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Abstract

The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the 

development of medications aimed at treating stress-related disorders. Despite a large body of 

evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent 

stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. 

Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting 

that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined 

the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced 

reinstatement of drug seeking following self-administration and conditioned place preference in 

rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner 

that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that 

may determine the influence of CRF signaling in substance use disorders, including developmental 

windows, biological sex, and genetics are examined. Finally, we discuss the translational failure 

of medications targeting CRF signaling as interventions for substance use disorders and other 

stress-related conditions. We conclude that new perspectives and research directions are needed to 

unravel the mysterious role of CRF in substance use disorders.
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Introduction

The ability to avoid and escape threats in our environment is critical for survival. Moreover, 

when faced with duress, selection of the most economically viable pattern of behavior is 

essential for coping and adaptation. To ensure effective responses to threatening stimuli, 

the influence of stress on the brain is pervasive and includes brain systems that underlie 

learning, motivation, and affect, thus shaping behavior through a complex coordination 

of neurotransmission and glial function that influences the brain at the network level. To 
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understand the impact of stress on the brain it is necessary to move beyond basic constructs 

(e.g., reward and aversion) and consider its influence from the perspective of more complex 

processes that guide behavior to promote survival and adaptation. Notably, many of these 

processes also contribute to drug seeking and misuse in those with substance use disorders 

(SUDs), thus establishing a close link between stress and drug addiction.

Neuropeptides are well-suited to mediate the influence of stress on the brain (see [1] 

for review). They are co-released with neurotransmitters/monoamines, but under only 

conditions of higher frequency stimulation. Their release pattern is slower, and their 

duration of action is prolonged due to reliance on diffusion and proteolysis for clearance. 

For the same reason, the field of influence of neuropeptides is relatively large and 

can include extrasynaptic sites as well as adjacent synapses and cells. This, along with 

the complexity of signaling related to receptor distribution on neurons an astrocytes, 

receptor/signaling diversity, and peptide processing, positions neuropeptides as effective 

regional coordinators of network activity. Finally, via transcriptional/translational control, 

neuropeptide signaling can be scaled via genomic effects of stress hormones independently 

from the neurotransmitters/modulators with which they are co-released. While a number of 

neuropeptides are involved in stress/stress-related responses, the neuropeptide corticotropin 

releasing factor (CRF) has been implicated in many of the behavioral responses to stressors.

CRF, also known as corticotropin releasing hormone (CRH), is a 41 amino acid 

neuropeptide encoded by the CRH gene. CRF is conserved across species with a seven 

amino acid difference in sequence between rodents and human. CRF produces acts via 

two receptors, both of which are primarily Gs G-protein coupled but also signal via other 

pathways (see [2] and [3] for review): 1) the CRF-R1 receptor, encoded by the CRHR1 gene, 

which has a higher affinity for CRF and has a relatively widespread expression pattern in 

the brain and 2) the CRF-R2 receptor, encoded by the CRHR2 gene, which has a lower 

affinity for CRF and a more restricted pattern of expression. There are two splice variants of 

CRF-R2: CRF-R2 α and β. The CRF-R2 receptor binds preferentially to a family of CRF-

related peptides, the urocortins. CRF also binds to a binding protein with subnanomolar 

affinity. The 322 amino acid CRF binding protein is a glycoprotein encoded by the CRHBP 
gene that is widely expressed in the brain and is colocalized with CRF (see [4] for review). 

Depolarization-dependent release of CRF binding protein from neurons has been reported 

[5]. In addition to binding to CRF to limit its binding to CRF receptors, there is evidence 

that CRF binding protein may interact with CRF receptors, specifically CRF-R2, to create a 

unique signaling complex [6,7].

Beyond parvocellular neurons in the PVN of the hypothalamus which release CRF into the 

adenohypophyseal microcirculation via the median eminence to regulate anterior pituitary 

corticotrope adrenocorticotropic hormone (ACTH) secretion, CRF is released into a number 

of brain structures from both interneurons and projecting neurons that reside in the 

hypothalamus and non-hypothalamic structures. Subpopulations of neurons co-release CRF 

with GABA or glutamate (see e.g., [8]). Like other neuropeptides, CRF is released via 

dense core vesicles under high-frequency stimulation conditions that are distinct from those 

that release co-neurotransmitters via clear vesicles, thus enabling independent regulation 

of CRF and co-transmitter release. Moreover, CRF levels can be scaled via changes in 
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transcription/translation and processing. CRF receptors are also expressed by astrocytes 

(see e.g., [9]). CRF mRNA is expressed in multiple brain regions in addition to the 

hypothalamus, most notably the central nucleus of the amygdala (CeA) and the bed nucleus 

of the stria terminalis – brain regions that have been implicated in emotional processing and 

interface with mesocorticolimbic system [10–12]. Additionally, CRF is evident throughout 

the neocortex, particularly the prefrontal cortex. Cortical CRF-expressing cells are primarily 

GABAergic interneurons [13]. CRF production in the ventral tegmental area (VTA) [14] 

and hindbrain regions, such as locus coeruleus [15] has also been reported. By contrast, 

urocortin expression is largely confined to the Edinger-Westphal nucleus in the midbrain 

[16]. Although expression varies by region, CRF receptor binding [17,18] and mRNA [19–

21] can be found throughout the brain, including in regions that comprise the extended 

amygdala and mesocorticolimbic system (e.g., VTA, nucleus accumbens), and, overall, 

aligns well with the distribution of CRF-immunoreactive axon terminals. The positioning 

of the CRF system at the interface between brain networks that process negative emotional 

stimuli and those involved in reward processing and motivation establishes it as an important 

mechanism through which aversive stimuli in our environment can guide behavior and 

contribute to SUDs.

CRF contributions to SUDs

While the contribution of CRF to SUDs is complex and involves the regulation/

dysregulation of a variety of constructs and corresponding neurocircuits, its influence can 

be roughly attributed to two domains. First, at least in rodent models, CRF appears to be a 

critically important mediator of the effects of stressors on drug seeking. Second, it has been 

proposed that, along with other “anti-reward “ systems (e.g., dynorphin/kappa opioid), CRF 

signaling in the brain is recruited with repeated drug use, thus establishing an emergent 

dysphoric state and allostatic dysregulation of hedonic processing that promotes drug 

seeking and escalates drug intake through negative reinforcement. This intake-dependent 

recruitment of CRF signaling may also amplify stressor-induced CRF responses, thus 

augmenting the impact of stress in SUDs, including its effects on relapse susceptibility. 

The current review examines the contribution of CRF signaling to stressor-induced relapse. 

First, brain circuitry and CRF mechanisms that contribute to stressor-induced drug seeking 

are reviewed. Second, evidence that the recruitment of CRF signaling with excessive drug 

use heightens risk for stressor-induced drug seeking is presented. Third, factors that may 

influence the impact of CRF in SUDs, including development, biological sex, and genetics 

are examined. Finally, clinical studies that raise significant questions about whether or 

not the CRF system is a viable target for pharmacotherapeutic interventions in human 

populations with SUDs are summarized.

Contribution of CRF signaling to stressor-induce drug seeking

Stressor-induced relapse

While there is evidence that stress can facilitate the acquisition of drug self-administration 

and promote escalating patterns of drug use, much research has focused on the mechanisms 

through which stressors induce relapse to drug use in those with SUDs (see [22] for 

review). Indeed, the persistently heightened risk for relapse even after protracted periods 
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of abstinence is perhaps the most significant obstacle to the effective management of SUDs. 

While the relationship between stress and drug use is complex [23–25], measures of stress 

during the preceding day can predict drug use [26], and high stress levels upon the initiation 

of treatment predict poor outcomes (i.e., early dropout; [27,28]). Laboratory studies have 

consistently demonstrated that personalized stress imagery can induce craving in those with 

SUDS (see e.g., [29–31]), and the magnitude of stress-induced craving in inpatient abstinent 

users is predictive of subsequent risk for relapse to drug use [32,33].

Stressor-induced reinstatement in rodents

In rodents, stress-induced drug seeking can be evaluated by assessing the ability of stressors 

to reinstate extinguished nose poking or lever pressing following self-administration or their 

capacity to re-establish place preference following cocaine conditioning and extinction (see 

[22] for review). A variety of stressors have been demonstrated to reinstate drug seeking 

following self-administration in rats, including intermittent footshock, food restriction, 

forced swim, intraoral quinine, and social defeat predicting cues. Likewise, various stressors 

have been found to reinstate place preference following conditioned place preference in 

mice, including intermittent footshock, social defeat, restraint, forced swim, yohimbine, 

and conditioned fear-predictive cues. Despite differences in the species typically used, the 

contingency of drug delivery, the patterns/amounts of drug exposure, and the learning 

constructs involved, there is quite a bit of overlap between the two approaches in terms of 

the contributing neurobiological mechanisms. While these approaches have their limitations 

(e.g., reliance on extinction, lack of alternative reinforcers, etc…), they have been used 

effectively to examine the contribution of CRF to stress induced drug seeking, despite a 

general lack of findings that have translated well to SUDs in in humans.

CRF and stressor-induced drug seeking

It is well-established that CRF contributes to stressor-induced drug seeking in animal models 

of craving/relapse (see Table 1). Following intravenous cocaine self-administration and 

extinction, systemic or intra-cerebroventricular (icv) delivery of CRF receptor antagonists 

prevents footshock-induced reinstatement of cocaine [34–36], heroin [34,37], alcohol 

[38,39], methamphetamine [40] and nicotine [41,42] seeking. Similar effects can be 

observed with other stressors, including yohimbine administration [43] (but see [44]) and 

food deprivation [45], following self-administration in rats and forced swim stress following 

conditioned place preference in mice [46,47] or footshock following conditioned place 

preference in rats [48]. Moreover, central (icv) administration of CRF is sufficient to induce 

alcohol [49], heroin [37], and cocaine [50–52] seeking following self-administration and 

extinction. The contribution of CRF to stressor-induced drug seeking is largely independent 

of its hypothalamic–pituitary–adrenal (HPA) axis effects. When the corticosterone response 

is eliminated by surgical adrenalectomy along with physiological corticosterone replacement 

or by the inhibition of synthesis via the 11 β-hydroxylase inhibitor metyrapone, footshock-

induced reinstatement of heroin [37,38], alcohol [38] and cocaine [35,36] seeking 

persists. Similarly, surgical adrenalectomy/corticosterone replacement fails to prevent the 

reinstatement of cocaine seeking by icv CRF [36]. Although results have been mixed 

(see e.g., [39]), it has been reported that reinstatement by drug-associated cues is also 

CRF-dependent [53]. Notably, the presentation of drug cues also produces anxiety/stress 
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responses in rodents and humans that likely contribute to craving and use [54,55]. In 

rats, these responses have been reported to be CRF-dependent [56]. Results with drug-

primed reinstatement have been mixed with full blockade ([53], methamphetamine), partial 

blockade ([35], cocaine; [37], heroin), or no effects ([36], cocaine) reported.

The contribution of CRF signaling to SUDs, most frequently alcohol use disorder, has 

also been studied using transgenic mice. Although effects on reinstatement have not 

been reported, studies have examined the effects of CRF, CRFR1, CRFR2, and CRF 

binding protein knockout, as well as CRF overexpression on alcohol consumption in 

dependent, non-dependent and stressor exposed mice. CRF knockout mice consume more 

alcohol, apparently due to reduced sensitivity to alcohol rewarding effects [57], while 

CRF overexpressing mice consume less alcohol, an effect associated with enhanced alcohol-

induced sedation [58]. Although there have been some reports that global CRFR1 knockout 

reduces high-concentration alcohol consumption ([59] and prevents increased consumption 

in dependent [60] and sensitized [61] mice, others have found that global CRFR1 knockout 

increases alcohol consumption following repeated stress [62] and in dependent mice [63]. 

This unexpected observation is likely attributable to opposing effects of brain and peripheral 

(e.g., pituitary) CRFR1 receptors as brain-specific deletion of CRFR1 prevents increases in 

alcohol consumption following stress and in dependent mice [63]. CRFR1 knockout also 

reduces anxiety-related behaviors during alcohol withdrawal [64]. By contrast, CRFR2 [65] 

or CRF binding protein [66] knockout alone has little effect on alcohol consumption in 

dependent or non-dependent mice, although combined CRFR1 and R2 knockout has been 

reported to prolong the effects of chronic stress on consumption [59]. Fewer studies have 

used transgenic mice to investigate the contribution of CRF signaling to the consumption of 

other drugs. CRFR1 knockout mice are more sensitive to cocaine-induced conditioned place 

preference [67] and less sensitive to opiate withdrawal [68,69].

Pathways and mechanisms that underlie the contribution of CRF to stressor-induced drug 
seeking

Considering the role of CRF in coordinating adaptive responses to stressors, it is not 

surprising that the sites at which CRF influences drug seeking involve those that serve 

as interfaces between brain systems that are implicated in stress and negative affect and 

those involved in motivation. These sites include structures that comprise the extended 

amygdala (i.e., BNST, CeA, NAc shell) and midbrain regions that contain cell bodies for 

monaminergic projections into the corticolimbic system, most notably the VTA and dorsal 

raphe nuclei. Through actions in these brain regions, CRF coordinates healthy adaptive 

behaviors across a range of functional domains to promote survival under duress. In the 

context of SUDs many of these actions are maladaptive and promote drug seeking. The brain 

regions and CRF mechanisms that have been implicated in stressor-induced drug seeking are 

summarized briefly below and depicted in Fig. 1.

Extended amygdala

The extended amygdala is a network of structures that includes the bed nucleus of the stria 

terminalis (BNST), the central amygdala (CeA), and the nucleus accumbens (NAc) shell 

that is involved in emotional processing and closely interfaces with brain networks that 
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mediate reward and motivation. The extended amygdala is heavily influenced by stressors 

and is rich in neuropeptides, including CRF, as well as neuropeptide signaling molecules, 

including CRF receptors and CRF binding protein. The BNST, CeA, and NAc shell have 

all been implicated in stressor-induced drug seeking. Each of these regions shows increased 

Fos reactivity following stressor-induced drug seeking and pharmacological inactivation of 

each region prevents swim-induced cocaine seeking following conditioned place preference 

in mice and/or shock-induced reinstatement following self-administration in rats [70]. The 

contributions of CRF signaling in each of these regions to stressor-induced drug seeking are 

summarized below.

BNST.—The BNST functions as an interface between stress and motivational/reward 

systems and is particularly important for stressor-induced drug seeking. Inactivation of the 

ventral BNST prevents stressor-induced reinstatement following cocaine self-administration 

in rats [70] and conditioned place preference in mice [71]. CRF [10–12], CRF receptors 

[17–20] and CRF binding protein [72] are all expressed in the BNST, and stressor-induced 

drug seeking is associated with BNST Fos expression. The source of CRF released into 

the BNST includes both neurons intrinsic to the region and CRF-releasing afferents, most 

notably from the medial preoptic area, PVN, and medial and central (CeA) regions of 

the amygdala [73]. CRF mRNA expression in the BNST is increased following swim 

stress-induced reinstatement of CPP in mice [47] or shock-induced heroin seeking following 

self-administration in rats [74]. Moreover, intra-BNST (ventral) micro-infusions of the 

non-selective CRF receptor antagonist, D-Phe CRF(12–41), prevent footshock-induced 

reinstatement of cocaine seeking following self-administration in rats [75], while intra-

BNST administration of the CRFR1 antagonist, CP-154,526, prevents footshock induced 

reinstatement of morphine seeking following conditioned place preference in rats [48]. 

The source of CRF in the BNST that mediates stressor-induced drug seeking likely arises, 

in part, from the CeA. Disconnection of the CeA-to-vBNST CRF pathway by TTX micro-

infusion into the CeA in one hemisphere and D-Phe CRF(12–41) micro-infusion into the 

contralateral ventral BNST attenuates footshock-induced reinstatement of cocaine seeking 

following self-administration in rats [76]. Notably, this blockade is partial, suggesting 

contributions of other CRF or non-CRF mechanisms to reinstatement. Moreover, this 

observation does not preclude involvement of CRF-releasing cells within the BNST.

CRF release in the BNST is influenced by a variety of neuromodulators (reviewed in [77]). 

The BNST is heavily innervated by noradrenergic projections. Specifically, projections from 

the A1 and A2 lateral tegmental medullary cell groups via the ventral noradrenergic bundle 

to the BNST appear to mediate stressor-induced drug seeking, as 6-OHDA lesions of these 

cell groups attenuate shock-induced drug seeking while pharmacological inhibition of locus 

coeruleus noradrenergic neurons has no effect [78]. In particular, noradrenergic signaling via 

beta-adrenergic receptors appears to be critical for stressor-induced drug seeking [79,80]. 

Beta adrenergic receptors are expressed in the BNST [81], and prior work has found that 

bilateral micro-infusions of a beta-1/beta-2 adrenergic receptor antagonist cocktail into the 

BNST attenuates shock-induced reinstatement following self-administration in rats [82]. We 

have demonstrated that, similar to what is observed with systemically administered receptor 

antagonists and swim-induced reinstatement following conditioned place preference in mice 
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[47], shock-induced cocaine seeking following self-administration in rats is prevented by 

intra-BNST micro-infusions of the beta-2 receptor antagonist, ICI-118,551, but not the 

beta-1 receptor antagonist, betaxolol, and is reproduced by intra-BNST micro-infusions 

of the beta-2 adrenergic receptor agonist, clenbuterol, but not the beta-1 receptor agonist, 

dobutamine [83].

Beta adrenergic receptor activation in the BNST regulates CRF to induce drug seeking. 

Reinstatement of cocaine seeking by icv norepinephrine following self-administration in 

rats [44] or by systemic administration of the beta-2 receptor agonist clenbuterol following 

conditioned place preference in mice [47] is blocked by CRF receptor antagonism. In 

mice, systemic clenbuterol administration also increases CRF mRNA levels in the BNST 

[47], while intra-BNST administration of the CRF-R1 receptor antagonist, antalarmin, 

prevents reinstatement of cocaine seeking in response to intra-BNST administration of 

clenbuterol [83]. A series of studies by Winder and colleagues have demonstrated that 

beta adrenergic receptors promote excitatory regulation of key BNST output pathways 

involved in cocaine seeking via a mechanism that likely requires CRF release from a 

local population of neurons intrinsic to the BNST and BNST CRF-R1 receptor activation 

[84,85]. These pathways include CRF-positive neurons that innervate the VTA [85–87], 

where CRF receptor activation is required for stressor-induced cocaine seeking ([88,89]; 

see below). Indeed, bath application of the non-selective beta-adrenergic receptor agonist, 

isoproterenol, promotes excitatory synaptic regulation of retro-labeled VTA-projecting CRF-

positive neurons via CRF-R1-dependent glutamate release in the BNST [85]. The BNST-

VTA projection is comprised of both GABAergic and glutamatergic neurons [90]. However, 

it has been reported that CRF-positive neurons that project from the BNST to VTA [83,87] 

are primarily GABAergic [8]. To confirm that beta-2 adrenergic receptor regulation of a 

projection from the ventral BNST that releases CRF into the VTA mediates stressor-induced 

cocaine seeking, we deployed a pharmacological disconnection approach in which we 

administered the beta-2 adrenergic receptor antagonist, ICI-118,551, into the BNST in one 

hemisphere and the CRF-R1 antagonist, antalarmin, into the contralateral VTA. Using this 

approach, we confirmed that the ability of footshock to reinstate cocaine seeking in rats 

following self-administration requires beta-2 adrenergic receptor activation of a vBNST 

pathway that releases CRF into the VTA and activates CRF-R1 receptors [83].

CeA.—CRF as well as its receptors and binding protein are expressed in the CeA. 

Activation of the CeA is required for footshock-induced cocaine seeking [70] and stressor-

induced drug seeking are associated with increased CeA Fos expression [91]. CRF mRNA 

levels also increase with stressor-induced drug seeking [74]. While there are CRF-positive 

CeA projections to the VTA [87], it has been proposed that a CRF-releasing excitatory 

pathway from the CeA to the BNST is critical for stressor-induced drug seeking [76]. 

Consistent with findings that beta-1 adrenergic receptors are expressed on CRF-positive 

neurons in the CeA and regulate CRF expression [92], it has been found that CeA 

beta-adrenergic receptor activation is required for shock-induced cocaine seeking [82] and 

that drug seeking in response to centrally administered norepinephrine [44] or systemic 

administration of a beta-2 adrenergic receptor agonist [47] is blocked by pretreatment with 

a CRF-R1 antagonist. CRF-R1 in the CeA has been heavily implicated in SUDs (see 
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e.g., [93] for review). However, while roles for CRF-R1 signaling in withdrawal-related 

dysphoria (see e.g., [94, 95]) and escalating patterns of drug intake (see e.g., [96–98]) have 

been identified, the contribution of CRF-R1 receptors to stressor-induced drug seeking has 

not been well-characterized. Erb et al [75] reported that intra-CeA administration of the 

CRF receptor antagonist, D-Phe CRF(12–41), failed to affect footshock-induced cocaine 

seeking following self-administration in rats. However, recently, it has been demonstrated 

that targeted overexpression of CRFR1 in CaMKII neurons the CeA augments stressor-

induced alcohol seeking [99]. Moreover, it has been found that intra-CeA micro-infusions 

of the CRF-R1 antagonist, CP-154,526, prevent drug-primed but not footshock-induced 

reinstatement of morphine seeking following conditioned place preference in rats [48].

Nucleus accumbens.—One region in which the contribution of CRF signaling to drug 

seeking has been surprising understudied is the nucleus accumbens (NAc). The NAc 

receives CRF-positive inputs from the BNST [100] and, likely, the CeA [101], and NAc 

expression of CRF [102,103] and its receptors [18] has been reported. NAc CRFR1 and 

R2 expression is both pre- and post-synaptic [104] and includes localization to cholinergic 

interneurons [105]. Recently, it has been reported that optical stimulation of CRF neurons 

in the NAc can increase incentive motivation for a non-drug reward [106], similar to the 

effects of intra-NAc CRF micro-infusions [107]. Moreover, intra-NAc CRF can influence 

effortful choice [108]. Further, in naïve rats, CRF micro-infusions into the NAc produce 

arousal [109] increase dopamine [104], and support place preference [104]. Despite, these 

observations, the contribution of NAc CRF signaling to stressor-induced cocaine seeking is 

unclear. One study has reported an enhancement of nicotine self-administration by CRF-R1 

overexpression in the NAc core [110], while the CRF projection from the CeA to the NAc 

core appears to attenuate alcohol drinking [101].

Ventral tegmental area

The VTA is key site for CRF regulation of drug seeking. Both CRF-R1 and CRF-R2 

receptors [21,111,112] as well as the CRF binding protein [113] are expressed in the 

region. The VTA receives CRF-releasing inputs from several brain regions implicated in 

stress-related hormonal and behavioral responses, most notably the CeA, the paraventricular 

nucleus of the hypothalamus, and BNST [87]. There is also evidence for local VTA CRF 

release [14]. During footshock-induced reinstatement of cocaine seeking, extracellular levels 

of CRF in the VTA are elevated in rats [88]. Moreover, intra-VTA CRF delivery is sufficient 

to reinstate cocaine seeking [88,89,114].

There is evidence for involvement of both CRF-R1 and CRF-R2 receptors in the VTA 

in stress-induced drug seeking. We have found that, following self-administration and 

extinction in rats, VTA CRF-R1 but not CRF-R2 receptors are necessary for CRF- and 

footshock-induced reinstatement. VTA micro-infusions of the CRF-R1-selective antagonists 

antalarmin or CP-376395 blocked reinstatement following in intra-VTA CRF or footshock 

while micro-infusions of the CRF-R2 antagonists astressin2B or antisauvagine-30 had no 

effect. Moreover, activation of VTA CRF-R1 receptors alone was sufficient to reinstate 

cocaine seeking [89]. Intra-VTA micro-infusions of the selective CRF-R1 receptor agonist 

cortagine but not the selective CRF-R2 agonist, rat urocortin 2, reproduced the reinstating 
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effects of stress and CRF on cocaine seeking. Consistent with these reports, it has been 

found that knockdown of CRF-R1 receptors in the VTA blocks cocaine seeking following 

acute food deprivation or cocaine cues in mice [115]. We have also found that VTA CRF-

R1 antagonism prevents cocaine seeking in response to intraoral delivery of the aversive 

tastant, quinine [116]. VTA CRF-R2 receptors have also been implicated in stressor-induced 

drug seeking. Others have reported that footshock-induced reinstatement of cocaine seeking 

following self-administration and extinction requires CRF-R2 but not - R1 receptors in the 

VTA [88,114]. In line with findings that CRF can potentiate NMDA receptor mediated 

synaptic transmission in the VTA via a mechanism that requires interaction with the CRF 

binding protein [6], it has been reported that binding protein interactions in the VTA are also 

required for stressor-induced cocaine seeking and associated neurochemical effects [114]. 

The reasons for the disparate findings regarding CRF mechanisms of action in the VTA 

are unclear but may be related to differences in the mode and duration of CRF/antagonist 

delivery, the self-administration history of the rats, and other experimental parameters.

As noted above, the VTA receives CRF-positive projections from several brain regions, 

most notably the CeA, paraventricular nucleus of the hypothalamus, and the BNST [87]. 

We have found that that BNST projections to the VTA are critical for stressor-induced drug 

seeking. Overall, these projections are comprised of both GABAergic and glutamatergic 

neurons [90,117]. However, the CRF-positive neurons that project from the BNST to 

the VTA are primarily GABAergic [8]. Consistent with reports that that stressor-induced 

cocaine seeking requires beta-2 adrenergic [83] and CRF-R1 [75,83] receptor activation 

in the BNST, it has been found that ex vivo beta adrenergic receptor agonist application 

to brain slices containing BNST promotes excitatory synaptic regulation of retro-labeled 

VTA-projecting CRF-positive neurons via CRF-R1-dependent glutamate release [85]. We 

have used a pharmacological disconnection approach in which we micro-infused the beta-2 

adrenergic receptor antagonist, ICI-118,551, into the BNST in one hemisphere and the 

CRF-R1 antagonist, antalarmin, into the contralateral VTA and demonstrated that a beta-2 

receptor regulated CRF-releasing projection from the BNST to the VTA is required for 

shock-induced reinstatement of cocaine seeking following self-administration in rats [83]. 

Although a role for CRF release from neurons originating in other brain regions in 

stressor-induced drug seeking has not been confirmed, it has been demonstrated that CeA 

inhibition prevents stress-induced cocaine seeking, suggesting that there may be a potential 

contribution of CeA-VTA projection CRF release [70].

A detailed overview of CRF actions in the VTA is beyond the scope of this review. 

Consistent with its proposed role as a regional coordinator of adaptive responses and 

with the heterogeneity of the VTA, CRF regulates a variety of cell types (dopaminergic 

non-Ddopaminergic, interneurons, glia) at both pre- and post-synaptic sites in a manner 

that appears to vary across synapses defined according to VTA inputs and outputs, 

signaling contexts, and pharmacological/environmental histories. CRF has been reported 

to promote both excitatory [6,112,118,119] and inhibitory [120] transmission in the VTA 

and alter synaptic integration via intracellular calcium mobilization in dopaminergic cells 

[121]. Additionally, CRF promotes glutamate release in the VTA [88], a finding that 

is consistent with reports that CRF also increases the frequency of AMPAR-mediated 

spontaneous miniature EPSCs in dopaminergic cells in slice preparations [119] and can 
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attenuate GABA release via CRFR2 receptors [122]. The effects of CRF signaling on VTA 

outputs that lead to drug seeking have been largely assumed to be a function of enhanced 

excitatory transmission [123]. Accordingly, intra-VTA CRF delivery increases local DA 

release measured during reinstatement testing [88], and glutamate receptor antagonism in 

the VTA prevents both increases in local dopamine levels and stressor- and CRF-induced 

reinstatement [88]. However, stressor effects on neuronal firing in VTA are not uniform 

and firing patterns and downstream dopamine release can vary according to output pathway. 

Whereas stressors reliably produce robust activation of VTA neurons that project to the PFC 

[124–127], effects on NAc dopamine are more complex (see [128] for review) with reports 

of increases, reductions, or no effect, depending on the NAc subregion, stressor, context, and 

timeframe [116,129–138].

Shock-induced cocaine seeking is associated with CRF-dependent increases in extracellular 

dopamine in the VTA [88]. However, CRFR1 expression on VTA neurons varies depending 

on output pathway [139] while midbrain CRF-R1 deletion selectively reduces dopamine 

release in the PFC [140]. CRF micro-infusions into the VTA have been reported to reduced 

NAc dopamine signaling [137]. We reported that VTA CRF-R1 antagonism prevents 

quinine-induced cocaine seeking and corresponding reductions in NAc shell dopamine 

[116]. Moreover, we found that reinstatement by intra-VTA CRF administration is prevented 

by intra-VTA pretreatment with a GABA-B receptor antagonist [141], suggesting that 

aversive stimuli may produce CRF-R1 dependent drops in NAc dopamine that can promote 

drug seeking, potentially by removing inhibitory regulation of medium spiny neurons by D2 

receptors.

By contrast we have found that CRF-R1 receptor activation of VTA dopamine neurons the 

project to the prelimbic prefrontal cortex is required for stressor-induced cocaine seeking 

[142]. Consistent with findings by our lab and others that shock-induced cocaine seeking 

in rats is blocked by dopamine D1 receptor antagonist micro-infusions into the prelimbic 

cortex [70,143] and by chemogenetic (Designer Receptor Exclusively Activated by Designer 

Drug-based) inhibition of prelimbic PFC-projecting VTA neurons [142], we have found that 

pharmacological disconnection of the VTA-prelimbic cortex pathway by administration of 

the CRF-R1 antagonist, antalarmin, into the VTA in one hemisphere, and administration 

of the D1 receptor antagonist SCH 23390 into the prelimbic cortex of the contralateral 

hemisphere prevents shock-induced cocaine seeking following self-administration in rats 

[142].

Altogether findings from our laboratory suggest that CRF-releasing inputs from the BNST 

produce CRF-R1 dependent activation of VTA neurons that project to the prelimbic PFC 

resulting in D1-dependent augmentation of excitatory regulation of pyramidal neuron PFC 

outputs, most notably those projecting to the NAc core [70] to induce cocaine seeking. At 

the same time, CRF-R1 mediated inhibition of NAc-projecting neurons, potentially through 

effects on GABAergic transmission, reduce NAc dopamine levels, thus reducing tone on 

D2Rs and dis-inhibiting medium spiny neuron outputs.
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Raphe nuclei

The medial and dorsal raphe nuclei (MRN and DRN), localized to the midbrain, are among 

the most rostral nuclei of the raphe cluster and send serotonergic projections throughout 

the brain, including to structures in the extended amygdala and mesocorticolimbic system. 

The contribution of serotonin to drug seeking is complex and varies with receptor and 

context (see e.g., [144,145]). CRF, CRF receptors, and CRF binding protein are expressed 

in the MRN and DRN and regulate serotonergic signaling, particularly in response to 

stressors (see [146,147] for review). Overall, CRF application decreases 5-HT neuronal 

firing [148,149] via CRFR1-dependent reductions in GABA release and CRFR-2-dependent 

enhancement of post-synaptic GABA sensitivity [150]. Indeed, muscimol or 5-HT1A 

receptor agonist-induced suppression of DRN neurons is sufficient to reinstate alcohol 

seeking in rats [49,151]. Accordingly, CRF micro-infusions into the MRN [49] or CRF-

R1 agonist micro-infusions into the DRN [152] are sufficient to induce alcohol [49] or 

opioid [152] seeking. Likewise, CRF receptor antagonism in the MRN blocks footshock- 

[49] or yohimbine- [153] induced alcohol seeking following self-administration or forced 

swim-induced reinstatement of morphine seeking following conditioned place preference 

[152]. Although the downstream targets that are affected by CRF-dependent reductions in 

serotonergic signaling to promote drug seeking are not well-defined, a likely site of action is 

the nucleus accumbens where stressor-induced reduction in 5-HT and signaling via 5-HT1B 

receptors gave been shown to promote cocaine preference [154,155].

Other brain regions

CRF actions that influence drug seeking extend beyond the regions and functions described 

above and will be briefly summarized here. First, CRF-R1 signaling in the basolateral 

amygdala has recently been implicated in reconsolidation of cocaine context memories 

as demonstrated by disruption of context-induced reinstatement of cocaine seeking when 

CRF-R1 receptors are blocked during earlier reconsolidation [156]. Second, cue induced 

cocaine seeking is disrupted when CRF-R1 receptors are blocked in the anterior dorsal 

agranular subregion of the insular cortex [157]. Third, CRF-R1 but not CRF-R2 antagonism 

in the nucleus incertus prevents yohimbine-induced alcohol seeking in alcohol-preferring 

rats [158]. Finally, while CRF effects in the prefrontal cortex on alcohol self-administration 

have been reported [159], the contribution of CRF signaling in subregions of the PFC to 

stress-induced drug seeking remains unexplored.

CRF signaling mechanisms

A comprehensive overview of all of the signaling mechanisms with which CRF interacts 

is beyond the scope of this review (see e.g., [140,141,160–170]). As is the case with 

other neuropeptides, CRF is co-released with neurotransmitters and other neuromodulators 

(including neuropeptides) and signals interactively with these partners in target cells. 

Moreover, in many cases the field of influence of CRF extends to adjacent synapses and 

cell populations, thus allowing CRF to regionally influence signaling via mediators beyond 

those with which it is co-released. Several areas of particular interest that require additional 

investigation have emerged related to CRF signaling.
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a. CRF receptor-containing heteromers.—GPCRs can interact in heteromers, 

macromolecular complexes consisting of at least two different receptor types [170]. When 

part of a heteromeric complex, GPCRs often signal distinctly than then they do in isolation. 

Thus far, putative heteromeric complexes comprised of the CRF-R2 and dopamine D1 

receptors [171,172], the CRFR1 and CRFR2β receptors [173], the CRFR1 and vasopressin 

V1b receptors [174], the CRFR2 and orexin OX1 receptors [175], and the CRFR1, the 

orexin OX1, and σ1R receptors [176] have been identified. In several cases, it has been 

demonstrated that activation of one receptor in these heteromeric complexes alters signaling 

via the other [175–177]. It has been reported that signaling via CRF receptor-containing 

heteromers can be influenced by cocaine [176] or amphetamine [175]. In the case of the 

CRFR1-OX1σ1R complex, cocaine may directly influence CRF signaling via its interaction 

with σ1R [176]. The contribution of these heteromers to the effects of CRF on drug seeking 

remains to be determined.

b. CRF-BP: The CRF-BP is a secreted glycoprotein with no transmembrane domains that 

binds CRF with an equal or greater affinity than the CRF receptors [178–181]. Its expression 

is tissue-specific, with human CRF-BP detected in plasma, pituitary, and brain [182]. Rodent 

CRF-BP is detected only in brain and pituitary [183]. Within the CNS, CRF-BP is expressed 

in cerebral cortex (including the PFC), hippocampus, the amygdaloid complex, BNST, and 

VTA [113,182–184]. Rat CRF and CRF-BP co-localize in a number of regions, including 

BNST and CeA [183], key sites implicated in SUDs and stress. CRF-BP is also detected 

in a number of CRF target sites (BLA, VTA and anterior pituitary), where CRF-BP and 

CRF receptors are often co-expressed [113,183,185]. CRF-BP mRNA levels in pituitary and 

amygdala are increased by stress [185–187]. Multiple functions have been suggested for the 

CRF-BP. Approximately 40–60% of CRF in human brain is bound by CRF-BP, supporting 

a role for CRF-BP in limiting CRF bioavailability [188]. In pituitary corticotrope cultures, 

CRF-BP binds CRF and neutralizes its ACTH-releasing activity via CRF-R1 [178,183]. 

CRF-BP deficient mice exhibit increased anxiety-like behaviors, consistent with elevated 

“free” CRF levels [189], supporting an inhibitory role for the CRF-BP, at least for CRF 

actions at CRF-R1. However, other studies have suggested alternative roles for the CRF-BP, 

including a facilitative role for CRF-BP in VTA via actions with CRF-R2 in stress-induced 

cocaine seeking [6,114,123] or CRF receptor independent actions [184]. The possibility 

that the CRF-BP can modulate CRF signaling, particularly in VTA and other sites within 

the stress/reward pathways, has important physiological significance and warrants further 

studies to address its role in stress induced drug seeking.

c. Effects of CRF on astrocytes: Electron microscopy has revealed CRF-positive 

axon terminals in close apposition to astrocytic processes [190], and CRF has been found to 

regulate astrocytic calcium signaling in culture [191] and astrocyte proliferation [192]. Both 

CRFR1 and CRFR2 receptors [9,193–196] and the CRF binding protein [197] are expressed 

by astrocytes, and it has been reported that astrocytic CRFR2 expression in the midbrain 

can be regulated by repeated cocaine or methamphetamine administration [195]. It is likely 

that, during periods of stress, CRF influences astrocytic glucose utilization and promotes 

lactate release to fuel neurons in under conditions of high energy demand. However, the 

relevance of CRF regulation of astrocytes to SUDs is not clear. Astrocytes in the nucleus 
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accumbens have been demonstrated to play a critical role in regulating drug seeking, in 

part via the management of extrasynaptic glutamate levels and signaling via extrasynaptic 

metabotropic glutamate and NMDA receptors (see e.g., [198–202]). Astrocytes can also 

release ATP which can directly influence neuronal function via purinergic receptors or 

be converted to adenosine which signals through adenosine receptor subtypes [203–205]. 

Notably, A2A adenosine receptors in the nucleus accumbens [206–208] and prefrontal 

cortex [209] regulate drug seeking, although their contribution to drug seeking during 

periods of stress is unknown. Understanding the relevance of CRF effects on astrocytes to 

drug seeking will require further investigation.

Recruitment of CRF signaling and stressor-induced drug seeking

Drug addiction has been conceptualized as a surfeit disorder wherein “anti-reward 

“ systems, including those that mediate stress-related signaling, are recruited with repeated 

cycles of drug use and abstinence/withdrawal, resulting in an allostatic negative emotional 

state/hyperkatifeia that promotes drug seeking and use through negative reinforcement 

[210]. CRF systems are among those that contribute to a range of persistent dysphoric 

effects that emerge with repeated drug use and likely fuel SUDs. Indeed, key dysphoria-

related aspects of withdrawal from cocaine (see e.g., [211,212]), opioids (see e.g., [68,213–

215]), alcohol (see e.g., [64,215–219]), and other abused drugs (e.g., nicotine: [220,221]; 

cannabinoids: [222]; benzodiazepines: [223]) are mediated by heightened CRF signaling.

A detailed overview of alterations in CRF signaling that emerge with chronic drug exposure 

is beyond the scope of this review. However, changes in CRF signaling in a variety of brain 

regions including the amygdala (see e.g., [97,224–232]), hippocampus (see e.g., [233]), 

BNST (see e.g., [85,234–236]), septum (see e.g., [237]), prefrontal cortex (see e.g., [238]), 

nucleus accumbens (see e.g., [239,240]), serotonergic raphe nuclei (see e.g., [241–243]), 

noradrenergic cell groups (see e.g., [244,245]), and VTA [88,119,120,246–248] have been 

demonstrated. The functional consequences of altered CRF signaling likely extend beyond 

dysphoric effects and may include CRF-dependent alterations in decision making [249], 

reward conditioning [250], drug memory reconsolidation [156] and cognition [251].

CRF and escalating patterns of drug self-administration

One consequence of the recruitment of CRF signaling with repeated drug use may be 

the emergence of escalating patterns of drug self-administration. Escalation of drug self-

administration in rats occurs with high levels of drug exposure resulting from extended 

or protracted drug access and can be observed across drug classes (alcohol: [252]; 

cocaine: [253,254]; heroin: [255]; methamphetamine: [256]; nicotine: [257]. It has been 

demonstrated that CRF receptor antagonism selectively attenuates escalated cocaine [258], 

ethanol [259–261], or heroin [262] self-administration and corresponding indicators of 

hyperkatifeia (e.g., mechanical allodynia; [215]) without producing effects under “non-

escalated” conditions. Altogether, these findings suggest that drug-induced recruitment of 

brain CRF systems escalates future self-administration, thus establishing a vicious cycle of 

drug-taking behavior.
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Recruitment of CRF signaling and stressor-induced drug seeking

The recruitment of CRF signaling with excessive drug use also increases susceptibility to 

CRF-dependent stressor-induced reinstatement of drug seeking (Fig. 2). Although stress 

has been identified as a contributor to relapse, its relationship with drug seeking is 

complex. The onset of stress does not always serve as a reliable trigger for cocaine use 

[23,24]. A key determinant of stress-induced cocaine seeking is the extent/pattern of prior 

use. High-frequency cocaine users show heightened drug craving, anxiety and associated 

physiological responses upon exposure to stress imagery compared with lower-frequency 

users in a laboratory setting [263] and display stronger relationships between daily stress 

and cocaine/opioid craving as assessed via smartphone monitoring [264]. Consistent with 

these observations, we find that reliable stress-induced cocaine seeking is observed in male 

rats with a history of long-access cocaine self-administration (14 × 6–10 h/day) but not rats 

with a history of short-access self-administration (14 × 1–2 h/day) [51]. Similar findings 

of heightened stressor-induced reinstatement following long-access self-administration have 

been reported with heroin [255].

As is the case with stressor-induced reinstatement, drug seeking in response to icv 

CRF delivery is also only observed following long-access cocaine self-administration and 

extinction, indicating that drug-induced adaptations in CRF signaling may establish the 

ability of stress to trigger relapse [51]. In general, these findings are consistent with clinical 

reports that subjective and physiological responses to CRF infusions are heightened in 

cocaine-dependent individuals [265]. We have found that a key region at which CRF 

signaling is recruited to promote stressor-induced drug seeking is the VTA. In line with 

findings that repeated cocaine administration increases CRF binding in the VTA [111], 

enhances CRF-R1 dependent regulation of excitatory transmission in the VTA [119], 

and establishes CRF control of VTA dopaminergic signaling [88], we have found that 

self-administration under long-access conditions establishes CRF-dependent regulation of 

cocaine-seeking behavior in male rats [89]. As is observed with icv CRF, the ability 

of VTA micro-infusions into the VTA to reinstate extinguished cocaine seeking is only 

observed when rats have a history of long-access cocaine self-administration [89]. More 

recently, we have found that the establishment of CRF-dependent stressor-induced cocaine 

seeking is associated with increased CRF-R1 mRNA levels in the VTA and a heightened 

CRF-R1 dependent Fos response in the prelimbic cortex [142]. Along with findings that 

a stressor-induced cocaine seeking requires CRF-R1 receptor regulation of a dopaminergic 

projection from the VTA to the prelimbic PFC and prelimbic D1 receptor activation [142], 

these findings suggest that excessive cocaine use produces persistent increases in CRF-R1 

expression in VTA dopamine neurons that project to the prelimbic cortex to establish 

susceptibility to stress triggered relapse (Fig. 2).

Chronic stress effects on CRF signaling and drug self-administration/reinstatement

Chronic stress can also escalate drug use via processes that involve recruitment of CRF 

signaling. For example, chronic social defeat stress can persistently escalate alcohol [266–

268] and cocaine [269–272] self-administration in mice and rats as a result of enhanced 

CRF actions in the VTA [267,269–272]. Social defeat-escalated cocaine self-administration 

is associated with increased VTA CRF tone and may involve both CRF-R1 and CRF-R2 
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receptor signaling in subregions of the VTA [271]. Exposure to predator odor can also 

escalate alcohol drinking in a manner that can be blocked by CRF-R1 antagonism in the 

CeA [98]. Although not directly demonstrated, the effects of chronic stress in combination 

with self-administration are also likely evident as CRF-dependent heightened susceptibility 

to stressor-induced drug seeking in relapse models. We have reported that daily footshock 

at the time of drug self-administration escalates cocaine intake [273]. Recently, we 

have found that footshock escalated cocaine self-administration is also associated with a 

persistently increased stressor-induced reinstatement following extinction (J. McReynolds 

and J. Mantsch, unpublished observations).

Glucocorticoid regulation of CRF signaling

Using experiments examining the effects of long-access cocaine self-administration on 

reinstatement, our laboratory has begun to explore the neurobiological processes through 

excessive drug use recruits CRF signaling and stress-triggered cocaine seeking. It is 

well-established that self-administered cocaine elevates corticosterone levels in plasma 

[274,275] and in the brain [276]. These elevations are prolonged and exaggerated when 

rats self-administer cocaine under daily long-access conditions [277]. Prior work has 

demonstrated that chronically elevated glucocorticoids can promote brain CRF signaling 

via allostatic alterations that may contribute to neuropathology [278]. Consistent with 

this, we have demonstrated that when rats undergo surgical adrenalectomy and along 

with basal (diurnal) corticosterone replacement prior to a 14-day long-access cocaine self-

administration period, reinstatement of cocaine seeking in response to footshock or icv 

CRF (both of which require prior long-access self-administration [51]) is not observed [36]. 

By contrast, when rats undergo adrenalectomy/corticosterone replacement after long-access 

self-administration but prior to testing for reinstatement, cocaine seeking in response to 

icv CRF or footshock is comparable to sham-operated controls. Altogether, these findings 

suggest that the adrenal response during periods of excessive drug use, but not thereafter, 

is necessary for establishing adaptations in CRF signaling that underlie susceptibility to 

stressor-induced drug seeking (Fig. 2). Surprisingly, while the adrenal response during 

long-access self-administration is required for subsequent stressor-induced cocaine seeking, 

elevated corticosterone alone is not sufficient to establish susceptibility to reinstatement. We 

have found that daily corticosterone administration during short-access self-administration, 

at a dose that reproduces plasma patterns observed during long-access self-administration, 

fails to alter later reinstatement [279]. We speculate that other adrenal hormones likely 

contribute to neuroadaptations that establish CRF-dependent stressor-induced cocaine 

seeking. One hormone of interest is epinephrine, which can stimulate vagal afferents into 

the brain [280] and has been demonstrated function cooperatively with corticosterone to 

contribute to cocaine-induced behavioral plasticity [281].

Factors that influence the contribution of CRF to SUDs

Various factors can influence the relationship between CRF signaling and SUDs. In 

particular, CRF effects have been reported to vary across development and between sexes 

and are likely defined by genetic differences. Evidence that these factors can determine the 

contribution of CRF to SUDs is provided below.
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Development

Early-life trauma and adversity are key determinants of SUD risk and severity later in 

life [282]. In humans, genetic variation in CRF receptors is associated with the impact 

of early-life adversity on adult SUD outcomes (see e.g., [283]). Neonatal and adolescent 

stress has also been shown to increase susceptibility to adult drug self-administration and 

seeking and related behaviors in rodents (see [284,285]). Studies have implicated CRF 

signaling in many of these effects of stress (see e.g., [286,287] for reviews). For example, 

the ability of social defeat stress during adolescence to promote escalating patterns of 

cocaine self-administration during adulthood is prevented by administration of a CRF-R1 

antagonist into the VTA [288] while the enhancement of adult responses to cocaine by 

removal of enrichment during adolescence in mice is associated with increases CRF mRNA 

in the BNST and prevented by the blocking CRF-R1 receptors [289]. Moreover, early post-

natal stress disrupts connectivity between stress- and reward/motivation-related networks 

in a manner that is prevented by attenuating CRF signaling in the amygdala [290,291]. 

Conversely, drug use during adolescence can alter CRF signaling during adulthood, thereby 

increasing the risk for stress-related psychopathology in adults (see e.g., [292–295]). 

Altogether, these findings establish CRF signaling during early life as a determinant of 

adult SUDs and suggest that early life events may influence CRF signaling in adulthood to 

promote SUD risk.

Sex differences

Sex differences in stress reactivity and vulnerability have been identified (see [296–299] 

for reviews) and females have been reported to be more vulnerable to stress-related drug 

seeking/craving and related responses [300–305]. Indeed, findings of sex differences in 

the effects of medications on drug craving (see e.g., [306]) have emphasized the need 

for consideration of sex as a biological variable when developing medications that target 

the influence of stress in SUDs [307]. Sex differences in CRF signaling have also been 

well-documented [308–311]. Importantly, CRF delivery differentially influences functional 

connectivity in networks that include the extended amygdala, prefrontal cortex, and nucleus 

accumbens in female rats [312,313]. These differences appear to translate to sex differences 

in the contribution of CRF to drug seeking. Indeed, rodent studies have found that female 

rats are more susceptible to reinstatement of cocaine seeking following icv CRF delivery 

[52]. Moreover, alcohol-induced neuroadaptations in CRF signaling in the central amygdala 

are sex dependent [311,314]. These findings parallel those from clinical studies which have 

found that cocaine-dependent women display heightened CRF reactivity [265].

Genetic linkages

The risk for and severity of SUDs involves a complex intersection of multiple genes with 

environmental determinants and drug-effects. There is evidence for genetic links between 

components of CRF signaling and drug misuse. Variants of or haplotypes involving variants 

of the CRHR1, CRHR2 or CRFBP genes have been associated with various aspects of 

SUDs. Variants of CRHR1 have been associated with binge alcohol drinking [315], the 

overall lifetime prevalence of drinking [315], habitual alcohol intake [316], and adolescent 

drinking initiation and progression [317]. Associations between CRHR1 variants and 
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nicotine dependence [318] and heroin addiction [319] have also been reported. CRHR2 
variants have been associated with heroin use [319,320] while variants in CRHBP have 

been associated with the use of heroin [321,322] and cocaine [321,323]. Genetic variation 

in the CRF system appears to be a particularly important determinant of the influence 

of environmental factors in SUDs, especially the impact of early-life stress. CRHR1 
polymorphisms/variant-containing haplotypes are associated with heightened stress-related 

alcohol consumption in adolescents [283,317] and are predictive of the impact of childhood 

sexual abuse [324] and early-life trauma [325] on adult drinking/AUD. Strong associations 

with the effects of stress in SUDs are also observed with genetic variation related to the 

CRHBP gene. CRHBP variants have been associated with heightened stress-related alcohol 

craving [326] and heroin relapse [327]. These associations may be attributable to altered 

PFC processing of emotional stimuli, as CRHR1 variants appear to influence negative 

emotionality and corresponding ventrolateral PFC function [328] while CRHBP variants are 

associated with alterations in cortical EEG [329]

Genetic associations between the CRF system and SUD-related behaviors can also be 

observed in rodents. Most notably, differences in CRF signaling are observed in rat 

lines genetically selected for high alcohol preference (see [330] for review), including 

Sardinian alcohol preferring (sP) and non-preferring (sNP) rats developed from a Wistar 

foundation stock at the University of Cagliari, Italy and subsequently bred at Scripps, and 

the Marchigian subline of Sardinian Preferring (msP) (reviewed in [331]) and the alcohol-

preferring (P) and non-preferring (NP) lines developed at the Walter Reed Army Hospital, 

also derived from a Wistar stock and transferred to the University of Indiana (reviewed in 

[332]). The msP rats have two G-to-A substitutions in the promoter region of the Crhr1 gene 

that leads to increased brain expression and are associated with CRF-R1 associated anxiety-

related behaviors [333,334], heightened CRFR1-dependent stressor-induced alcohol seeking 

[261,335,336], and the establishment of CRFR1-mediated alcohol self-administration under 

both dependent and non-dependent conditions [261,335,336]. Compared to Wistar controls, 

these rats also display altered CRFR1 regulation of both inhibitory and excitatory synaptic 

transmission in the CeA [337,338]. By contrast CRFR1 antagonist effects on alcohol 

consumption under dependence or non-dependence conditions are not observed in sP rats 

[339,340], which lack the A alleles in the Crhr1 promoter [341]. Alcohol consumption in 

P rats is sensitive to CRFR1 antagonism, despite the absence of the alleles, but only in 

dependent animals [342], an effect that may be attributed to changes in both CRF [343] 

and its receptors [344,345]. Overall, these observations are consistent with human data 

suggesting that genetic alterations in CRF signaling can confer susceptibility to SUDs, 

particularly during periods of stress.

Section IV: therapeutic implications

The effectiveness of CRF receptor antagonists in preclinical rodent models inspired 

efforts to develop oral, non-peptide brain penetrant CRF antagonists for clinical use in 

individuals diagnosed with anxiety, depression, PTSD, and SUDs. Unfortunately, after 

some early indications of potential utility, more recent clinical trials using the newest 

generation of CRF-R1 antagonists (pexacerfont and verucerfont) have failed to demonstrate 

efficacy, despite evidence of neuroendocrine effectiveness, CNS penetrance, and functional 
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brain effects (see [346] for commentary). An initial study published in 2015 reported 

that the CRF-R1 antagonist, pexacerfont, did not attenuate alcohol craving, emotional 

responses, anxiety or corresponding neural activity [347]. Subsequently, similar findings 

were reported in women using the CRF-R1 antagonist, verucerfont, which blocked the 

HPA response to CRF and the amygdala responses to negative affective stimuli [348]. 

These outcomes are consistent with those from clinical trials investigating the efficacy of 

CRF receptor antagonists in individuals with generalized anxiety disorder [349], major 

depression [350]; GlaxoSmithKline, CRS106139), or PTSD [351]. The translational failure 

of CRF antagonists may be attributable to a number of factors, including lack of sufficient 

target engagement in the human brain, lack of universal effectiveness in all subpopulations 

of individuals with SUDs, and the need for co-administration with other medications. 

However, these studies raise serious questions about the translatability of preclinical finding 

in rodents to humans and, potentially, the models used to define the neurobiological 

mechanisms through which stress influences drug seeking. To date, our understanding of 

the potential contribution of CRF signaling to SUDs has relied heavily on rodent-based 

approaches in which the ability of stimuli to trigger drug seeking in rodents following drug 

self-administration and extinction has been used as an indicator of relapse susceptibility. 

Limitations to these approaches include the use of forced abstinence/extinction-based versus 

voluntary abstinence protocols, the absence of assessment of drug seeking in the context of 

other relevant stimuli and alternative reinforcers, and the lack of adequate consideration of 

subpopulations of users with varying vulnerability based on factors such as co-morbidity, 

early-life experience (e.g., childhood trauma), biological sex, and genetic background. The 

application of approaches that better capture the complex role of stress in drug craving 

and seeking (e.g., the interactive effects of stress with other stimuli [352]) and use of 

models guided by reverse translation [353–355], including those that incorporate voluntary 

abstinence [356,357], have the potential to reveal more relevant targets for interventions. 

Importantly, our ability to effectively leverage mechanisms them will rely on our capacity to 

diagnosis those with cocaine use disorder whose drug seeking is stress-related.

Conclusions

In conclusion, the contribution of CRF to SUDs in humans remains enigmatic. Despite an 

abundance of evidence that CRF signaling is fundamental to behaviors in rodent models 

assumed to be relevant to human addiction, medications designed to target CRF have 

repeatedly failed in clinical trials. Considering that CRF and its receptors are expressed in 

the human brain and dysregulated in stress-related disorders [358–360] and SUDs [265], 

these failures have been puzzling. New perspectives and additional research are needed to 

unravel the mysterious role of CRF in SUDs.
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Abbreviations:

SUDs substance use disorders

CRF corticotropin releasing factor

VTA ventral tegmental area

ACTH adrenocorticotropic hormone

BNST bed nucleus of the stria terminalis

CeA central nucleus of the amygdala

NAc nucleus accumbens

MRN medial raphe nucleus

DRN dorsal raphe nucleus

PTSD post-traumatic stress disorder

HPA hypothalamic pituitary adrenal

CRF-BP CRF binding protein
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Fig. 1. Brain regions in which CRF signaling contributes to stressor-induced cocaine seeking in 
rodents.
Brain regions into which CRF receptor antagonist micro-infusions prevent stressor-induced 

drug seeking following self-administration or conditioned place preference and extinction 

(see text and Table 1 for details). Regions are segregated according to the involvement of 

CRF-R1 and CRF-R2 in stressor-induced cocaine seeking with supporting references listed.
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Fig. 2. Glucocorticoid-dependent recruitment of CRF-R1 receptors in the VTA establishes 
stressor-induced regulation of mesocortical dopamine neurons and cocaine seeking.
The ability of a stressor, electric footshock, to reinstate extinguished cocaine seeking is 

intake-dependent [51], requires elevated glucocorticoids during self-administration [36], and 

involves increased CRF-R1 expression in the VTA and the establishment of CRF regulation 

of mesocortical dopamine neurons [89,142]. A. In rats with a history of short-access cocaine 

self-administration (1–2 h/day), footshock does not reinstate cocaine seeking. B. Elevated 

glucocorticoids during long-access self-administration (6+ hrs/day) [277] likely contribute 

to an upregulation of VTA CRF-R1 receptors on dopamine neurons that project to the 

prelimbic (PL) prefrontal cortex [142]. C. As a result, the ability of CRF to regulate 

PL-projecting dopamine neurons [142] and produce CRF-R1 dependent cocaine seeking 

during stress [89] in response to activation of CRF-releasing afferents from the BNST [83] 

is established. Abbreviations: CRF (corticotropin releasing factor), DA (dopamine), D1R 

(dopamine D1 receptor), GR (glucocorticoid receptor), BNST (bed nucleus of the stria 

terminalis), VTA (ventral tegmental area), PFC (prefrontal cortex), SA (self-administration).
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