59 0.51 0.13
10j 0.89 2.60 0.87 0.62 0.49 1.44 0.48 0.34
10k 2.12 6.57 1.28 0.54 1.17 3.63 0.71 0.30
10l 0.25 1.88 0.14 0.19 0.14 1.04 0.08 0.11

AAZ 0.76 0.39 0.15 0.23 0.42 0.22 0.08 0.13
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Figure 5. hCA I, II, IX, and XII inhibition profile for hybrids 10a–l.

Regarding selectivity profile, compounds 10g, 10h, 10i, 10k, and 10l were the most
selective for hCA XII over both hCAI and hCAII (Table 2 and Figure 7). Compound 10h
displayed the best selectivity profile (S.I. = 5.39, 7.52, 8.00, and 11.16 for I/IX, II/IX, I/XII,
and II/XII, respectively) with good activity (600 and 400 nM for hCA IX and hCA XII,
respectively). However, compound 10d displayed the best activity profile against both hCA
IX and hCA XII (IC50 = 220 and 190 nM, respectively) with a minimal selectivity profile
(S.I. = 1.09, 1.21, 1.24, and 1.37 for I/IX, II/IX, I/XII, and II/XII, respectively). Herein,
compound 10l emerged as the best congener considering both activity and selectivity.
Compound 10l (IC50 = 190 nM) showed better activity than 10h (IC50 = 400 nM) and the
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same activity as 10d (IC50 = 190 nM) against hCA XII. Further, 10l (IC50 = 140 nM) showed
better activity than both 10h and 10d against hCAIX (IC50 = 600 and 220 nM, respectively).
In addition, 10l is the only candidate with superior activity (IC50 = 140 and 190 nM for
hCA IX and hCA XII, respectively) in comparison to acetazolamide (AAZ, IC50 = 150 and
230 nM for hCA IX and hCA XII, respectively). In addition, 10l displayed better selectivity
than acetazolamide (S.I. = 13.20 and 9.75 for II/IX, and II/XII, respectively) toward the
tumor-linked isoforms hCAs IX and XII against physiologically dominant hCA II (Table 2).

Table 2. Selectivity indices for the inhibition of hCA IX and XII over hCA I and II of novel quinoline-
uracil hybrids 10a–l.

Compound I/IX II/IX I/XII II/XII

10a 3.88 2.09 3.05 1.65
10b 1.60 1.81 2.88 3.24
10c 4.37 1.65 3.62 1.37
10d 1.09 1.21 1.24 1.37
10e 0.91 0.88 2.12 2.06
10f 1.23 2.99 1.95 4.72
10g 1.99 3.10 6.47 10.05
10h 5.39 7.52 8.00 11.16
10i 2.31 1.17 9.07 4.60
10j 1.02 2.98 1.43 4.18
10k 1.66 5.14 3.96 12.26
10l 1.75 13.20 1.29 9.75

AAZ 5.12 2.61 3.31 1.69
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2.2.2. Antiproliferative Activity

Based on their activities and selectivity against tumor-linked CA isoforms, compounds
10d and 10l were selected for further screening against the breast cancer cell line (MCF-
7) (HTB-22 from ATCC, Manassas, VA, USA) and lung cancer cell line (A549) (CCL-185
from ATCC, Manassas, VA, USA) under hypoxic conditions to evaluate their in vitro
antiproliferative activity using the MTT assay protocol [84] (Table 3). Both compounds
showed activity against the tested cell lines. However, compound 10d had more potent
activity than 10l against the MCF7 breast cancer cell line with IC50 = 2.87 ± 0.05 compared
with compound 10l IC50 value of 4.08 ± 0.08 µM. For the reference standard staurosporine,
the IC50 was 6.92 ± 0.18 µM. Despite their superior activity over staurosporine against
breast cancer cell line, compounds 10d and 10l had lower activity than staurosporine
towards the lung cancer cell line (Figure 7).

Table 3. Cytotoxicity and effect of 10d and 10l on apoptotic markers Bax and Bcl-2 in breast cancer
cell line (MCF-7) and lung cancer cell line (A549).

Compound
MCF-7 A549 Cytotoxicity IC50 µM

Bcl2 nm/mL Bax pg/mL Bcl2 nm/mL Bax pg/mL MCF7 A549

10d 2.587 ± 0.03 403.1 ± 4.69 2.841 ± 0.01 278.6 ± 9.14 2.87 ± 0.05 11.83 ± 0.22
10l 3.296 ± 0.09 337.2 ± 7.55 4.605 ± 0.28 208.4 ± 4.07 4.08 ± 0.08 26.10 ± 0.56

Staurosporine 2.829 ± 0.07 381.8 ± 11.4 3.78 ± 0.14 310.5 ± 9.7 6.92 ± 0.18 6.06 ± 0.17
control 7.727 ± 0.2 62.86 ± 4.7 8.63 ± 0.16 47.72 ± 2.31 - -

2.2.3. Assessment of Apoptotic Marker Levels

The two cytoplasmic proteins, B-cell lymphoma protein 2 (Bcl-2) and its associated
X protein (Bax), are essential for apoptosis in normal cells. Bax is a promoter and Bcl-2 is
an inhibitor of apoptosis [85]. Thus, the effect of 10d and 10l on apoptotic markers Bax
and Bcl-2 in a breast cancer cell line (MCF-7) and a lung cancer cell line (A549) has been
estimated. Treatment of MCF-7 and A549 cell lines with compounds 10d and 10l resulted in
the upregulation of Bax levels by nearly six-fold relative to the control while the expression
of Bcl-2 levels was downregulated in comparison with the control (Table 3).

2.3. In Silico Study
2.3.1. Physicochemical and Pharmacokinetic Parameters

The SWISSADME server [86] was utilized to assess the ability of the investigated
compounds (10a–l) to act as drugs via estimating the physicochemical and pharmacokinetic
properties. No compounds were expected to cross the BBB, inhibit cytochrome enzymes,
violate the Lipinski’s rule, or give PAINS alerts. In addition, all compounds (except 10g,
10h, and 10l) demonstrated high GIT absorption. The investigated compounds showed
good synthetic accessibility and bioavailability scores (Table 4). Moreover, no compounds
inhibited cytochrome P450 enzymes, indicating there was no expected pharmacokinetic-
related drug–drug interactions.

2.3.2. Molecular Docking Study

Molecular docking studies were performed to investigate the interactions of the target
compounds 10a–10l with the binding site of the human carbonic anhydrases IX using
Discovery Studio. hCA IX is considered promising targets for cancer treatment and their
inhibition can reduce the growth of primary tumors and metastases. For the CA IX isoform,
the PDB file 5FL4 containing hCA IX co-crystallized with 5-(1-naphthalen-1-yl-1,2,3-triazol-
4-yl)thiophene-2 sulfonamide was obtained from the Protein Data Bank [87].
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Table 4. Predicted parameters of compounds 10a–l using SWISSADME server.

Compound MR TPSA Log P GI Ab-
sorption

BBB
Permeant

CYP1A2
Inhibitor

Lipinski
#Violations

Bioavailability
Score

PAINS
#Alerts

Synthetic
Accessibility

10a 83.91 136.96 0.72 High No No 0 0.55 0 2.84
10b 113.3 126.1 2.15 High No No 0 0.55 0 3.27
10c 93.62 126.1 1.26 High No No 0 0.55 0 3.01
10d 88.81 126.1 0.92 High No No 0 0.55 0 2.89
10e 93.38 141.12 1.65 High No No 0 0.55 0 2.93
10f 98.58 126.1 1.61 High No No 0 0.55 0 3.13
10g 98.34 141.12 1.99 Low No No 0 0.55 0 3.05
10h 90.4 146.19 0.84 Low No No 0 0.55 0 2.86
10i 119.79 135.33 2.14 High No No 0 0.55 0 3.34
10j 100.11 135.33 1.25 High No No 0 0.55 0 3.07
10k 95.3 135.33 0.95 High No No 0 0.55 0 2.95
10l 99.87 150.35 1.67 Low No No 0 0.55 0 2.99

The protein structure was prepared by 3D protonation and the water molecule and
ligand that were not implicated in the active site were removed. The active site then
generated with the default protocol [88]. The 2D and 3D interaction diagrams for the ligand
and compounds 10d, 10f, and 10l are shown in Figure 8. Analyzing the ligand–protein
interactions can help better understand the selectivity of the compound for hCA IX with
respect to the other hCA isoforms.

The co-crystallized ligand forms two hydrogen bonds with Thr 200 and Leu199; it
was found to chelate the zinc ion through the sulfonamide group. It formed pi–sulfur
interaction with His 94 and Trp 210. Additionally, it formed pi–alkyl interaction with Val
130 and Val 121 and pi–pi T-shaped interaction with His 94. It exhibited van der Waals
interactions with Gln 92, Gln 71, Val 142, Glu 106, His 96, and Thr 201.

Compound 10d binds to hCA IX through Zn (II) attractive charge interaction along
with hydrogen bonds with Thr 200, His 96, and His 86 (Figure 8), as well as pi–alkyl
interaction with Leu 199 and alkyl interaction with His 94. This showed van der Waals
interaction with Val 121, Thr 200, Trp 210, Glu 106, and His 119.

Compound 10l binds to hCA IX through hydrogen bonds with His 68, Gln 71, and
Gln 92. Additionally, it exhibited pi–alkyl interaction with Val 130. It showed van der
Waals interactions with crucial amino acids such as Leu 91, His 96, Ser 69, His 94, Thr 200,
Leu 199, and Val 121.

Compound 10f binds to hCA IX through Zn ion and forms hydrogen bonds with
Thr 201, Trp 9, His 68, and His 96 (Figure 8). Moreover, it exhibited pi–alkyl interaction with
His 94, Leu 199, Val 121, and Trp 210, and van der Waals interaction with Ser 69, Pro 202,
Gln 71, Val 121, Asp 131, and Gln 92.

2.4. SAR Study

Uracil is well documented as a metal-binding pharmacophore [89–91] with particular
emphasis on its Zn+2-binding abilities [92,93]. In the present work, uracil has been estab-
lished as a bioisostere of the zinc-binding moiety benzenesulfonamide in our synthesized
carbonic anhydrase inhibitors 10a–l. The uracil Zn-binding ability has been proven using
modeling studies and realized by the biological screening against CA isoforms (I, II, IX, XII)
and cancer cell lines.

The SAR of the synthesized candidates can be summarized as follows (Figure 9):

- Both uracil and thiouracil had CA inhibitory activity.
- Substitution on uracil N-1 with a bulky group (benzyl 10b and 10i) decreases activity.
- Substitution on the quinoline ring has tolerable activity, but greatly improves the

selectivity, particularly when in combination with thiouracil (10l).



Pharmaceuticals 2022, 15, 494 11 of 20Pharmaceuticals 2022, 15, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. 2D and 3D representation for (A) ligand; (B) compound 10d; (C) compound 10l; (D) com-
pound 10f in the active site for hCA IX (PDB ID: 5FL4). 

  

Figure 8. 2D and 3D representation for (A) ligand; (B) compound 10d; (C) compound 10l; (D) com-
pound 10f in the active site for hCA IX (PDB ID: 5FL4).



Pharmaceuticals 2022, 15, 494 12 of 20

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 12 of 20 
 

 

2.4. SAR Study 
Uracil is well documented as a metal-binding pharmacophore [89–91] with particular 

emphasis on its Zn+2-binding abilities [92,93]. In the present work, uracil has been estab-
lished as a bioisostere of the zinc-binding moiety benzenesulfonamide in our synthesized 
carbonic anhydrase inhibitors 10a–l. The uracil Zn-binding ability has been proven using 
modeling studies and realized by the biological screening against CA isoforms (I, II, IX, 
XII) and cancer cell lines. 

The SAR of the synthesized candidates can be summarized as follows (Figure 9): 
- Both uracil and thiouracil had CA inhibitory activity. 
- Substitution on uracil N-1 with a bulky group (benzyl 10b and 10i) decreases activity. 
- Substitution on the quinoline ring has tolerable activity, but greatly improves the se-

lectivity, particularly when in combination with thiouracil (10l). 

 
Figure 9. Structure–activity relationship (SAR) of the target hybrids 10–l. 

3. Materials and Methods 
3.1. Chemistry 

Melting points were determined with a Gallenkamp (London, UK) melting point ap-
paratus and were uncorrected. 1H NMR and 13C NMR spectra were recorded on a Varian 
Gemini-400 (400MHz, Foster City, Calif., USA) spectrometer using chloroform (CDCl3), 
dimethylsulphoxide and/or (DMSO/D2O) as solvents and tetramethylsilane (TMS) as an 
internal standard (chemical shift in δ, ppm). 1H NMR data were recorded as follows: 
chemical shift (δ) [multiplicity, coupling constant(s) J (Hz), relative integral], where mul-
tiplicity is defined as s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet, or 
combinations of the above. High-resolution measurements were conducted on a time-of-
flight instrument. All the results of elemental analyses corresponded to the calculated val-
ues within experimental error. The reaction progress was observed by thin-layer chroma-
tography (TLC) using TLC sheets precoated with ultraviolet (UV) fluorescent silica gel 
(Merck 60F254) and spots were visualized by irradiation with UV light (254 nm) or iodine 
vapors. All starting materials and reagents were generally commercially available and 
purchased from Sigma-Aldrich or Lancaster Synthesis Corporation (Lancaster, UK). Com-
pounds 4a–c and 9a–e were prepared according to the reported method [80,81,94–96]. 

3.1.1. General Procedures for the Preparation of 10a–l 
A mixture of 5,6-diamino-uracils/thiouracils (1.28 mmol) and quinolone carbalde-

hydes (1.28 mmol) in ethanol (50 mL) was heated under reflux for 1 h. Cool the reaction 
mixture, the formed precipitate was filtered, washed with ethanol and crystallized from 
DMF/ethanol (1:1). 

  

Figure 9. Structure–activity relationship (SAR) of the target hybrids 10–l.

3. Materials and Methods
3.1. Chemistry

Melting points were determined with a Gallenkamp (London, UK) melting point ap-
paratus and were uncorrected. 1H NMR and 13C NMR spectra were recorded on a Varian
Gemini-400 (400MHz, Foster City, Calif., USA) spectrometer using chloroform (CDCl3),
dimethylsulphoxide and/or (DMSO/D2O) as solvents and tetramethylsilane (TMS) as an
internal standard (chemical shift in δ, ppm). 1H NMR data were recorded as follows: chem-
ical shift (δ) [multiplicity, coupling constant(s) J (Hz), relative integral], where multiplicity
is defined as s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet, or combi-
nations of the above. High-resolution measurements were conducted on a time-of-flight
instrument. All the results of elemental analyses corresponded to the calculated values
within experimental error. The reaction progress was observed by thin-layer chromatogra-
phy (TLC) using TLC sheets precoated with ultraviolet (UV) fluorescent silica gel (Merck
60F254) and spots were visualized by irradiation with UV light (254 nm) or iodine vapors.
All starting materials and reagents were generally commercially available and purchased
from Sigma-Aldrich or Lancaster Synthesis Corporation (Lancaster, UK). Compounds 4a–c
and 9a–e were prepared according to the reported method [80,81,94–96].

3.1.1. General Procedures for the Preparation of 10a–l

A mixture of 5,6-diamino-uracils/thiouracils (1.28 mmol) and quinolone carbalde-
hydes (1.28 mmol) in ethanol (50 mL) was heated under reflux for 1 h. Cool the reaction
mixture, the formed precipitate was filtered, washed with ethanol and crystallized from
DMF/ethanol (1:1).

(E)-6-Amino-5-(((2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)pyrimidine-
2,4(1H,3H)-dione (10a)

Yellowish white solid, Yield: 90%; m.p.: 270–272 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ:
7.17–7.30 (m, 3H, 1Ar-H+NH2), 7.36 (d, J = 8.3 Hz, 1H), 7.44–7.47 (s, 1H, 1ArH), 7.64–7.70
(m, 1H, ArH), 7.91 (s, 1H, CH quinoline), 8.51 (s, 1H, CH=N), 8.74 (s, 1H, NH uracil), 9.75
(s, 1H, NH quinoline), 10.24 (s, 1H, NH uracil) ppm. 13C NMR (DMSO-d6, 100 MHz) δ:
189.78, 161.75, 159.39, 142.44, 138.66, 133.69, 130.92, 129.29, 128.42, 125.60, 122.07, 119.63,
115.41, 99.46 ppm (Figure S1). MS: m/z (rel. int.) = 297 (M+, 10), 145 (49.00), 111 (35.00),
44 (100.00) (Table S2). Anal. Calcd for C14H11N5O3: C, 56.57; H, 3.73; N, 23.56; Found: C,
56.79; H, 3.89; N, 23.34%.

(E)-6-Amino-1-benzyl-5-(((2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)
pyrimidine-2,4(1H,3H)-dione (10b)

Yellowish white solid, Yield: 80%; m.p.: 280–282 ◦C; 1H NMR (DMSO-d6, 400 MHz)
δ: 5.24 (s, 2H, CH2-benzyl), 7.16–7.20 (m, 1H, Ar-H), 7.26–7.31 (m, 4H, Ar-H), 7.35–7.39
(m, 2H, Ar-H), 7.45–7.49 (m, 3H, 1ArH+NH2), 7.70 (d, J = 7.3 Hz, 1H, ArH), 8.80 (s, 1H,
CH quinoline), 9.84 (s, 1H, CH=N), 10.93 (s, 1H, NH quinoline), 11.88 (s, 1H, NH uracil)
ppm. 13C NMR (DMSO-d6, 100 MHz) δ: 161.78, 157.91, 154.40, 149.38, 144.34, 138.73, 136.20,



Pharmaceuticals 2022, 15, 494 13 of 20

134.02, 129.14, 128.56, 127.27, 126.39, 122.08, 119.64, 114.95, 100.09, 44.57 ppm (Figure S2).
MS: m/z (rel. int.) = 387 (M+, 6.00), 77 (83.00), 43 (99.00), 91 (100.00) (Table S2). Anal. Calcd
for C21H17N5O3: C, 56.11; H, 4.42; N, 18.08; Found: C, 65.29; H, 4.57; N, 18.26%.

(E)-6-Amino-1-ethyl-5-(((2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)pyrimidine-
2,4(1H,3H)-dione (10c)

Yellowish solid, Yield: 87%; m.p.: 290–292 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ: 1.17
(t, J = 6.9 Hz, 3H, CH3), 3.97 (q, J = 6.7 Hz, 2H, CH2), 7.18–7.48 (m, 3H, Ar-H), 7.49 (s, 2H,
NH2), 7.73 (d, J = 7.7 Hz, 1H, ArH), 8.81 (s, 1H, CH quinoline), 9.81 (s, 1H, CH=N), 10.47
(s, 1H, NH quinoline), 11.87 (s, 1H, NH uracil) ppm. 13C NMR (DMSO-d6, 100 MHz) δ:
161.83, 157.87, 154.15, 148.98, 143.96, 138.70, 133.90, 130.31, 129.24, 128.64, 122.12, 119.70,
114.98, 99.99, 37.17, 13.08 ppm (Figure S3). MS: m/z (rel. int.) = 325 (M+, 18), 278 (40.00),
131 (70.00), 100 (84.00), 40 (100.00) (Table S2). Anal. Calcd for C16H15N5O3: C, 59.07; H,
4.65; N, 21.53; Found: C, 59.31; H, 4.79; N, 21.69%.

(E)-6-Amino-1-methyl-5-(((2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)
pyrimidine-2,4(1H,3H)-dione (10d)

Yellow solid, Yield: 90%; m.p.: 298–300 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ: 3.35
(s, 3H, CH3), 7.18–7.22 (m, 1H, Ar-H), 7.30 (d, J = 8.2 Hz, 1H, ArH), 7.45–7.50 (s, 3H,
1ArH+NH2), 7.73 (d, J = 7.0 Hz, 1H, ArH), 8.82 (s, 1H, CH quinoline), 9.82 (s, 1H, CH=N),
10.75 (s, 1H, NH quinoline), 11.87 (s, 1H, NH uracil) ppm. 13C NMR (DMSO-d6, 100 MHz)
δ: 161.76, 157.80, 155.07, 149.21, 143.76, 138.66, 133.74, 130.19, 129.24, 128.54, 122.02, 119.65,
114.91, 100.03, 29.45 ppm (Figure S4). MS: m/z (rel. int.) = 311 (M+, 30), 233 (100.00), 163
(61.00), 138 (43.00), 54 (50.00) (Table S2). Anal. Calcd for C15H13N5O3: C, 57.87; H, 4.21; N,
22.50; Found: C, 58.04; H, 4.37; N, 22.32%.

(E)-3-(((6-Amino-1-methyl-4-Oxo-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-
yl)imino)methyl) quinolin-2(1H)-one (10e)

Yellowish solid, Yield: 85%; m.p.: 284–286 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ: 3.85
(s, 3H, N-CH3), 7.19–7.32 (m, 2H, Ar-H), 7.48–7.52 (m, 1H, ArH), 7.60 (s, 2H, NH2), 7.74
(d, J = 7.1 Hz, 1H, ArH), 8.90 (s, 1H, CH quinoline), 9.90 (s, 1H, CH=N), 11.92 (s, 1H, NH
quinoline), 12.22 (s, 1H, NH uracil) ppm. 13C NMR (DMSO-d6, 100 MHz) δ: 173.72, 161.67,
155.12, 154.31, 146.77, 138.95, 134.90, 130.61, 128.77, 128.75, 122.12, 119.53, 115.00, 103.79,
36.44 ppm (Figure S5). MS: m/z (rel. int.) = 327 (M+, 21), 297 (53.00), 242 (80.00), 228
(100.00), 197 (134.00) (Table S2). Anal. Calcd for C15H13N5O2S: C, 55.04; H, 4.00; N, 21.39;
Found: C, 55.27; H, 4.18; N, 21.53%.

(E)-6-Amino-1-ethyl-5-(((8-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methylene)
amino)pyrimidine-2,4(1H,3H)-dione (10f)

Yellow solid, Yield: 82%; m.p.: 278–280 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ: 1.17
(t, J = 7.0 Hz, 3H, CH3), 2.44 (s, 3H, CH3), 3.97 (q, J = 6.7 Hz, 2H, CH2), 7.10–7.14 (m, 1H,
Ar-H), 7.33 (d, J = 7.2 Hz, 1H, ArH), 7.50 (s, 2H, NH2), 7.60 (d, J = 7.7 Hz, 1H, ArH), 8.81
(s, 1H, CH quinoline), 9.84 (s, 1H, CH=N), 10.75 (s, 1H, NH quinoline), 11.01 (s, 1H, NH
uracil) ppm. 13C NMR (DMSO-d6, 100 MHz) δ: 162.23, 157.84, 154.10, 148.92, 143.79, 137.06,
134.48, 131.55, 128.83, 126.78, 123.28, 121.85, 119.70, 99.92, 36.47, 17.19, 13.04 ppm (Figure
S6). MS: m/z (rel. int.) = 339 (M+, 10), 294 (38.00), 239 (37.00), 105 (62.00), 77 (100.00), 44
(88.00) (Table S2). Anal. Calcd for C17H17N5O3: C, 60.17; H, 5.05; N, 20.64; Found: C, 60.38;
H, 5.27; N, 20.89%.

(E)-3-(((6-Amino-1-methyl-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)
imino)methyl)-8-methylquinolin-2(1H)-one (10g)

Straw yellow solid, Yield: 78%; m.p.: 265–267 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ:
2.44 (s, 3H, CH3), 3.85 (s, 3H, N-CH3), 7.11–7.15 (m, 1H, Ar-H), 7.35 (d, J = 7.2 Hz, 1H, ArH),
7.60–7.62 (m, 3H, 1ArH+NH2), 8.90 (s, 1H, CH quinoline), 9.91 (s, 1H, CH=N), 11.07 (s, 1H,
NH quinoline), 12.22 (s, 1H, NH uracil) ppm. 13C NMR (DMSO-d6, 100 MHz) δ: 174.18,
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162.62, 155.61, 154.80, 147.18, 137.81, 136.04, 132.42, 128.85, 127.44, 123.85, 122.42, 120.07,
104.25, 36.93, 17.65 ppm (Figure S7). MS: m/z (rel. int.) = 341 (M+, 14), 225 (24.00), 172
(100.00), 161 (83.00) (Table S2). Anal. Calcd for C16H15N5O2S: C, 56.29; H, 4.43; N, 20.51;
Found: C, 56.43; H, 4.60; N, 20.46%.

(E)-6-Amino-5-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)
pyrimidine-2,4(1H,3H)-dione (10h)

Faint yellow solid, Yield: 85%; m.p.: 275–277 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ:
3.80 (s, 3H, OCH3), 7.11–7.32 (m, 5H, 3Ar-H+NH2), 7.47 (s, 1H, CH quinoline), 8.45 (s,
1H, CH=N), 8.70 (s, 1H, NH uracil), 9.74 (s, 1H, NH quinoline), 10.24 (s, 1H, NH uracil)
ppm. 13C NMR (DMSO-d6, 100 MHz) δ: 164.41, 161.35, 159.39, 154.20, 133.20, 132.87, 129.79,
120.25, 119.48, 116.18, 109.28, 99.70, 55.34 ppm (Figure S8). MS: m/z (rel. int.) = 327 (M+,
5), 160 (50.00), 104 (62.00), 43 (100.00) (Table S2). Anal. Calcd for C15H13N5O4: C, 55.05; H,
4.00; N, 21.40; Found: C, 55.32; H, 4.21; N, 21.79%.

(E)-6-Amino-1-benzyl-5-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene) amino)
pyrimidine-2,4(1H,3H)-dione (10i)

Yellowish solid, Yield: 88%; m.p.: 291–293 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ: 3.80
(s, 3H, OCH3), 5.25 (s, 2H, CH2-benzyl), 7.13–7.21 (m, 2H, Ar-H), 7.24–7.31 (m, 4H, Ar-H),
7.36–7.40 (m, 2H, Ar-H), 7.46 (s, 2H, NH2), 8.76 (s, 1H, CH quinoline), 9.84 (s, 1H, CH=N),
10.94 (s, 1H, NH quinoline), 11.80 (s, 1H, NH uracil) ppm. 13C NMR (DMSO-d6, 100 MHz)
δ: 161.32, 157.88, 154.39, 154.23, 149.35, 144.50, 136.21, 133.60, 133.38, 129.42, 128.54, 127.25,
126.39, 120.16, 119.73, 116.25, 109.51, 100.13, 55.40, 44.58 ppm (Figure S9). MS: m/z (rel. int.)
= 417 (M+, 15), 361 (32.00), 193 (42.00), 161 (48.00), 109 (100.00) (Table S2). Anal. Calcd for
C22H19N5O4: C, 63.30; H, 4.59; N, 16.78; Found: C, 63.57; H, 4.70; N, 16.94%.

(E)-6-Amino-1-ethyl-5-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-
yl)methylene)amino)pyrimidine-2,4(1H,3H)-dione (10j)

Yellowish solid, Yield: 79%; m.p.: 287–289 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ: 1.17
(t, J = 6.9 Hz, 3H, CH3), 3.80 (s, 3H, OCH3), 3.98 (q, J = 6.7 Hz, 2H, CH2), 7.12–7.25 (m, 3H,
Ar-H), 7.47 (s, 2H, NH2), 8.76 (s, 1H, CH quinoline), 9.82 (s, 1H, CH=N), 10.75 (s, 1H, NH
quinoline), 11.78 (s, 1H, NH uracil) ppm. 13C NMR (DMSO-d6, 100 MHz) δ: 161.46, 157.92,
154.37, 154.21, 149.04, 144.23, 133.57, 133.41, 129.55, 120.30, 119.82, 116.37, 109.65, 100.10,
55.53, 37.25, 13.12 ppm (Figure S10). MS: m/z (rel. int.) = 355 (M+, x11), 298 (86.00), 282
(86.00), 246 (29.00), 196 (100.00) (Table S2). Anal. Calcd for C17H17N5O4: C, 57.46; H, 4.82;
N, 19.71; Found: C, 57.70; H, 4.95; N, 19.97%.

(E)-6-Amino-5-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)-1-methyl
pyrimidine-2,4(1H,3H)-dione (10k)

Whitish solid, Yield: 89%; m.p.: 293–295 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ: 3.35
(s, 3H, N-CH3), 3.81 (s, 3H, OCH3), 7.12–7.25 (m, 3H, Ar-H), 7.42 (s, 2H, NH2), 8.77 (s, 1H,
CH quinoline), 9.82 (s, 1H, CH=N), 10.75 (s, 1H, NH quinoline), 11.78 (s, 1H, NH uracil)
ppm. 13C NMR (DMSO-d6, 100 MHz) δ: 161.34, 159.42, 157.81, 155.08, 154.23, 149.22, 143.98,
133.33, 129.53, 120.19, 119.67, 116.24, 109.47, 100.10, 55.42, 29.49 ppm (Figure S11). MS: m/z
(rel. int.) = 341 (M+, 53), 288 (55.00), 238 (82.00), 177 (48.00), 56 (100.00) (Table S2). Anal.
Calcd for C16H15N5O4: C, 56.30; H, 4.43; N, 20.52; Found: C, 56.48; H, 4.50; N, 20.81%.

(E)-3-(((6-Amino-1-methyl-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-
yl)imino)methyl)-6-methoxyquinolin-2(1H)-one (10l)

Yellowish solid, Yield: 84%; m.p.: 295–297 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ: 3.81
(s, 3H, N-CH3), 3.85 (s, 3H, OCH3), 7.17–7.26 (m, 3H, Ar-H), 7.58 (s, 2H, NH2), 8.85 (s, 1H,
CH quinoline), 9.89 (s, 1H, CH=N), 11.83 (s, 1H, NH quinoline), 12.22 (s, 1H, NH uracil)
ppm. 13C NMR (DMSO-d6, 100 MHz) δ: 173.71, 161.24, 155.11, 154.31, 154.26, 146.98, 134.47,
133.64, 129.05, 120.15, 120.06, 116.34, 109.57, 103.86, 55.42, 36.48 ppm (Figure S12). MS:
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m/z (rel. int.) = 357 (M+, 20), 77 (94.00), 58 (100.0), 43 (85.00) (Table S2). Anal. Calcd for
C16H15N5O3S: C, 53.77; H, 4.23; N, 19.60; Found: C, 53.89; H, 4.41; N, 19.87%.

3.2. Biology

All adopted procedures for the conducted in vitro biological assays were performed
as described earlier; CA (stopped-flow [4,30,36]), cytotoxicity (MTT [37,38]), and assess-
ment of apoptotic markers [39,40] assays, as well as the induction of hypoxia with cobalt
chloride [41,42]. Cancer cell line 250 (MCF-7) (HTB-22 from ATCC) and lung cancer cell
line (A549) (CCL-185 from ATCC) used in this study were obtained from the VACSERA
(Giza, Egypt) cell culture unit that was originally acquired from ATCC (Manassas, VA,
USA) https://www.vacsera.com/ (accessed on 20 November 2021).

3.3. Computational Studies
3.3.1. Molecular Modeling Study

The molecular modeling studies were fulfilled by the Molecular Operating Environ-
ment software (Discovery Studio). The crystal structure for hCA IX co-crystallized with
5-(1-naphthalen-1-yl-1,2,3-triazol-4-yl) thiophene-2-sulfonamide was downloaded from the
Protein Data Bank (PDB ID: 5FL4) [87]. The protein was prepared for docking as follows:
water molecules were ignored; hydrogen atoms were added; and the co-crystallized ligand
was used to determine the binding pocket. The compounds were drawn on ChemDraw
and transferred to Discovery Studio (Table S1).

3.3.2. Prediction of Pharmacokinetics Properties and Drug Likeliness

SwissADME server—a free web tool (http://www.swissadme.ch/index.php (accessed
on 10 November 2021) developed by Swiss Institute of Bioinformatics—was utilized to
compute physicochemical descriptors as well as to predict ADME parameters, pharmacoki-
netic properties, druglike nature, and the medicinal chemistry friendliness of compounds
6a–m to support drug discovery [86].

4. Conclusions

A novel set of quinoline-based uracil hybrids has been tailored and synthesized. The
ability of the later hybrids 10a–l toward inhibition of hCA I, II (cytosolic) and hCA IX,
XII (transmembrane, tumor-associated isoforms) using colorimetric assay was evaluated.
The results revealed that our novel hybrids 10a–l had selective inhibition of hCA IX and
XII comparable with hCA I and II in the micromolar range. Hybrids 10d and 10l have
been carefully selected, as optimal compounds for higher hCA IX inhibitory activity and
selectivity, for further investigation of their antiproliferative activity against the breast
cancerous cell line MCF-7 and the lung cancer cell line A549 using the MTT protocol,
which was comparable to the reference standard staurosporine. Compound 10d had a
superior inhibition of MCF-7 cells than A549 cells with IC50 = 2.87 ± 0.05 and 11.83 ± 0.22,
respectively. Similarly, the hybrid 10l displayed stronger inhibition of MCF-7 than of A549
with IC50 = 4.08 ± 0.08 and 26.10 ± 0.56, respectively. Further, both hybrids induced
apoptosis in MCF-7 and A549 cells, together with worthy and desirable changes in Bax/Bcl
expression ratio. The modeling study displayed high docking scores and good binding
interactions of the most active compounds, 10d and 10l, within the hCA-IX active pocket,
with adoption of orientation similar to that of co-crystalized ligand. This highlights our
proposition of the impact of the electron-rich environment of the sulfur atom on the uracil
backbone, as well as the insertion of small lipophilic and non-sterically hindered groups on
both quinoline and uracil pharmacophores as crucial features for accessing highly selective
hCA IX and XII inhibitors. Overall, our novel hybrids have opened the door to a new
authentic approach for the engaging the quinoline scaffold with the uracil pharmacophore,
which is a tactic that has rarely been discussed to date. Indeed, compounds 10d and 10l
are likely to be potential lead candidates for further investigation and optimization, i.e.,

https://www.vacsera.com/
http://www.swissadme.ch/index.php
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the rational development of novel, potent tumor-associated hCAs IX and XII selective
inhibitors as agents for cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15050494/s1, 1H NMR and 13C NMR spectra of (10a), Figure S1,
(10b), Figure S2, 1H NMR and 13C NMR spectra of (10c), Figure S3, 1H NMR and 13C NMR spectra of
(10d), Figure S4, 1H NMR and 13C NMR spectra of (10e), Figure S5, 1H NMR and 13C NMR spectra of
(10f), Figure S6, 1H NMR and 13C NMR spectra of (10g), Figure S7, 1H NMR and 13C NMR spectra of
(10h), Figure S8, 1H NMR and 13C NMR spectra of (10i), Figure S9, 1H NMR and 13C NMR spectra of
(10j), Figure S10, 1H NMR and 13C NMR spectra of (10k), Figure S11, 1H NMR and 13C NMR spectra
of (10l), Figure S12, 2D and 3D interactions of new compounds with the binding site of the human
carbonic anhydrases IX (PDB file 5FL4), Table S1, Mass spectra for compounds 10a–l, Table S2.
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37. Senerovic, L.; Opsenica, D.; Moric, I.; Aleksic, I.; Spasić, M.; Vasiljevic, B. Quinolines and Quinolones as Antibacterial, Antifungal,

Anti-virulence, Antiviral and Anti-parasitic Agents. Adv. Microbiol. Infect. Dis. Public Health 2019, 1282, 37–69. [CrossRef]
38. Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of

quinoline-based anticancer agents. Arab. J. Chem. 2019, 12, 4920–4946. [CrossRef]

http://doi.org/10.3390/ijms22116098
http://www.ncbi.nlm.nih.gov/pubmed/34198834
http://www.ncbi.nlm.nih.gov/pubmed/16686544
http://doi.org/10.2174/156802607780636690
http://doi.org/10.1016/j.bmc.2007.04.020
http://doi.org/10.3389/fchem.2020.00402
http://doi.org/10.1038/sj.onc.1210610
http://doi.org/10.3390/molecules26175151
http://doi.org/10.1080/14756366.2017.1417274
http://doi.org/10.1016/S0021-9258(17)44885-X
http://doi.org/10.1200/jco.2009.27.15_suppl.3529
http://doi.org/10.21037/atm.2016.07.22
http://www.ncbi.nlm.nih.gov/pubmed/27568481
http://doi.org/10.1016/j.ijrobp.2015.04.038
http://www.ncbi.nlm.nih.gov/pubmed/26194676
http://doi.org/10.1016/j.bmcl.2004.03.063
http://www.ncbi.nlm.nih.gov/pubmed/15149697
http://doi.org/10.1124/jpet.103.055541
http://www.ncbi.nlm.nih.gov/pubmed/12975486
http://doi.org/10.1021/ml400158k
http://doi.org/10.1021/jm301769u
http://doi.org/10.1039/C1MD00249J
http://doi.org/10.1016/j.chembiol.2014.12.015
http://doi.org/10.1038/nchembio.1223
http://doi.org/10.1039/C4MD00401A
http://www.ncbi.nlm.nih.gov/pubmed/26005563
http://doi.org/10.1016/j.bmcl.2011.05.098
http://www.ncbi.nlm.nih.gov/pubmed/21696956
http://doi.org/10.1021/cb500767c
http://doi.org/10.1002/med.21262
http://www.ncbi.nlm.nih.gov/pubmed/22622957
http://doi.org/10.1016/j.ejmech.2021.113865
http://www.ncbi.nlm.nih.gov/pubmed/34655985
http://doi.org/10.1016/j.ejmech.2021.113220
http://www.ncbi.nlm.nih.gov/pubmed/33609889
http://doi.org/10.1007/5584_2019_428
http://doi.org/10.1016/j.arabjc.2016.10.009


Pharmaceuticals 2022, 15, 494 18 of 20

39. Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-Based Antifungals. Curr. Med. Chem. 2010, 17, 1960–1973.
[CrossRef]

40. Razzaghi-Asl, N.; Sepehri, S.; Ebadi, A.; Karami, P.; Nejatkhah, N.; Johari-Ahar, M. Insights into the current status of privileged
N-heterocycles as antileishmanial agents. Mol. Divers. 2019, 24, 525–569. [CrossRef]

41. Mukherjee, S.; Pal, M. Quinolines: A new hope against inflammation. Drug Discov. Today 2013, 18, 389–398. [CrossRef] [PubMed]
42. Patel, H.M.; Pawara, R.; Surana, S.J. Chapter 1—Introduction. In Third Generation EGFR Inhibitors; Patel, H.M., Pawara, R., Surana,

S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–24. [CrossRef]
43. Isakoff, S.J.; Wang, D.; Campone, M.; Calles, A.; Leip, E.; Turnbull, K.; Bardy-Bouxin, N.; Duvillié, L.; Calvo, E. Bosutinib plus

capecitabine for selected advanced solid tumours: Results of a phase 1 dose-escalation study. Br. J. Cancer 2014, 111, 2058–2066.
[CrossRef] [PubMed]

44. Bronte, E.; Galvano, A.; Novo, G.; Russo, A. Chapter 5—Cardiotoxic Effects of Anti-VEGFR Tyrosine Kinase Inhibitors. In
Cardio-Oncology; Gottlieb, R.A., Mehta, P.K., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 69–89. [CrossRef]

45. Kollmannsberger, C.; Mross, K.; Jakob, A.; Kanz, L.; Bokemeyer, C. Topotecan—A Novel Topoisomerase I Inhibitor: Pharmacology
and Clinical Experience. Oncology 1999, 56, 1–12. [CrossRef]

46. El-Sayed, M.A.A.; El-Husseiny, W.M.; Abdel-Aziz, N.I.; El-Azab, A.S.; Abuelizz, H.A.; Abdel-Aziz, A.A.M. Synthesis and
biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: Molecular docking study. J. Enzym.
Inhib. Med. Chem. 2017, 33, 199–209. [CrossRef] [PubMed]

47. George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E.S. Synthesis and anti-proliferative activity of some
new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem. 2019, 83, 186–197.
[CrossRef] [PubMed]

48. Hamdy, R.; Elseginy, S.; Ziedan, N.; Jones, A.; Westwell, A. New Quinoline-Based Heterocycles as Anticancer Agents Targeting
Bcl-2. Molecules 2019, 24, 1274. [CrossRef] [PubMed]

49. Abdelbaset, M.S.; Abuo-Rahma, G.E.-D.A.; Abdelrahman, M.H.; Ramadan, M.; Youssif, B.G.M.; Bukhari, S.N.A.; Mohamed,
M.F.A.; Abdel-Aziz, M. Novel pyrrol-2(3H)-ones and pyridazin-3(2H)-ones carrying quinoline scaffold as anti-proliferative
tubulin polymerization inhibitors. Bioorg. Chem. 2018, 80, 151–163. [CrossRef]

50. Kundu, B.; Das, S.K.; Paul Chowdhuri, S.; Pal, S.; Sarkar, D.; Ghosh, A.; Mukherjee, A.; Bhattacharya, D.; Das, B.B.; Talukdar,
A. Discovery and Mechanistic Study of Tailor-Made Quinoline Derivatives as Topoisomerase 1 Poison with Potent Anticancer
Activity. J. Med. Chem. 2019, 62, 3428–3446. [CrossRef]

51. Rabal, O.; Sánchez-Arias, J.A.; San José-Enériz, E.; Agirre, X.; de Miguel, I.; Garate, L.; Miranda, E.; Sáez, E.; Roa, S.; Martínez-
Climent, J.A.; et al. Detailed Exploration around 4-Aminoquinolines Chemical Space to Navigate the Lysine Methyltransferase
G9a and DNA Methyltransferase Biological Spaces. J. Med. Chem. 2018, 61, 6546–6573. [CrossRef]

52. Chung, P.; Lam, P.; Zhou, Y.; Gasparello, J.; Finotti, A.; Chilin, A.; Marzaro, G.; Gambari, R.; Bian, Z.; Kwok, W.; et al. Targeting
DNA Binding for NF-κB as an Anticancer Approach in Hepatocellular Carcinoma. Cells 2018, 7, 177. [CrossRef]

53. Al-Sanea, M.M.; Elkamhawy, A.; Paik, S.; Bua, S.; Ha Lee, S.; Abdelgawad, M.A.; Roh, E.J.; Eldehna, W.M.; Supuran, C.T. Synthesis
and biological evaluation of novel 3-(quinolin-4-ylamino)benzenesulfonamides as carbonic anhydrase isoforms I and II inhibitors.
J. Enzym. Inhib. Med. Chem. 2019, 34, 1457–1464. [CrossRef] [PubMed]

54. Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and Biological Importance of Pyrimidine in the Microbial World. Int. J.
Med. Chem. 2014, 2014, 202784. [CrossRef] [PubMed]

55. Sahu, M.; Siddiqui, N. A review on biological importance of pyrimidines in the new era. Int. J. Pharm. Pharm. Sci. 2016, 8, 8–21.
56. Nerkar, A.U. Use of Pyrimidine and Its Derivative in Pharmaceuticals: A Review. J. Adv. Chem. Sci. 2021, 7, 729–732. [CrossRef]
57. Haouala, A.; Widmer, N.; Duchosal, M.A.; Montemurro, M.; Buclin, T.; Decosterd, L.A. Drug interactions with the tyrosine kinase

inhibitors imatinib, dasatinib, and nilotinib. Blood J. Am. Soc. Hematol. 2011, 117, e75–e87. [CrossRef] [PubMed]
58. Bartzatt, R. Potential antineoplastic structural variations of uracil mustard (uramustine) retaining cytotoxic activity and drug-

likeness suitable for oral administration. J. Cancer Tumor Int. 2015, 2, 50. [CrossRef]
59. Pullarkat, S.T.; Stoehlmacher, J.; Ghaderi, V.; Xiong, Y.P.; Ingles, S.A.; Sherrod, A.; Warren, R.; Tsao-Wei, D.; Groshen, S.; Lenz, H.J.

Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharm. J. 2001, 1, 65–70.
[CrossRef]

60. Ariav, Y.; Ch’ng, J.H.; Christofk, H.R.; Ron-Harel, N.; Erez, A. Targeting nucleotide metabolism as the nexus of viral infections,
cancer, and the immune response. Sci. Adv. 2021, 7, eabg6165. [CrossRef]

61. Grem, J.L.; Chabner, B.A.; Chu, E.; Johnson, P.; Yeh, G.C.; Allegra, C.J. Antimetabolites. Cancer Chemother. Biol. Response Modif.
1991, 12, 1–25.

62. Rider, B.J. Cytarabine. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY,
USA, 2007; pp. 1–5. [CrossRef]

63. Flotho, C.; Claus, R.; Batz, C.; Schneider, M.; Sandrock, I.; Ihde, S.; Plass, C.; Niemeyer, C.M.; Lübbert, M. The DNA methyl-
transferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid
leukemia cells. Leukemia 2009, 23, 1019–1028. [CrossRef]

64. Si, J.; Boumber, Y.A.; Shu, J.; Qin, T.; Ahmed, S.; He, R.; Jelinek, J.; Issa, J.-P.J. Chromatin remodeling is required for gene
reactivation after decitabine-mediated DNA hypomethylation. Cancer Res. 2010, 70, 6968–6977. [CrossRef] [PubMed]

http://doi.org/10.2174/092986710791163966
http://doi.org/10.1007/s11030-019-09953-4
http://doi.org/10.1016/j.drudis.2012.11.003
http://www.ncbi.nlm.nih.gov/pubmed/23159484
http://doi.org/10.1016/B978-0-08-102661-8.00001-9
http://doi.org/10.1038/bjc.2014.508
http://www.ncbi.nlm.nih.gov/pubmed/25290090
http://doi.org/10.1016/B978-0-12-803547-4.00005-7
http://doi.org/10.1159/000011923
http://doi.org/10.1080/14756366.2017.1407926
http://www.ncbi.nlm.nih.gov/pubmed/29251017
http://doi.org/10.1016/j.bioorg.2018.10.038
http://www.ncbi.nlm.nih.gov/pubmed/30380447
http://doi.org/10.3390/molecules24071274
http://www.ncbi.nlm.nih.gov/pubmed/30986908
http://doi.org/10.1016/j.bioorg.2018.06.003
http://doi.org/10.1021/acs.jmedchem.8b01938
http://doi.org/10.1021/acs.jmedchem.7b01925
http://doi.org/10.3390/cells7100177
http://doi.org/10.1080/14756366.2019.1652282
http://www.ncbi.nlm.nih.gov/pubmed/31411080
http://doi.org/10.1155/2014/202784
http://www.ncbi.nlm.nih.gov/pubmed/25383216
http://doi.org/10.30799/jacs.239.21070203
http://doi.org/10.1182/blood-2010-07-294330
http://www.ncbi.nlm.nih.gov/pubmed/20810928
http://doi.org/10.9734/JCTI/2015/17780
http://doi.org/10.1038/sj.tpj.6500012
http://doi.org/10.1126/sciadv.abg6165
http://doi.org/10.1016/B978-008055232-3.61536-3
http://doi.org/10.1038/leu.2008.397
http://doi.org/10.1158/0008-5472.CAN-09-4474
http://www.ncbi.nlm.nih.gov/pubmed/20713525


Pharmaceuticals 2022, 15, 494 19 of 20

65. Lemaire, M.; Momparler, L.F.; Raynal, N.J.M.; Bernstein, M.L.; Momparler, R.L. Inhibition of cytidine deaminase by zebularine
enhances the antineoplastic action of 5-aza-2′-deoxycytidine. Cancer Chemother. Pharmacol. 2008, 63, 411–416. [CrossRef] [PubMed]

66. Shaldam, M.; Nocentini, A.; Elsayed, Z.M.; Ibrahim, T.M.; Salem, R.; El-Domany, R.A.; Capasso, C.; Supuran, C.T.; Eldehna, W.M.
Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors.
Int. J. Mol. Sci. 2021, 22, 11119. [CrossRef]

67. Nemr, M.T.M.; AboulMagd, A.M.; Hassan, H.M.; Hamed, A.A.; Hamed, M.I.A.; Elsaadi, M.T. Design, synthesis and mechanistic
study of new benzenesulfonamide derivatives as anticancer and antimicrobial agents via carbonic anhydrase IX inhibition. RSC
Adv. 2021, 11, 26241–26257. [CrossRef]

68. Supuran, C.T.; Scozzafava, A. Carbonic Anhydrase Inhibitors: Aromatic Sulfonamides and Disulfonamides Act as Efficient Tumor
Growth Inhibitors. J. Enzym. Inhib. 2008, 15, 597–610. [CrossRef] [PubMed]

69. Supuran, C.T.; Briganti, F.; Tilli, S.; Chegwidden, W.R.; Scozzafava, A. Carbonic anhydrase inhibitors: Sulfonamides as antitumor
agents? Bioorg. Med. Chem. 2001, 9, 703–714. [CrossRef]

70. Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.-Y.; Qin, H.-L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing
motifs for drug discovery: A critical review. Eur. J. Med. Chem. 2019, 162, 679–734. [CrossRef]

71. Dorn, J.M.; Alpern, M.; McNulty, C.; Volcheck, G.W. Sulfonamide Drug Allergy. Curr. Allergy Asthma Rep. 2018, 18, 38. [CrossRef]
72. Giles, A.; Foushee, J.; Lantz, E.; Gumina, G. Sulfonamide Allergies. Pharmacy 2019, 7, 132. [CrossRef]
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