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High resolution microfluidic assay and probabilistic
modeling reveal cooperation between T cells
in tumor killing
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Cytotoxic T cells are important components of natural anti-tumor immunity and are har-

nessed in tumor immunotherapies. Immune responses to tumors and immune therapy out-

comes largely vary among individuals, but very few studies examine the contribution of

intrinsic behavior of the T cells to this heterogeneity. Here we show the development of a

microfluidic-based in vitro method to track the outcome of antigen-specific T cell activity on

many individual cancer spheroids simultaneously at high spatiotemporal resolution, which we

call Multiscale Immuno-Oncology on-Chip System (MIOCS). By combining parallel mea-

surements of T cell behaviors and tumor fates with probabilistic modeling, we establish that

the first recruited T cells initiate a positive feedback loop to accelerate further recruitment to

the spheroid. We also provide evidence that cooperation between T cells on the spheroid

during the killing phase facilitates tumor destruction. Thus, we propose that both T cell

accumulation and killing function rely on collective behaviors rather than simply reflecting the

sum of individual T cell activities, and the possibility to track many replicates of immune cell-

tumor interactions with the level of detail our system provides may contribute to our

understanding of immune response heterogeneity.
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The capacity of cytotoxic T lymphocytes (CTL) to eliminate
tumor cells is the basis for the development of important
tumor immunotherapies such as immune checkpoint

inhibitors (e.g., anti-CTLA-4, anti-PD1, or anti-PD-L1 mAbs)
and the development of cellular therapies such as CAR T cells1,2.
However, patient response to these therapies can be highly vari-
able. While many parameters are known to influence patient
response to immunotherapies, the number, phenotype, and dis-
tribution of CTLs can have a strong predictive value in several
types of cancer3.

These observations underscore the need to better understand
how a successful T cell attack proceeds and what are the critical
parameters associated with CTL behavior and function that favor
tumor regression. In this respect, several key questions remain
unanswered. For example, how do CTLs encounter tumor cells
and accumulate within the tumor microenvironment (TME)?
What are the dynamics of CTL killing and what CTL density is
needed for tumor eradication? Are individual CTLs acting
autonomously in the TME or do they interact together? Under-
standing the basic principles that dictate whether a tumor mass is
regressing or not is in fact essential to design, optimize, and
evaluate tumor immunotherapeutic strategies.

Multiple approaches are available to evaluate T cell cytotoxicity
against tumors. In vitro assays in cell suspension have been used
to measure CTL killing capacity and, when performed at the
single-cell level, provide information on the extent of functional
heterogeneity within a T cell population4. These in vitro assays,
however, lack the complexity of the 3D tumor microenvironment,
which strongly impacts T cell behavior and function. At the other
end of the spectrum, intravital imaging offers direct insights into
the dynamics, signaling, and killing behavior of single T cells
within a developing tumor5–8. Limitations of these approaches,
however, include the fact that they provide a view of the inter-
actions in a limited spatial and temporal window. Indeed con-
tinuous observation periods are generally limited to a few hours,
precluding a full understanding of T cell histories in the TME.

An interesting emerging platform comes from advanced
in vitro models that recapitulate some aspects of the TME
while providing access to the system dynamics9,10. These
include organoids11,12, where cells are allowed to organize in
three dimensions (3D), or organ-on-a-chip devices13, where
the microfluidic device represents the organ geometry and
the microfluidics enable temporal control of the flows and
physical conditions. Recent work has also dealt with combining
the advantages of both approaches to produce organoids-on-a-
chip14. Gathering general rules from these systems that would
explain the outcome of a CTL attack remains challenging as it
requires to link quantitative measurements of T cell behavior,
which is inherently stochastic, with tumor cell fate9,14.

Here, we introduce a microfluidic-based approach for the
multiplexed analysis of tumor spheroid fate in the presence of
defined immune cell populations. This methodology is based on
the parallel formation, manipulation, and observation of hun-
dreds of tumor spheroids within stationary microfluidic droplets.
When associated with mathematical models, the quantity and
quality of spatiotemporally resolved data allow us to pinpoint key
behaviors leading to spheroid destruction and to detect and
understand heterogeneity of tumor outcomes.

Results
Parallelized immune challenge on an integrated microfluidic
chip. The immunogenic rejection of 3D cancer models is studied
using the classic model of Ovalbumin-expressing mouse B16
melanoma (B16-OVA), which are challenged by OVA-specific
CD8+ cytotoxic T lymphocytes (CTLs) bearing the OT-1

transgenic TCR (see “Methods”)15–19. Further, the results
obtained with B16-OVA are compared with non-OVA expressing
B16 Wild-Type cells (B16-WT) as a control. These two cell types
were previously reported to exhibit similar proliferation dynamics
and do not differ in their in vivo immunogenicity18. The
experiments rely on a microfluidic device that consists of a dro-
plet generating region followed by a droplet trapping region that
serves to culture the cells and observe them (Fig. 1a, b)20,21. This
trapping region is patterned with 234 microfluidic anchors22, that
allow the droplets to be held in place even in the presence of an
external flow (see “Methods”). The anchors are diamond-shaped
(see Fig. 1b) in order to allow for multiple droplet pairings23.

The experiment begins by producing aqueous droplets
(volume= 50 nl) containing Matrigel and a suspension of B16
cells at a concentration of 1.5 × 106 cell/ml. To obtain single
spheroids in each droplet, a concentration of 2.0 mg/ml of
Matrigel was used, with higher Matrigel concentrations leading to
the formation of multiple spheroids per droplet (Supplementary
Fig. 1a) (see “Methods”). Once the droplets are anchored, the
device is placed in an incubator at 37 ∘C overnight, which allows a
single B16 spheroid to form in each droplet (Fig. 1b). At these cell
and Matrigel concentrations we obtain spheroid radii in most
cases ranging between 35 to 45 μm (Fig. 1c). A live-dead staining
shows that less than 3% of the cells were dead after 48 h in the
chip (Fig. 1d).

After overnight incubation, the CTLs are brought to the
Matrigel droplets by generating a group of secondary smaller
droplets (volume= 10 nL) that contain a broad distribution of
CTLs (Supplementary Fig. 1b). These secondary droplets are
trapped in the triangular sections of the anchors and then merged
with the spheroid-containing Matrigel, thus bringing the two cell
populations into the same Matrigel droplet (Fig. 1e)23. The
interactions between the CTLs and spheroids are observed by
time-lapse microscopy, typically over 24 h. The whole process
from spheroid preparation to CTL addition and imaging is done
on a single chip (Fig. 1f) and each experiment yields up to 234
individual replicates, of which we typically obtain 50 time-lapse
movies, due to the small image acquisition time-intervals (2min/
frame). For higher time-intervals, more data points can be
collected from the same chip. The movies are then analyzed using
our custom-made scripts (see Supplementary Software 1).

Three stages in the cell–cell interactions can be identified: the
CTL exploration of the gel, their accumulation on the spheroid,
and the killing of B16 Ova-expressing cells (see Supplementary
Movie 1 for representative cases). These stages are studied in
detail below.

CTL migration in micro-device reproduces in vivo behavior.
The CTL migration is tracked in the time-lapse movies as the cells
perform 3D migration within the gel or on the surface of the
spheroid (see Fig. 2a). The recorded velocities display alternating
periods of motility and arrest phases, as seen by the high and low
velocities in Fig. 2b. This behavior, as well as the value of the
velocities, correspond well to previously reported CTL velocities
in collagen gels in vitro24 or within tissues in vivo25,26. We can
infer the 3D motility properties from the acquired microscopy
data (see “Methods”). Note that the value of the measured velo-
cities depends on the image acquisition frequency (see Supple-
mentary Fig. 2), so we maintain the sampling at 2min/frame for
all the experiments (see “Methods”).

In order to evaluate the influence of the spheroid presence in
the droplet on the motility of the CTLs, the migration statistics
without a spheroid present are compared with the statistics in the
presence of a spheroid during the first 500 min of an experiment.
We restrict the analysis to cells that are not in contact with the
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Fig. 1 Microfluidic immuno-oncology chip and protocol. a Microfluidic chip on a standard glass slide. b Expanded view of the trapping region of the chip
(dashed box) showing an array of 234 trapped droplets. Each droplet contains a single B16 spheroid in Matrigel, as shown in the inset. c Distribution of
spheroid radii within a single chip (N= 215). d Viability measurements using live-dead staining after 24 and 48 h (N= 54). e Schematic showing a primary
droplet with a tumor spheroid, followed by the addition and fusion of a secondary droplet containing GFP-labeled CTLs, eventually leading to tumor cell
killing and spheroid fragmentation. Scale bar is 200 μm. f Schematic representation of the complete experimental protocol.
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spheroid. The displacement distributions (Fig. 2c) and the mean-
square displacements (MSD) (Fig. 2d) do not show any
significant difference between the two conditions. In both cases,
the CTLs undergo super-diffusive random walks (Fig. 2d) with
MSD ~ τα, where τ is the time between two observations and
α= 1.6, in agreement with what was reported in vitro and
in vivo24,26.

After some time, one CTL comes in contact with the spheroid.
This contact generally leads the T cell to adhere to the spheroid
and explore its surface over the course of a few hours (Fig. 2e, f
and Supplementary Movie 2). We select individual tracks with
segments both on and off the spheroid to investigate more
precisely the CTL motility change upon reaching the spheroid.
We observe that the CTL behavior is strongly modified: They
display lower mean velocity (Fig. 2g and Supplementary Movie 2)

with a lower MSD exponent (Fig. 2h, i). The average MSD
exponent goes from 1.4 when the cells move in the gel to 1.1 after
the same cells have reached the spheroid.

The CTL migration in the gel therefore recapitulates behaviors
that have been reported in vivo24–27, with the current data
highlighting the switch in motility before and after the CTL
contacts the spheroid surface.

A positive feedback loop drives CTL accumulation on the
spheroid. We now investigate the contact time statistics of the
CTLs on the spheroids. The distribution of first-passage times is
consistent with the distribution of randomly migrating particles
in an enclosed environment, indicating that the initial contact is
random and that there is no attraction from the spheroid on the
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Fig. 2 CTL migration in droplets recapitulates in vivo behavior. a (left) Representative image of CTLs with instantaneous velocity vectors inside Matrigel
droplet. (right) CTL tracks in one droplet over 24 h, each color represents an individual cell track. The dashed black circle outlines the spheroid boundary.
b Representative velocities as a function of time for three different T cells. c Probability distribution of a cell to migrate by a given distance (Δr) during a
fixed time step Δt= 1 min (n= 67965 points without spheroid and n= 34072 individual points for CTLs in presence of the B16 spheroids). d Mean-square
displacement (MSD) of CTL migration with (N= 20 droplets) and without (N= 26 droplets) spheroids. Error bars represent the SEM. e Time sequence
showing the initial CTL approach and contact with a spheroid. f Track of a single CTL as it migrates in the matrigel and on the spheroid surface. Colormap
represents the instantaneous velocity of the cell. g, h Average velocity and mean square displacement exponent (α) of cells migrating in the gel and on
the spheroid. Each data point is the average velocity in a given droplet (Ngel= 55, Nspheroid= 54, respective p-values of 1.3 × 10−10 and 1.2 × 10−15). iMean-
square displacement of cells migrating in the matrigel and on the spheroid. Bold and dashed lines represent the best fits for the MSD of CTLs on the
spheroid and in the matrigel, with respective exponents of 1.1 and 1.4 (measurement conducted over N= 54 droplets). Error bars represent the SEM.
Source data are provided as a Source data file.
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CTLs (Fig. 3a). After the initial CTL contact with the B16 cells,
the arrival of successive CTLs leads to an accumulation of T cells
on the spheroid in the case of the B16-OVA spheroids. This
accumulation is shown in absolute numbers (Fig. 3b) and also by
computing the ratio of CTLs in each droplet that are present on
the spheroid as a function of time (Fig. 3c). However, the accu-
mulation is not observed in the case of wild-type B16 cells, which
do not express Ova (Supplementary Movie 3).

At this stage, an important question is whether this accumula-
tion results from cells reaching the spheroid randomly, as they
explore the droplet volume, or if the accumulation rate is
enhanced due to cell–cell signaling. We address this question by
analyzing the accumulation of the CTLs at the spheroid level. At
this scale, the CTL accumulation is not homogeneous but
stochastic, with CTLs both attaching and detaching over time
(Fig. 3d, Supplementary Movie 2, Supplementary Movie 4). A

time series of the number of CTLs present on each spheroid is
obtained by counting the CTLs that are detected within the
spheroid region on the images, with a 2 min time resolution. The
statistics of these time series on all of the parallel realizations are
then analyzed using a Markov chain method (see “Methods”).
This in turn yields the attachment rate λin and detachment rate
λout for each individual CTL (Fig. 3e).

The value of λin is found to be significantly higher in the B16-
OVA spheroids compared the B16-WT spheroids, while the
opposite is true for λout (Fig. 3f). These measurements indicate
that the arrival rate of CTLs increases when the cells composing
the spheroid express the cognate antigen recognized by the CTLs
and that they stay attached for longer periods of time. Therefore
the accumulation of CTLs on the spheroids is mediated by two
independent phenomena: first the increase in arrival frequency
and second by the decreased leaving frequency. The net effect of
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Fig. 3 CTL accumulation is enhanced by a positive feedback-loop after first contact. a Experimental distribution of first CTL-spheroid contact times and
theoretical distribution for randomly migrating CTLs. b Number of CTLs detected on each spheroid and c the fraction per droplet as a function of time. Each
thin line represents a single tracked spheroid, in bold is the averaged value. In red is the accumulation for B16-OVA spheroids and in blue for B16 WT
spheroids [84 individual B16-OVA spheroids and 81 B16 WT spheroids tracked]. d Number of CTLs as a function of time on two representative spheroids
showing the detection of attachment/detachment events. e Schematic of the stochastic accumulation model: CTLs can switch from the gel to the spheroid
with different probabilities. pin(Δt) (conv. pout(Δt)) is the probability for a cell to attach to (conv. detach from) the spheroid during a time interval Δt.
Counting attachment and detachment events in the experiments allow us to infer the rates λin and λout. f Estimates for the attachment rates (λin),
detachment rates (λout), and affinity ratio (λin/λout) for B16-WT (blue) and B16-OVA (red) cells. The box plots are obtained by using a bootstrapping
method with 50 repetitions as described in the methods (respective p-values of 7 × 10−18, 1.2 × 10−16, and 7 × 10−18). g The affinity ratio as a function of
the number of CTLs detected on the spheroid for B16 WT and B16 Ova spheroids (respective p-values of 6 × 10−9, 3 × 10−15, and 1.3 × 10−13). h Normalized
attachment rate λin (white) and detachment rate λout (red) as a function of the number of CTLs attached to the spheroid. λin and λout are normalized by their
mean values for 0 and 1 CTL on the spheroid, respectively. Source data are provided as a Source data file.
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the attachment/detachment dynamics can then be summarized by
the affinity ratio, λin/λout, which accounts for the net effective
accumulation of CTLs on target. This ratio is found to be
significantly higher with B16-OVA spheroids when compared to
the B16-WT spheroids (Fig. 3f).

Evidence of a positive feedback loop for the attraction among
the CTLs can be obtained by calculating the change of the affinity
ratio, defined as λin/λout, as a function of the number of T cells
present on the spheroid. Indeed, the depth of the experimental
data allows us to obtain a value of λin/λout before the first contact
and then successively track the change of this ratio after every
contact, in each droplet (Fig. 3g). Again, the data for B16-OVA
show a significant difference with the WT case. More interest-
ingly, the higher the number of CTLs present on the B16-OVA
spheroid, the higher the ratio, and thereby, the faster the
accumulation rate: this is a hallmark of a positive feedback. The
increase in the accumulation rate is driven by an increase in λin
for a constant value of λout (Fig. 3h). It demonstrates that the
accelerated accumulation is mediated by the increasing attraction
of the CTLs to the spheroid, which starts from the very first CTL
attached to the spheroid (Fig. 3h).

The current results confirm recently published observations15

that show a CCR5-mediated swarming of T cells in vitro, as well
as in vivo studies that report the accumulation of T cells on
targets28,29. Figure 3 shows that these effects occur even for cell
populations consisting of a few individuals and that a single
contact can trigger the beginning of the positive feedback. Below
we go beyond the CTL accumulation to address the relationship
between the accumulation of CTLs and their capacity to kill the
B16 spheroids.

Killing of B16 cells by CTLs is heterogeneous. After focusing on
the behavior of the T cells we now turn to the response of the
cancer spheroids upon CTL accumulation. The time-lapse movies
allow us to identify individual cell death events in the spheroids at
the molecular level by detecting the activation of Caspase 3/7,
which provides an early marker of apoptosis30 (Fig. 4a and
Supplementary Movie 5). In the brightfield image, we observe
instances of rapid shedding of cellular material and debris from
the spheroids (Fig. 4a, Supplementary Movies 1, 3, 5), which we
refer to as “spheroid fragmentation”. Combining this information
with the position of CTLs relative to the spheroid, it is thus
possible to record a detailed chronology of the key events taking
place in each droplet by timing successive CTL contacts with the
spheroid and the apparition of fragmentation events and Caspase
3/7 signals, as shown in Fig. 4b.

We observe that the timing of the first Caspase event post-CTL
contact is well correlated with the first fragmentation event
(Fig. 4c), indicating that the two observations are closely related.
For this reason, we will hereafter use brightfield images to
quantify spheroid killing, which simplifies the analysis pipeline.
Furthermore, the timing of these killing events is highly variable,
ranging from a few hours to beyond 24 h. For some spheroids, no
fragmentation or Caspase events are observed over the course of
an experiment. In the following analysis, we will label “successful
killing” the cases when the first fragmentation event is observed
before t= 14 h. The statistics of such events are summarized in
Fig. 4d, which shows that 44% (NOVA= 84 spheroids) of the
OVA expressing spheroids are successfully killed by the CTLs.
This contrasts with the B16-WT spheroids, where we do not
observe any fragmentation events (Fig. 4d, Supplementary
Movie 3). An analysis of the statistical impact of each of the
problem parameters on a successful killing shows that the
dominant parameters are the number of CTLs in the droplet and
the number of CTLs that reach the spheroid.

Tumor spheroid killing involves collective effects. We now
consider the relationship between the spatiotemporal dynamics of
the CTLs and the tumor spheroid outcomes (successful or
unsuccessful killing). An indication of the relevance of this link is
obtained first by observing that the CTL accumulation rates are
faster on the spheroids that display fragmentation than in the
opposite case, both in absolute numbers (Supplementary Fig. 3a)
and as a fraction of the total number of cells per droplet (Sup-
plementary Fig. 3b). This indicates that a faster accumulation is
correlated with efficient killing.

Moreover observing the CTLs on the spheroid reveals that
fragmentation events are associated with the presence of several
CTLs in the vicinity (Fig. 5a, b). This local effect is quantified by
counting the number of T cells present within a 30 μm radius of
the first cell fragmentation event, giving a mean number of 3.4
cells (median at 3 cells), with fragmentation very rarely occurring
with only one cell present at the fragmentation site (Fig. 5b).
Indeed, CTLs sometimes appear to besiege a salient B16 cell,
causing it to burst after a few minutes of attack. This suggests that
the CTLs tend to cluster at particular sites on the spheroid and
that their clustering enhances their ability to induce spheroid
fragmentation (Fig. 5c).

The above observations can be analyzed in greater depth to
demonstrate that the cooperative effect of the CTLs enables the
killing of tumor cells. Here, we first infer the fragmentation
probability of cancer cells as a function of the number of CTLs
present on the spheroid (n). If we consider a time-interval of length
Δt, the probability of a cancer cell fragmentation event happening is
Γfrag(n)Δt and conversely, the probability of the cell not fragment-
ing is 1− Γfrag(n)Δt (Fig. 5d) (see “Methods”). Comparing the
different droplets we see that the fragmentation events can happen
at different time-points as is schematically represented in Fig. 5e.
From the experimentally observed fragmentation times Γfrag can be

inferred: ΓfragðnÞ ¼ KDeath;n

KDeath;nþKn
. Here KDeath,n is the number of

fragmentation occurrences with exactly n CTLs on the spheroid
andKn the number of instances with nCTLs on the spheroid before
the first fragmentation event.

The experimental measurements are compared with a
probabilistic model where the CTLs behave independently from
each other as is schematically represented in Fig. 5f (see
“Methods”). This independent model leads to the parabolic
probability of killing (blue line in Fig. 5g) which poorly matches
with the experimental data. On the other hand, the experimental
evolution of Γfrag is well-fitted by an exponential increase (red
dashed line), demonstrating that a model of independent
interactions between the CTLs and the target cells fails to capture
the underlying mechanism of spheroid fragmentation.

Long and short-range interactions combine to determine
probability of CTLs to kill a tumor spheroid. The probability
for successful killing to occur for any particular spheroid can now
be explained as a combination of the effect of CTL accumulation
on the spheroid and their cooperative killing behavior (Fig 6a).
This probability is a function of the total number of CTLs in the
droplet, which also correlates with the maximum number
observed on the spheroid (see Supplementary Fig. 4 and Table 1).
The spheroid fate can be simulated as a two-step branching
process. First, we simulate the evolution of the number of CTLs
on the spheroid at each time step based on the experimentally
derived parameters λin and λout, shown in Fig. 3. Second, we
account for the possible spheroid fragmentation depending on the
number of CTLs on the spheroid and Γfrag, as described in Fig. 5.
We then repeat the process for each time-interval, updating the
number of T cells on the spheroid and the spheroid state (frag-
mented or intact) iteratively until the time of the simulated
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experiment has lapsed. The model process is illustrated in Fig. 6b
(see “Methods”).

This computation is performed for a number of CTLs per
droplet (N) ranging from 0 to 20 cells and repeated 50 times for
each value of N. This allows us to first compare the experimental
first fragmentation times with the simulated ones (Fig. 6c). In
both cases, the first fragmentation time decreases as the number
of CTLs increases in the droplet and the simulated values closely
fit the experimentally observed fragmentation times. We then
compare the simulated fragmentation probability curve as a
function of the number of CTLs in the droplet to the
experimental data (Fig. 6d). Not only does the simulation
confirm the key role of CTL number in causing spheroid
fragmentation, but the close match between simulated and
experimental measurements indicates that the spheroid fragmen-
tation process is well recapitulated from these two mechanisms:
collective accumulation and cooperative killing of CTLs at the
spheroid site.

Discussion
The current study introduces a new paradigm for extracting
biological information from in vitro experiments, by treating the
parallel realizations as “Monte-Carlo experiments” that reach
different outcomes in a probabilistic way. This contrasts with
existing microfluidic models for cancer-immune interactions,
which treat each chip as a single experiment and use traditional
biological measurement techniques10,31. By comparison the dro-
plet format provides several unique features, including the ability
to merge many droplet pairs at a well-defined time, thus pro-
viding a common starting time of the parallel experiments23,32.
Moreover, the encapsulation within droplets allows the condi-
tions in each of the parallel experiments to be well controlled,
thus allowing for massively multiplexed experiments on a single
device.

Here these technical advantages are associated with probabil-
istic modeling to infer key biological information about the ability
of CTLs to sense and respond to the tumor, by relating the
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marker, and B16 cell fragmentation. The white arrow at 3h indicates the appearance of capsase signal next to a CTL. At 9 h it represents a fragmented dead
cell. b Representative chronology showing the key events for a given spheroid interaction with CTLs: Contact times of CTLs on spheroids, detection of
caspase 3/7 signal, detection of fragmentation events. c Time of first caspase signal vs. first observation of cell fragmentation. d Percentage of WT (black)
and OVA (red) spheroids that show at least one fragmentation event in under 14 h. N equals 54 and 84 spheroids, respectively. The error bar is the SEM.
Source data are provided as a Source data file.
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spatiotemporal dynamics of the CTLs with the outcome for the
tumor spheroid. Specifically, we find that the first CTL-tumor cell
contact, which occurs randomly, triggers a positive feedback loop
that leads to an accelerated accumulation of CTLs on the
spheroid. Later, CTLs form clusters on the spheroid that enhance
their ability to kill the target cells, leading to tumor rejection.

Several mechanisms may account for the collaborative CTL
accumulation and killing. Chemokines that are both sensed and
produced by T cells have the ability to drive their swarming
behavior15. Cooperative killing, in which multiple sublethal
cytotoxic hits synergize to induce target cell killing, has been

previously described in the context of viral infection33 and tumor
development17. Alternatively, initial CTL-tumor cell interactions
may facilitate tumor destruction by increasing MHC class I
expression through IFN-γ production and diffusion in the tumor
microenvironment for example25,34. As illustrated here, our
approach helps support and generate new hypotheses that can be
subsequently dissected at the molecular level.

Looking ahead, the current platform can now be generalized to
include several immune cell types and more realistic tumor
models in each droplet. Here again the spatiotemporal resolution
andMonte-Carlo approach will be fundamental to understand the

Fig. 5 CTL number and collective behavior determine probability of killing. a Two representative images showing CTL clustering on the spheroid during
first fragmentation event. The white circles have a radius of 30 μm around fragmenting cell. b Distribution of the CTL numbers within a radius ≤30 μm
around the fragmentation areas (N= 31). c Sketch summarizing the observed trends: CTLs (green) migrate on the surface of the spheroid and cluster
together in particular regions, where fragmentation of B16 cells (red) is observed. d During a time-interval Δt, a spheroid with n CTLs attached to it has a
probability ΓfragΔt of fragmenting. e Illustration of possible scenarios of the number of CTLs on the spheroids and the apparition of fragmentation. f The
fragmentation rate Γfrag can be modeled as the result of independent CTLs interacting with the spheroid, with an individual fragmentation rate per CTL
worth ρ. Conversely, the fragmentation rate can be viewed as the result of a collaborative process. g Estimates of Γfrag as a function of the number of CTLs
on the spheroid n. Experimental measurements (N= 84, black dots) are fitted with an exponential (dashed red line) compared with the results of the
independent CTL model (dashed blue line). Source data are provided as a Source data file.
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causality of the interactions and the effect of 3D geometry.
Finally, working with patient-derived organoids35,36 will have
important implications for personalized medicine.

Methods
Experiments and analysis
Statistics and reproducibility. The box plots represent the quartiles of the dis-
tribution in all figures where this data representation method is used (i.e., Figs. 1d,

2g, h, 3f–h, and 4b) as detailed in the Seaborn library documentation37. The
whiskers describe the distribution minima and maxima.

The statistical tests used to compare distributions are
Mann–Whitney–Wilcoxon tests with two-sided Bonferroni corrections. For all
figures concerned (i.e., Figs. 2g, h and 3f, g) we have the following mapping for p-
value annotations: ns: 5.00 × 10−2 < p ≤ 1; *: 1.00 × 10−2 < p ≤ 5.00 × 10−2; **:
1.00 × 10−3 < p ≤ 1.00 × 10−2; ***: 1.00 × 10−4 < p ≤ 1.00 × 10−3; ****:
p ≤ 1.00 × 10−4.

One representative image from a data set of total 84 droplets in the case of B16-
Ova and 54 in the case of B16-WT has been included in Figs. 1e and 2a, e, f,
respectively. A representative image sequence from a total of 61 droplets has been
used for Fig. 4a, b, respectively. One representative image from a total of 200
droplets each for aqueous, 2.025 and 4.05 mg/ml condition is being used for
Supplementary Fig. 1a.

The data used to generate Figs. 2d, i, 3g, h, and 6c, d are pooled from three
different microfluidic chips. Each droplet in these experiments corresponds to a
unique experimental condition (cell number, spheroid size, spatial distribution of
cells, initial condition of the T cells, etc.). The stochastic models then provide
values of the parameters λ and Γfrag by tracking the co-evolution of different
cellular events within each droplet. As such each droplet in each microfluidic
device should be treated as an independent replicate of the stochastic evolution.
The bootstrapping analysis of the statistics confirms that the use of different subsets
of these data does not modify the results.

Tumor cells. B16-WT melanoma and B16-OVAlbumin peptide (residues 257–264)
expressing cell-lines (B16-OVA) were maintained in RPMI 1640 (Fischer Scientific
- 12027599) media containing 10% FBS and 1% penicillin-streptomycin antibiotics
and were maintained at 5% CO2 and 37 ∘C. B16.F0 (B16) and B16.F0-Ova (B16-
OVA) melanoma cells were kindly provided by Claude Leclerc.
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Fig. 6 Combining short and long-range interactions to simulate spheroid fate. a The concentration-dependent killing is modeled as the result of two
complementary mechanisms: long-distance cooperative attraction of CTLs to the target site and local killing cooperation on the spheroid. b The evolution of
the spheroid fate in the droplets can be modeled as a branching process: at each time step the spheroid can fragment with a probability ΓfragΔt or not, and
CTLs can either attach to or detach from the spheroid. c Simulations of the spheroid fate using the model in (b) and parameters obtained above recover the
experimentally derived first-fragmentation times. Shaded area represents the 95% confidence interval of simulated data. The bold line represents the mean.
d Experimental (black dots) and simulated (blue line) spheroid fragmentation probability as a function of the number of CTLs in the droplet. Shaded area
represents the 95% confidence interval of simulated data. The bold line represents the mean. Source data are provided as a Source data file.

Table 1 Generalized linear model (GLM)42 results (number
of samples is 96) from the statsmodel API45.

Variable Coeff. β Std err z p [0.025 0.975]

n 1.84 0.786 2.342 0.019 0.300 3.381
N 1.5567 0.707 2.203 0.028 0.172 2.942
Area −0.2175 0.320 −0.681 0.496 −0.844 0.409
t1 −0.5405 0.999 −0.541 0.588 −2.498 1.417
t2 1.1746 1.732 0.678 0.498 −2.221 4.570
t3 −2.3092 2.635 −0.877 0.381 −7.473 2.854
t4 1.4984 2.191 0.684 0.494 −2.795 5.792

n is the maximum recorded number of CTLs on the spheroid and N is the number of T cells
detected in the droplet, Area is the spheroid surface and t1 to t4 are the first times at which 1 to 4
CTLs are detected on the spheroid surface.
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Generation of OVA-specific cytotoxic T lymphocytes (CTLs). Ubi-GFP Rag1−/−OT-
1 TCR mice were bred in our animal facility under specific pathogen-free condi-
tions. The mice were bred and managed by Institut Pasteur’s animal facility with a
central air conditioning equipment which maintains constant temperature of
22 ± 2 ∘C. Air is renewed at least 20 times per hour in animal rooms. Fluorescent
light is provided with a 14:10-h light:dark cycle. Humidity is monitored but not
controlled and in the range of 25–65%. Splenocytes were isolated from Ubi-GFP
OT-1 TCR transgenic mice and red blood cells were removed by ammonium-
chloride-potassium lysis. One-third of the cells was then pulsed with 50 μM of
Ova257-264 peptide (SIINFEKL) for 2 h at 37 ∘C in 1 mL total volume of RPMI
medium 1640-GlutaMAX. The rest of the cells were incubated at 37 ∘C in 15 mL of
complete medium (RPMI medium 1640-GlutaMAX supplemented with 10% heat-
inactivated fetal bovine serum, 50 μg/mL penicillin, 50 μg/mL streptomycin, 1 mM
sodium pyruvate, 10 mM HEPES, and 50 μM β-mercaptoethanol). After 2 h, the
two populations were mixed and cultured for 3 days. Cells were then subjected to
Ficoll gradient centrifugation to remove dead cells and thus select live Ova-specific
CTLs, and cultured in complete RPMI medium, supplemented with human IL-2
(10 ng/mL; R&D) for 2 additional days. All animal studies were approved by the
Institut Pasteur Safety Committee in accordance with French and European
guidelines (CETEA 2017-0038).

Microfabrication, microfluidic setup, and droplet formation. The PDMS-based
microfluidic device on which the experiments were conducted is precisely described
in refs. 20,23,38. Preceding droplet production, the chip in filled with fluorinated FC40
(3M) oil mixed with 2%(v/v) FluoroSurfactant (Ran Biotechnologies) and cooled at
−20 ∘C for 2 h to prevent Matrigel gelification during the loading. The primary
droplets are produced as in ref. 20. The aquous phase is composed of RPMI media,
Corning Matrigel (Dutscher Dominique - 354234) and B16 melanoma cells at a
concentration of 1.5 × 106 cells/mL. The primary droplets have a volume of ca 50 nL.
The chip is then placed in the incubator at 37 ∘C leading to Matrigel gelification.

The secondary droplets (volume ca. 10 nL) were produced with an aqueous
phase containing RPMI media and OT-1-CD8+GFP cells at a concentration of
1.5 × 106 cells/mL. The secondary droplets were further trapped in the triangular
regions adjacent to the individual hexagonal wells already present with primary
droplets encapsulated with B16 spheroids (see Fig. 1). To fuse the primary with the
secondary droplets, 20% (v/v) of 1H,1H,2H,2H-perfluoro-1-octanol (PFO) (Sigma-
Aldrich) was dissolved in NovecTM-7500 Engineered Fluid (3M) and was perfused
in the microfluidic chip. This caused the fusion of adjacent droplets. After the
fusion of droplets, a fresh solution of FC40 and Fluorosurfactant was flushed-in to
remove the PFO in the microfluidic chamber.

Spheroid formation in different matrigel concentrations. We primarily used the
Matrigel concentration of 2.0mg/ml in order to encapsulate the droplets with B16
cells. Twenty-four hours after droplet loading, the B16 cells self-assemble into a
single 3D spheroid of B16 tumor cells (Fig. 1b). Using concentrations higher than
2.0 mg/ml (4.05 mg/ml) often leads to multiple spheroids (Supplementary Fig. 1a)
located at different droplet heights. Conversely, droplets with pure aqueous media
(without Matrigel) resulted in single spheroid formation but lacked the Extra-cellular
Matrix (ECM) necessary for the migration of T cells (Supplementary Fig. 1a).

Viability assay (Fig. 1). B16-OVA spheroid-containing droplets were made according
to the protocol described above with the addition of Propidium Iodide (PI) (Sigma -
P4864) at a concentration of 3 μM. The chip was then imaged at 24 and 48 h after
seeding. Only spheroids positioned in the center of the droplets were imaged, in
order to avoid artifacts due to the microscopy. Using a custom-made Imagej macro,
the area of red fluorescent signal by PI was measured and the percentage fluorescent
area was calculated when compared to the complete spheroid area.

Apoptosis assay (Fig. 4). Caspase-3/7 Red Apoptosis Assay Reagent (Essen
Bioscience - 4704) was used at 2 μM concentration (added during primary droplet
formation) in order to visualize the apoptotic cells in the spheroids.

Microscope imaging. Images were captured using a Nikon Ti2 motorized epi-
fluorescence microscope with a ×20 objective lens. The illumination was produced
by a Lumencor LED light source and the images were captured by a Hamamatsu
C13440-20CU SCMOS camera. Raw data collection was done using imaging
software Nikon Elements (version 5.11.01, Build 1367).

Image analysis. A specific image analysis pipeline was developed in order to extract
physical and biological variables from the time-lapse movies. The routines were
written in Python (version 3) programming language and use several open-source
libraries39–41. The code is available on the GitHub repository associated to this
publication. Basic data visualization and quantification of spheroid size distribution
is done using custom-made macro in Imagej (version 1.53 f51).

Determining the positions of CTLs with regard to the spheroid. Each droplet image is
multi-channel consisting in brightfield and FITC (510 nm) channels. The former
enables well identification and spheroid segmentation, whereas the latter enables us
to record CTL positions.

To segment the spheroid in a given droplet we rely upon a border-detection
routine based on Laplace filtering. The spheroid properties such as size and
position are recorded and stored. This procedure is repeated at every time step for
more robustness. The CTLs are detected using the fluorescence channel, and their
positions are stored. This information is then crossed with the spheroid positions
extracted above to determine the position of the CTLs relative to the spheroid in
the droplet (on/off the spheroid). For each time-step an image with the raw image,
the mask covering the detected spheroid and the relative positions of the CTLs is
generated for manual verification a-posteriori of the algorithm efficacy. Faulty wells
(with for example mis-detected spheroids) are then thrown away before data
analysis. The full image-analysis algorithm is available on the GitHub repository
associated with this publication.

λin and λout estimation and simulation. The attachment and detachment rates are
estimated using a bootstrapping procedure. From a subset of the experimental
accumulation plots (Fig. 3d) we count the attachment and detachment events and
estimate the values of λin and λout. We repeat the procedure 50 times selecting for
each iteration 70% of the total number of spheroids in each condition (84 B16-
OVA and 81 B16-WT spheroids). This gives us a distribution of the estimated
parameters λin and λout represented in Fig. 3. The code necessary for this estimation
is available on the GitHub repository associated with this publication.

Mathematical models
Interpreting the statistics of cell displacements from 2D images. After the intro-
duction of the T cells into the Matrigel droplets, they explore the space of the
droplet in all three dimensions (3D). For practical considerations, however, the
imaging was limited to a single plane within the droplet, leading to two-
dimensional (2D) slices of the drops. It is therefore important to consider how to
interpret the statistics of 2D measurements of cells moving in 3D. Under the
hypothesis of a perfectly isotropic medium, we can study the influence of 2D
projection of a 3D motion on the mean square displacement (MSD). For a dis-
placement during a time-interval τ, we can write the following relationship for the
displacement vector r:

hkrkiτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y þ r2z

qD E
τ
¼

ffiffiffi
3

p
hjrkjiτ ; ð1Þ

where ri is the displacement in the direction i and h�i denotes an ensemble average.
Therefore, we should have:

hkrpkiτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

qD E
τ
¼

ffiffiffi
2
3

r
hjrkiτ ; ð2Þ

Correcting the velocity values from experimental 2D measurements yield
estimated 3D velocities on the order of 6.3 μm/min, which are in line with
observations in vivo25.

Also, the scaling of the mean square displacement as a function of τ is not
impacted by the projection from 2D to 3D as demonstrated by the calculation
below:

hkrpk2iτ ¼ hkrxk2 þ kryk2iτ ¼
2
3
hkrk2iτ ð3Þ

The calculation also shows that the effective diffusion coefficient Dp of a three-
dimensional track estimated from a 2D measurement is worth 2/3 of the “true”
diffusion coefficient D.

CTL velocity measurements depend on the imaging frame rate. Measuring the
motility properties of particles—or cells—undergoing random motion is heavily
dependent on the sampling rate. Indeed, since the cells can move back and forth,
we expect the net distance traveled Δr(τ) over a time τ to be sub-linear. By mea-
suring the average distance traveled for different lag times we extract the experi-
mental dependence in Supplementary Fig. 2c, d. We find that the distance traveled
scales as a power law with an exponent smaller than 1 (which corresponds to
ballistic motion): Δr(τ) ~ τ0.6. This translates to an experimental average velocity
which scales as: v(τ) ~ τ−1.4.

Testing the statistical power of the different experimental observables on the killing.
In the same chip we can record heterogeneous spheroid outcomes; some spheroids
fragment very fast (complete destruction at 8 h), whereas others are left unscathed
at 14 h (see Fig. 4d).

Since the secondary droplet contains variable CTL numbers dependent on the
initial cell concentration, this leads to a range of CTL numbers in the main droplet
after droplet fusion (see Supplementary Fig. 1b). In addition to the number of CTLs
in the droplet N, we record several other features: the first to the fourth contact
times (t1 to t4, indicating the moment at which the number of cells on the spheroid
goes above 1 to 4 cells), the spheroid projected area and the maximum number of
CTLs on the spheroid within the 14 h of the experiment duration n.

We conduct the test with a generalized linear model42. The total observation
sample size is of 96 events. This test enables us to study the influence and statistical
power of each variable on visible spheroid fragmentation at 14 h. We see that only
two variables have p-value below 0.05: the total number of CTLs in the well
(pn= 0.019, βn= 1.84) and the maximum number of CTLs on the spheroid during
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the time-lapse (pN= 0.028, βN= 1.56). These two measures are very correlated
(Supplementary Fig. 4); a high number of CTLs in the droplet increases the chances
of having a high number of CTLs on the spheroid. The regression coefficients βn
and βN were positive in both cases, confirming the positive correlation between
these variables and the fragmentation probability. Interestingly, the other variables
do not significantly predict the final spheroid state despite varying levels of
correlation with spheroid death.

Inferring Γfrag from experimental data. At each time frame, the CTLs on the
spheroid can either leave the spheroid, cause a fragmentation event or do nothing.
Conversely, CTLs in the gel can either stay in the gel or attach to the spheroid. We
consider the killing to be independent of the attachment/detachment process and
only to depend on the number of CTLs on the spheroid at any given time. From
the point of view of the spheroid, we can therefore model the killing process as a
Bernoulli process where the probability of seeing a fragmentation event only
depends on the number n of CTLs on it at that time, and of a fragmentation rate
Γfrag. Γfrag is the probability that the n CTL(s) on the spheroid cause a fragmen-
tation during a single time-interval Δt. An implicit assumption of this model is that
each time-step is independent: the probability of fragmenting during a time-
interval only depends on the number of CTLs on the spheroid at the time and not
on the previous CTL actions.

From the experimental fragmentation times and the observed evolution of the
number of CTLs on the spheroid, we can infer the evolution of Γfrag as a function of
n. The probability that the first fragmentation event happens at time Tfrag after
exactly k time-steps is a function of Γfrag and of the number n of CTLs on the
spheroid as a function of time. n in bold font is an uni-dimensional vector where
the i-th component is the number of CTLs on the spheroid at time i: ni. Since we
suppose each time-step to be independent of the previous ones, the probability
becomes:

PðTfrag ¼ kjn; Γfrag Þ ¼ Γfrag ðnkÞ
Yk�1

t

�
1� Γfrag ðntÞ

�
: ð4Þ

Since each droplet is independent, we can also estimate the probability of
observing the set of fragmentation times fTfrag gi :

PðfTfrag gijfngi; ΓÞ ¼
Y
i

PðTfrag;ijni; Γfrag Þ: ð5Þ

Now we can use maximum-likelihood estimation (ML) to extract the value of
Γfrag that maximizes the probability to observe the experimental fragmentation
times given the experimentally observed time-series n. In short, we calculate Γfrag:

Γfrag ¼ argmax
Γfrag

PðfTfrag gijfngi; ΓfragÞ: ð6Þ

After some algebra this yields the following value for Γfrag(n):

ΓfragðnÞ ¼
KDeath;n

KDeath;n þ Kn
; ð7Þ

where KDeath,n is the number of times we observe a fragmentation event happening
with exactly n CTLs on the spheroid, and Kn the total number of times n CTLs are
on the spheroid before any fragmentation event. We can verify that if there never is
any death observed with n CTLs on the spheroid, then KDeath,n= 0 and Γfrag(n)= 0
too. Reversely, if there is a fragmentation event as soon as n cells are on the
spheroid, then Kn= 0 and KDeath,n > 0, which gives Γfrag(n)= 1.

Probabilistic modeling of cooperative vs. independent killing of B16 cells on the
spheroid by CTLs. In Fig. 5g, we show that the probability of a spheroid to undergo
a fragmentation event increases with the number of CTLs on the spheroid surface.
Furthermore, the maximum T cell number on the spheroid is a key variable pre-
dicting the final spheroid state. However, we do not know if this increase in Γfrag is
the result of the accumulation of independent random events or if it is the sig-
nature of cooperation between T cells.

We consider that the probability for a given T cell to cause fragmentation is
independent of the presence of the other T cells. In quantitative terms, the
probability of a fragmentation event occurring within the independent cell
hypothesis is given by:

ΓfragðnÞ ¼ 1� 1� ρ
� �n

; ð8Þ

where the total number of CTLs on the spheroid is given by n and ρ is the
probability of a single CTL to kill during a time-interval Δt. Fitting Eq. (8) to the
experimental measurements we see that the model does not accurately reflect
experimental results (see Fig. 5g).

A first possible improvement for the independent CTL hypothesis is proposed
by ref. 33 and consists of accounting for the heterogeneous nature of the CTL
population. Indeed, it is well-known that CTLs differ widely in efficacy43. In order
to test this hypothesis, we now model the CTL population as composed of
independent cells, but the probability of being a fragmentation-causing CTL ρ is
now itself drawn from a probability distribution K of probability density f. The
average value of ρ is given by hρi ¼ R

ρf ðρÞ dρ. We choose to not specify K to

preserve generality. Then Eq. (8) becomes:

ΓfragðnÞ ¼ 1�E
Yn
i¼1

1� ρi
� �" #

¼ 1�
Z

1� ρ
� �

f ðρÞdρ
� �n

¼ 1� 1� hρi� �n
:

ð9Þ

Provided that the statistics are sufficient, the result is similar to that in Eq. (8).
Thus, the expected fragmentation probability is going to display a parabolic profile,
whatever the heterogeneity profile of the CTL population is. Therefore the initial
CTL population heterogeneity cannot explain the fragmentation profile recovered
experimentally. Thus the CTLs cooperate to cause the fragmentation of the
spheroid.

Estimating the attachment and detachment rates (λin and λout). A dedicated imaging
and analysis pipeline was developed for this project in order to segment the
spheroids and detect the CTLs in the focal plane within the droplets. The spheroid
detection outputs a mask that corresponds to the spheroid position at every frame.
Then, by detecting the CTLs that are in contact with this mask, it is possible to label
each detected CTL as being on the spheroid or not. This information allows us to
track individual arrival and leaving events on each spheroid. The high temporal
resolution of the imaging (one image every 2 min) ensures that at most one event
happens between two consecutive images (see Supplementary Movie 2).

The statistics of attachment and detachment are then used within a Markov
chain model to estimate the attachment and detachment rates (λin and λout) on the
spheroid as a function of the number of CTLs on the spheroid. The evolution of
these rates is then used to detect whether the attraction of the cells takes place
through an active process or whether it is due to random chance.

Three hypotheses are required for the purpose of calculating λin and λout: First,
we suppose that the CTLs have had enough time to distribute themselves in the
droplet before they begin to attach/detach. This is justified by noting that the
average first contact time is large compared with the time to cross the droplet.
Second, each of the attachment/detachment events occurs independently of other
attachment/detachment events. Third, We hypothesize that the waiting times for
each individual CTL arriving/detaching on the spheroid is exponentially
distributed (i.e., the CTL is memory-less), and the waiting time parameter only
depends on the number n of CTLs already on the spheroid. Finally, we only
consider attachment and detachment events and not the movement of the CTLs in
the droplet. Using these main hypotheses it is now possible to derive the model
itself.

Consider a droplet with N CTLs and a single spheroid in it. The spheroid can be
in one of N+ 1 states, each state representing the number of CTLs on the spheroid
(i.e., if the spheroid is in state n, then it has n CTLs on it). The experimental time
series of discrete observations is denoted fntgt where nt is the number of CTLs on
the spheroid at time t. The set of transition probabilities is written p ¼ fpk;lgk;l ,
where pk,l is the probability to go from k to l CTLs on the spheroid.

The system and its evolution can be described as a Markov chain. We call
P nt jnt�1

� �
the probability of having nt CTLs on the spheroid at time t knowing

that there were nt−1 CTLs on it at t− 1. P fntgt
� �

is the probability of observing the
time-series fntgt . By defining ak,l as the number of transitions from k to l CTLs on
the spheroid, it is possible to link P fntgt

� �
to the attachment and detachment

statistics. Indeed, by virtue of the chain rule we have:

P fntgt jp
� � ¼ Y

t

P nt jnt�1

� � ¼ Y
k;l

p
ak;l
k;l : ð10Þ

Equation (10) then allows us to infer the transition probabilities p. We conduct
a maximum-likelihood estimate of p, under the constraint that the total out-going
probability must add up to one (i.e., ∑kpk,l= 1). This yields:

pk;l ¼ argmax
pk;l

log P fntgt jp
� �� � ¼ ak;l

∑jak;j
: ð11Þ

In practice, pk,l is calculated from Eq. (11) by dividing the number of observed
transitions from k to l cells by the total number of transitions starting from k cells
(i.e., the number of times there are k cells on the spheroid).

Until now, we have studied the problem from the viewpoint of the spheroid: the
probabilities pk,l do not take into account the combinatorial aspect of the
transitions (i.e., there are often more than one CTL in the gel that may attach to the
spheroid). It is therefore important to look at the problem from the viewpoint of
the individual CTLs and obtain the individual T cell attachment probabilities.
Supposing that they attach independently of the other CTLs in the gel, we can
calculate the individual probability for each CTL to attach to the spheroid,
pin(n), as:

pinðnÞ ¼ 1� ð1� pn;nþ1Þ
1

N�n: ð12Þ
Given the exponential distribution of waiting times for attachment of the CTLs, the

probability that a CTL arrives on a spheroid with n CTLs on it during a time-interval Δt
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is pinðnÞ ¼ 1� exp �λinðnÞΔt
� �

. Then the transition rates can be written as

λinðnÞ ¼ � log 1� pinðnÞ
� �

Δt
: ð13Þ

Finally combining Eqs. (11), (12), and (13), provides a formula for λin(n):

λinðnÞ ¼ � logð1� pn;nþ1Þ
ðN � nÞΔt : ð14Þ

This formula allows us to directly estimate the attachment rate from the
experimentally measured attachment events. To estimate the uncertainty of our
estimations we conduct a bootstrapping scheme, where we randomly select droplets,
pool them together and calculate the hitting parameters for this experiment subset.
We then repeat the procedure over multiple subsets (typically 50) to get a distribution
of arrival rates λin(n), which enables us to calculate the mean and the variance of λin
for each n. The code to conduct the bootstrapping procedure is freely available on the
GitHub repository associated with this publication.

The process is repeated while counting leaving events to estimate the leaving
rate λout(n) as a function of the number of CTLs on the spheroid, also using Eq.
(14). The evolution of λin and λout is shown in Fig. 3.

It is worth noting that the evolution of the number of CTLs on the spheroid can
be described using a master equation:

∂Pðn; tÞ
∂t

¼ qn�1;n Pðn� 1; tÞ þ qnþ1;n Pðnþ 1; tÞ � ðqn;nþ1 þ qn;nþ1ÞPðn; tÞ;
ð15Þ

where qk,l= pn,n+1/Δt is the transition rate from k to l CTLs on the spheroid.
Knowing that for small values of pn,n+1, we have pn,n+1 ≈ (N− n)Δtλin(n), Eq. (15)
can be rewritten as

∂Pðn; tÞ
∂t

¼ ðN � nþ 1Þ λinðn� 1ÞPðn� 1; tÞ þ ðnþ 1Þ λoutðnþ 1ÞPðnþ 1; tÞ
� ðN � nÞ λinðnÞ þ n λoutðnÞ

� �
Pðn; tÞ:

ð16Þ
The master equation would allow an analytical solution to obtain λin and λout if
these parameters were constant for all values of n. Since this is not the case,
obtaining them from Eq. (16) would require a numerical approach. Nevertheless, it
is known that the master-equation and the Markov chain represent the same
Markov process44, so both methods should lead to the same estimated parameters.

Relating the spheroid fate to the number of CTLs in the droplet. We know that due
to a positive feedback loop, CTLs exhibit different accumulation rates depending
on the number of CTLs on the target spheroid. We have estimated the experi-
mental distribution of the hitting probabilities above. We also know that a certain
number of CTLs on the spheroid are necessary for a high killing probability
(Fig. 5). Combining these two components we have written an algorithm which
reproduces the accumulation and fragmentation processes in silico.

First, we simulate the accumulation process. We define the number of CTLs on
the spheroid n and the number of CTLs in the gel ngel. Thanks to the estimated
parameters λin and λout we can calculate the attachment and detachment
probabilities pin and pout. From Eq. (13) we get the equation for pin:
pinðλinðnÞ;ΔtÞ � 1� expðngelλinðnÞΔtÞ. We then do a Bernoulli draw with
probability pin (resp. pout) to simulate the attachment (resp. detachment) of T cells
on the spheroid. Then, to simulate the fragmentation of the spheroid, we conduct a
Bernoulli draw of parameter Γfrag(n)Δt to determine whether or not the spheroid
fragments at that time-step.

We repeat these two steps iteratively until the experiment is elapsed. This procedure
gives us the simulated fate of the spheroid over the course of the experiment. We have
access to the evolution of the number of T cells on the spheroid with time, the status of
the spheroid (fragmented or intact) and the first fragmentation time. By re-running this
procedure 50 times for a given number of CTLs in the droplet N we get a simulated
fragmentation probability that is presented in Fig. 6d.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw data to reproduce the graphs in the figures are available with the article. Any
further data required will be provided upon request. Source data are provided with
this paper.

Code availability
The code to extract spheroid and CTL positions from the image data is available at the
following address: https://github.com/BaroudLab/CTL_tracking_in_droplets. Data
processing and data analysis codes are available at this address: https://github.com/
BaroudLab/CTL_analysis.
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