
Review
https://doi.org/10.9758/cpn.2022.20.1.26 pISSN 1738-1088 / eISSN 2093-4327
Clinical Psychopharmacology and Neuroscience 2022;20(1):26-36 Copyrightⓒ 2022, Korean College of Neuropsychopharmacology

26

Received: April 13, 2021 / Revised: June 9, 2021
Accepted: June 14, 2021
Address for correspondence: Ali Khaleghi
Psychiatry and Psychology Research Center, Tehran University of 
Medical Sciences, South Kargar Av., Tehran 1333795914, Iran
E-mail: alikhaleghi_bme84@yahoo.com
ORCID: https://orcid.org/0000-0002-9035-7075

 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computational Neuroscience Approach to Psychiatry: 
A Review on Theory-driven Approaches
Ali Khaleghi1, Mohammad Reza Mohammadi1, Kian Shahi1, Ali Motie Nasrabadi2

1Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, 2Department of Biomedical Engineering, Shahed University, 
Tehran, Iran

Translating progress in neuroscience into clinical benefits for patients with psychiatric disorders is challenging because 
it involves the brain as the most complex organ and its interaction with a complex environment and condition. Dealing 
with such complexity requires powerful techniques. Computational neuroscience approach to psychiatry integrates mul-
tiple levels and types of simulation, analysis and computation according to the different types of computational models 
to enhance comprehending, prediction and treatment of psychiatric disorder. This approach comprises two approaches: 
theory-driven and data-driven. In this review, we focus on recent advances in theory-driven approaches that mathemati-
cally and mechanistically examine the relationships between disorder-related changes and behavior at different level 
of brain organization. We discuss recent progresses in computational neuroscience models that relate to psychiatry 
and show how principles of neural computational modeling can be employed to explain psychopathology.
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INTRODUCTION

Research in the field of psychiatry has experienced a 
stagnation due to the slow translation of neuroscience ad-
vances to definitive measures for the recovery of patients 
with mental disorders. The large complexity of the human 
brain and the problems in recognizing and explaining the 
biological, contextual and environmental underpinnings 
of mental functions astonish the study of the pathophysi-
ology and etiology of mental disorders, and make an ex-
planatory gap between neuroscience and biological psy-
chiatry at intermediate levels of description that must bind 
ideas and hypotheses at the molecular level to those man-
ifested at the level of clinical entities, such as depression 
and schizophrenia. On the other hand, the corre-
spondence between these levels is not one to one. In other 
words, different biological dysfunctions may generate 

similar behavioral disturbances and, conversely, one bio-
logical dysfunction may affect different apparently un-
related psychological functions [1-3]. Generally, in-
complete understanding of human cognitive phenotypes 
has led to the lack of a concrete bridge between the phe-
nomenological and the molecular events. As a result, we 
see frequent concerns and questions about the classi-
fication of psychiatric disorders, and as a clear example, 
the ongoing revisions of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM) of the American 
Psychiatric Association [4-6]. It is very difficult to deal 
with these challenges without theoretical models, con-
ceptual frameworks and powerful computational tools. 
Although experimental studies yield valuable and useful 
information to understand the cognitive processes and bi-
ological disturbances in mental illness [7-11], they are 
usually limited by practical, economic or ethical factors. 
In recent years, computational neuroscience has shown 
great promise in the field of psychiatry research and com-
putational psychiatry by establishing a connection be-
tween pathophysiological and phenomenological aspects 
of mental illness, thereby reshaping current nosology in 
more biologically dimensions. Computational psychiatry 
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is an emerging field in expansion at the junction between 
psychiatry and computational neuroscience [12-14].

Computational neuroscience is a subfield of neuro-
science which utilizes theoretical analysis, mathematical 
models and abstractions of the brain to perceive the prin-
ciples that control development, structure, physiology, 
emotional and cognitive processes of the nervous system 
[15]. The goal of mathematical models in computational 
neuroscience is to capture the main properties of a bio-
logical system at multiple spatiotemporal scales, from 
membrane potentials, neurotransmitter function and 
topographic architecture to a psychological faculty like 
behavior or learning [16,17]. These computational mod-
els frame ideas that can be directly examined by psycho-
logical or biological experiments. While psychiatric dis-
orders are described essentially by high-level symptoms, 
computational models can help frame symptoms and hy-
potheses to fill the gap between psychiatry and neuro-
biology. For instance, Maia and Frank showed how mod-
eling using an abductive or deductive approach can result 
in different predictions for psychiatry [18]. Using the ab-
ductive approach researchers start from the proposition of 
a model of normal function and change the model in dif-
ferent ways to produce new hypotheses of brain and bio-
logical dysfunction. Then, these models are fitted to the 
behavior of patients to determine which hypothesis can 
explain the patients’ performance. The top hypothesis can 
then be revised in a try to illustrate the deficits at lower 
levels, or used to plan new experimental tests that will ex-
amine the dysfunction proposed by the hypothesis. On 
the other hand, the deductive approach starts from the 
proposition of known neurobiological deficits reported in 
mental illness, and implement these deficiencies in a 
computational model. Then, the performance of patients 
is compared to those of the model. If the model can ex-
plain the performance and function deficits reported in 
patients, it provides a reasonable mechanistic platform 
that link biology and neurobiology to behavior. Therefore, 
computational neuroscience and computational psychia-
try are important to the future of psychiatry research and 
will probably play a main role in the logical development 
of nosologies, preventive and treatment strategies. 

On the other hand, there are two very common ap-
proaches in computational psychiatry that can be the 
bridge between neuroscience and psychiatry: theory- 
driven approaches that look for mechanistically explain-

able relationships between variables (including observable 
variables or hypothetical ones), and data-driven ap-
proaches that utilize various statistical models and ma-
chine learning techniques for the analysis of empirical 
and experimental data to provide a suitable solution for 
the issues in the classification, forecasting and treatment 
of diseases. Data-driven approaches apply machine 
learning techniques to high dimensional data to improve 
diseases classification, predict the outcomes of treatment 
and improve treatment selection. Data-driven approaches 
are often used to develop clinically useful applications, 
while theory-driven approaches are often used to en-
hance our insights into disorders and diseases. Several re-
cent studies have thoroughly reviewed data-driven ap-
proaches in detail and examined various aspects of these 
models [12,14,19-21]. However, much less attention has 
been paid to theory-driven approaches, which can be an 
appropriate complement to data-driven methods. 
Therefore, in this review, we focus on recent advances in 
theory-driven approaches that mathematically and mech-
anistically examine the relationships between disorder- 
related changes and behavior at different level of brain 
organization.

COMPUTATIONAL MODELING

Mathematical or biophysical models provide a quanti-
tative expression for biological phenomena. These syn-
thetic models are built based on physical and mathemat-
ical rules, computer-aided tools and biological data from 
different sources related to the system of interest (e.g., a 
neural system) and investigate the interaction between 
components through simulations and mathematical anal-
ysis [16]. Figure 1 shows the research process involved in 
computational modeling to study different biological 
systems. Based on goal, methodology, simulation level 
and the capacity to imitate mental illness, three types of 
models can be identified in computational neuroscience 
and psychiatry: the phenotypic model, the neuro-
biological model, and the intermediate model. Scientists 
choose one of these types of models depending on how 
nearly and in what sense they want to imitate the target to 
achieve an appropriate simulated object. In fact, the main 
difference between these models is the gap between the 
low level biological function with a high level phenom-
enological manifestation, i.e., apparent thought, emotion 
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Fig. 1. Computational modeling re-
search process to simulate and study 
biological systems. There may be 
direct flows from biology to compu-
tational simulation, but in this process
we do need powerful hardware and 
software resources, robotics and other
technology-related resources. There-
fore, considering the role of tech-
nology in this process and flow dia-
gram seems logical.

and behavior.
Psychiatric disorders are definitively correlated with 

brain pathologies, but, as mentioned above, they are cur-
rently characterized and categorized by the DSM based 
on their phenotype manifestations. These disorders in-
volve a broad spectrum of expressions and causes, rang-
ing from largely ambiguous biological and environmental 
bases to observable behavior and subjective experience 
[21]. Each of those three models focuses on a particular 
aspect of psychiatric disorders, based on explicit or im-
plicit, theoretical or practical assumptions that will be ex-
plored below.

THE PHENOTYPIC MODELS

This types of models attempts to imitate clinical pheno-
types or high level manifestations of the disorder. Turing’s 
approach to brain simulation is consistent with this view. 
The focus on mental disorder simulation here is the be-
havioral phenotype. An ideal phenotypic model should 
go beyond a black box and be able to simulate a real life 
system with the ability to provide somatic responses and 
duplicate verbal and physiological like characteristics of 
psychiatric disorders. Phenotypic models differ in the de-

gree to which they represent a brain like activity. Thus, 
there is a range of this type of model from machine learn-
ing and artificial intelligence systems that focus merely on 
the simulation of psychiatric symptoms to a more bio-
logically cognitive system that can produce useful activ-
ities in coarsely brain like ways based on high level archi-
tecture of the brain. 

Computer simulations of psychiatric disorders in the 
form of phenotypic models may help us to better under-
stand the characteristic verbal and emotional responses of 
a patient who suffers from a specific mental illness and 
provide a simulator to investigate potential reactions to 
various stimuli [22]. It may even be possible to under-
stand the fundamental relationship between specific 
symptoms and the underlying neurobiological function 
that correlates with or even causes these symptoms. For 
example, Akbari and Zhuiykov [23] recently developed a 
bioinspired optoelectronically engineered neurorobotics 
model with sensorimotor functionalities. The neural en-
gineering framework captures a high level illustration of a 
cognitive theory and integrates it with related neuro-
physiological and anatomical constraints, generating a 
detailed mechanistic model of how numerous interacting 
neurons can produce the desired behavior efficiently. In 
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Fig. 2. Simplified phenotypic modeling process of the neurorobotics platform. The user can develop a neurorobotic experiment through a brain 
model linked to a robotic body or neurobot that interacts in the dynamic environment. Then, the experiment is triggered using a synchronized neural 
physics simulation. Finally, the performance can be displayed and evaluated in an interactive manner. The brain picture was reused from the article 
of Eliasmith et al. (Science 2012;338:1202-1205) [25] with original copyright holder’s permission under license number 5084650890717.

[24], a neurorobotics platform is introduced that connects 
artificial brain neural networks with robots in a compre-
hensive simulation model. This platform can behave sim-
ilarly to humans in response to sensorimotor stimuli (Fig. 
2). Semantic pointer architecture unified network (Spaun) 
is a neuron model of the brain that produces motor func-
tions by a mechanistically modeled arm in response to 
visual stimuli [25]. In a more clinical framework, some 
studies introduced interactive robots to recognize im-
pulsive or inattentive behaviors in patients with Attention 
Deficit Hyperactivity Disorder (ADHD) and autism and 
provide immediate feedback to them [26,27]. As a result, 
a phenotypic model of mental illness may imitate and rec-
ognize the cognitive processes, perception and reactions 
involved in a specific disorder. However, the question 
that arises in the mind is whether the computer can real-
istically mimic the real life behavior of a patient suffering 
from a mental illness. In fact, this type of simulation could 
not be realistically linked to the functioning of the brain or 
even biological structures. Therefore, the phenotypic type 
of the model provides no new information about the po-
tential role of biological factors in the pathogenesis of 
mental illness, nor about the therapeutic effect of certain 
biological interventions.

THE NEUROBIOLOGICAL MODELS

This type of models attempts to imitate low level brain 
function through the real molecular, synaptic, connec-
tivity and neuronal characteristics of the brain in mental 
illness. The underlying hypothesis in neurobiological models 
is that high level phenomena are caused by low level neu-
robiological activity. In fact, these models follow a bot-
tom-up approach to explain a potential disease mecha-
nism in biology [28]. These neurobiological models 
would help us to recategorize disorders based on bio-

logical factors rather than looking at diseases merely as 
sets of symptoms. The scope of this view would lead us to 
design and develop therapies to selectively target the un-
derlying abnormal mechanisms. In fact, we can embed a 
specific mutation into the neurobiological model and 
then study how that change affects any part of the bio-
logical processes [29]. These types of models are suitable 
for testing hypotheses. They can test possible pathological 
mechanisms at different low levels. In addition, these 
models can be used to investigate the effects of various 
drugs and therapies on synapses and neurotransmitters 
and other low-level biological processes. However, some 
researchers have raised doubts regarding the capability of 
such modeling approach to generate intelligent actions 
like a human brain. Among the various practical and con-
ceptual concerns, the most serious one in the context of 
psychiatric disorders relates to the controversial capacity 
of this approach to reliably simulate psychiatric symptoms. 
In addition, most of these models relate low-level neuro-
biological processes to higher-level neurobiological proc-
esses in a mental illness rather than behavioral manifes-
tations of that disease. For instance, Tsoutsouras et al. [30] 
presented a modeling approach based on cellular autom-
ata for the loss of neurons and active synapses in limbic 
brain areas (epileptogenic focus) that causes epileptic 
seizures by propagating the pathological dynamics from 
the focal to healthy brain regions. Eventually, they were 
able to simulate the electrical activity or electro-
encephalogram of epileptic brain (Fig. 3). In addition, a 
recent study reviewed neurobiological models of psycho-
therapy and explained the important role of neuro-
plasticity models as the neurobiological basis of psycho-
therapy in mechanistic understanding of underlying neu-
ral mechanisms involved in this therapeutic approach 
[31]. Zilcha-Mano et al. [32] explained the neuro-
biological underpinnings of therapeutic expectancy and 
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Fig. 3. A simple example of the neurobiological modeling process of epilepsy that ultimately results in the simulation of epileptic EEG signal 
compared to normal EEG signal.
EEG, electroencephalogram.

alliance and underlined the importance of neurobiological 
models to understand these effects. Iglesias et al. [33] ex-
plained how neurobiological models can be used to study 
the effects of neuromodulatory approaches in computa-
tional psychiatry.

THE INTERMEDIATE MODELS

These types of models have received the most attention 
in the field of computational psychiatry. The intermediate 
models stand in between the neurobiological and the 
phenotypic models. These types of models attempt to es-
tablish a logical relationship between high-level psychi-
atric symptoms and low-level biological dysfunction. 
They differ from both the neurobiological and the pheno-
typic models, because they neither try to mimic symptoms 
realistically nor biological structures. Rather, these mod-
els would provide means and frameworks for improved 
theoretical comprehending of mental disorders. Figure 4 
shows an example of the intermediate model for con-
ceptualization and understanding of schizophrenia based 
on the dopamine hypothesis of schizophrenia. Various 
models have been introduced using this approach that 
can be categorized into three subtypes: synthetic, algo-
rithmic and Bayesian models. 

Synthetic models usually connect different levels of 
analysis and simulation, and can be used abductively to 
infer the possible causes for a known outcome (for in-
stance, what kind of perturbation in the release of some 

neurotransmitters could result in neurodynamics or be-
havioral disturbances) or deductively to infer the possible 
consequences of suspected or known causes (for in-
stance, what effects a variation in the concentration of a 
certain neurotransmitter would have on neural-circuit or 
behavior dynamics). Previous studies have been used var-
ious synthetic biophysical models to connect neuro-
biological abnormalities in mental illness to its neuro-
dynamical and behavioral consequences [34]. Cortical 
pyramidal neurons and GABAergic interneurons form an 
important class of these models that has provided val-
uable insights in psychiatry. Reducing NMDAR density 
within inhibitory interneurons suggested that working 
memory in schizophrenia must be sensitive to distractors 
similar to the objects held in working memory [35]. 
Different integrative models have been presented to dis-
cover the relationship between NMDAR density and 
BOLD signals. They suggested that ketamine causes psy-
chosis symptoms and destroys the negative relation be-
tween task-related modes and the resting-state default 
mode [36,37]. Furthermore, dysfunction in the posterior 
regions of the brain may cause impairments in attentional 
orientation on different mental arithmetic tasks in ADHD 
[7]. In another study, a neural network model explored 
the effect of serotonergic and glutamatergic disturbances 
in obsessive-compulsive disorder, and suggested that both 
increased glutamate and decreased serotonin can be a 
likely neural substrate for obsession [1]. Similar con-
nections from synaptic activities to high-level functions 
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Fig. 4. An example of the intermediate model for conceptualization and understanding of schizophrenia based on the dopamine hypothesis of 
schizophrenia. According to this model, schizophrenia is best conceived as a complex disorder which involves multiple dopaminergic pathways.

have been achieved through biophysically realistic de-
tailed models of the cortico-striata-thalamic circuits [38,39]. 
These models explained different aspects of schizo-
phrenia, Tourette’s syndrome, addiction and Parkinson’s 
disease [18,40]. In summary, synthetic models provide an 
analytical tool to bridge biological details to symptoms 
through understanding causally complex relationships 
between levels of analysis. However, it should be noted 
that due to the simplifications considered in these models, 
conclusions are limited to the levels of analysis involved 
in the model.

Algorithmic reinforcement learning (RL) models pro-
vide a quantitative explanation of the mechanisms under-
lying disturbances of executive function, emotion, deci-
sion-making and other functions. These powerful frame-
works have formed many aspects and details of systems 
neuroscience over the last decade. They provide a norma-
tive model of choice behavior with neural substrates and 
neurobiological correlates [41]. Although they differ from 
synthetic models, they can characterize different aspects 
of neural activity and subsequent behavior [42,43]. 
Perhaps the most popular correlate is the relationship be-
tween phasic dopaminergic activity in the basal ganglia 
and reward-seeking/punishment-avoiding behaviors in 
the presence of reward and punishment as reinforces [44]. 

Such behaviors are related to subject’s survival and shape 
the main concern of neural circuits. According to the role 
of dopamine in modulating NMDAR plasticity and the im-
portance of prediction errors for associative learning, it 
has suggested that phasic dopamine release under pre-
diction error encoding may serve as a reference to adjust 
synaptic connections and functions in task-relevant cir-
cuits, and that abnormal dopaminergic activities may 
cause maladaptive learning [33]. However, many studies 
have suggested that dopamine also encodes uncertainty 
or precision [45-47]. The field of RL has drawn two differ-
ent approaches in which past experience and prior beliefs 
are utilized to predict future reward and punishment: 
model-based and model-free cognition (a detailed de-
scription of these approaches is beyond the scope of the 
review) [48]. These notions have guided concepts and re-
searches on various mental disorders. Previous studies 
have linked multiple aspects of RL to a wide variety range 
of symptoms of psychiatric diseases, including: positive 
symptoms in schizophrenia (e.g., hallucinations and delu-
sions) with atypical reward prediction errors [49,50], ab-
normal activity in the limbic motivational systems in re-
sponse to neural stimuli [51], and aberrant levels of in-
centive salience because of abnormally increased levels 
of dopaminergic neurotransmission in prefrontal cortex 
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and ventral striatum [52,53]; negative symptoms of schiz-
ophrenia with aberrant effort-cost computations and in-
ability for representing the expected value of rewards 
[54-57]; relapse prediction in alcohol-dependence with 
conditioned stimulus-related activation in the nucleus ac-
cumbens [58]; impulsivity in ADHD with reduced delay 
aversion due to over-discounting of delayed rewards 
[59,60]; anhedonia in depression related to a deficit in re-
ward sensitivity in a different way from that in dop-
aminergic transmission affecting learning [61]. 

An important advantage of characterizing reward func-
tions in terms of prior beliefs or past experiences is that the 
beliefs, that are responsible for individual behavior, can 
be defined, enabling computational and quantitative phe-
notyping in terms of attitudes and beliefs [62,63]. This ap-
proach shapes the principle of many current computa-
tional psychiatry innovations, and even has been ex-
tended to game-theoretic models of interpersonal ex-
change that involves strategic cooperation, competition 
and social fairness [64,65]. Stag-hunt game and mul-
ti-round trust game are two prominent examples of these 
models that have revealed disorder-specific play styles in 
many psychiatric disorders, including autism, ADHD, 
schizophrenia, depression and borderline personality dis-
orders [64,66]. These Bayesian models can be employed 
to better understand the nature of problem and its 
solution. One important property of Bayesian models is 
their emphasis on the use and representation of un-
certainty [67]. Accordingly, it has been shown that the sta-
tistics of aversive experience play an important role in 
several processes, from learned helplessness and depres-
sion to familiarity in fear conditioning [68-70]. Bayesian 
models can also be utilized to explore a possible relation-
ship between a certain symptom and suboptimal inference. 
For instance, subjects with high trait anxiety cannot up-
date optimally how volatile an aversive situation is, while 
low anxiety controls present close to Bayes-optimum be-
havior [71]. Generally, these extensions and other ap-
proaches derived from behavioral economics could pro-
vide a unique opportunity to describe different psycho-
pathies and their genetic or neural correlates. 

DISCUSSION

In this brief overview, we have reviewed theory-driven 
approaches in computational neuroscience and their ap-

plications in the computational psychiatry. Our goal here 
was not to focus on psychiatric disorders such as depres-
sion, autism, ADHD, anxiety and others, but rather on 
computational modeling approaches in neuroscience to 
characterize and measure the pathobiological mecha-
nisms involved in psychiatric symptoms. Discussion of 
mental illness modeling should involve the important 
question of the purposes of doing so. Actually, there is a 
critical need for new clinical tests that identify the main 
abnormality that probably underlies the symptoms of a 
patient such that targeted treatment and medication 
would be selected as well as spectrum diseases would be 
split into more distinct subgroups mechanistically. This is 
where we need to look for answers. In other words, the 
long-term objective of neuroscience-based computa-
tional modeling in psychiatry should be to address this 
critical need, i.e., better understanding of the pathophy-
siological processes causing mental disorders, and ulti-
mately diagnosing and treating these pathologies more 
effectively. The success of most scientific attempts de-
pends on the accuracy and preciseness with which phe-
nomena can be mechanistically modeled. In psychiatry, 
models are usually developed by prose according to a 
synthesis and fusion of available experimental findings 
[72]. An important point in computational modeling is 
that these models should not be formulated to test certain 
hypotheses about brain function and dysfunction. Instead, 
it is much better that they view as mathematical ob-
servatories to examine and validate different candidate 
hypotheses. Thus, a computational model is a powerful 
tool, not only a hypothesis, and can be linked to clinical 
tools for patient evaluation. To this end, we need to take 
advantages of each of above computational models and 
minimize their limitations and complexities to achieve a 
comprehensive applicable model. In fact, the complexity 
of mental disorders and the current biological-pheno-
menological gap can benefit from a multi-level method 
that merges multiple modes of simulation and modeling: a 
top-down high-level phenotypically symptom oriented 
mode and a bottom-up low-level biologically oriented 
mode. Successful modeling of mental illness should in-
clude these two modes that correlate with the bottommost 
and uppermost layers of brain functioning. The pheno-
typically symptom oriented modeling can benefit from 
the artificial intelligence, whereas neurobiological mod-
eling can benefit from the different methodologies of 
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computational neuroscience. In computational neuro-
science, researcher must learn to compute and analyze 
without knowing all the parameters. In other words, the 
model parameters characterizing brain networks are un-
certain, numerous and can change over time or situation. 
The effects of the uncertain parameters of the model and 
the uncertainty in model predictions can be studied 
through repeated evaluations of the model, which is often 
computationally demanding [73].

With the development of numerical algorithms and 
computational and computer hardware, we will probably 
include more phenotypic and even neurobiological mod-
els in clinical practice in the future. However, according 
to the characteristics, properties, advantages and limi-
tations of each category of above models, it seems that the 
intermediate models are now more usable for better un-
derstanding of mental illness and clinical setting in general. 
Regarding the subtypes of intermediate models, it should 
be noted that the distinction between synthetic, algo-
rithmic and Bayesian models can be vague. For instance, 
a biophysically detailed model of the basal ganglia can in-
clude an algorithmic-like RL module to estimate pre-
diction errors. Moreover, the different types of model may 
beneficially be used in a joint fashion. This approach en-
ables us to refine and improve the details of one level of 
characterization limited by the other. For instance, bio-
physically detailed models of basal ganglia discern be-
tween opponent indirect and direct pathways that dis-
tinctively process dopaminergic reinforcement signals 
[74]. The integration of this feature in more abstract algo-
rithmic models makes it possible to computationally ana-
lyze its consequences for various behaviors across a 
broad range of parameters. Furthermore, it also should be 
noted that Bayesian approaches can be applied to all 
three subtypes of models for fitting, description, vali-
dation and other purposes.

Although theory-driven modeling approaches have 
yielded important insights into the processes and mecha-
nisms underlying specific disorders at many levels of anal-
ysis, they have to be applied yet to clinical problems for 
the most part. Furthermore, these computational tools 
have some limitations. Most obvious limitation is that they 
require considerable expertise and are often opaque and 
confusing for the non-expert. Hence, how to exchange 
useful information between clinicians, trialists, experi-
mentalists and theorists is challenging for the field. This 

can be supported by a more focus on establishing utility 
through the active application of computational appro-
aches in clinical trials. Combining theory- and data-driv-
en approaches can be an appropriate way [14,75-79]. 
Combining theory- and data-driven approaches can be 
very helpful from an applied point of view [80]. Theory- 
driven approaches provide an estimation of certain fea-
tures relevant to a specific disorder, if the prior knowledge 
and mechanistic understanding of the condition is suffi-
ciently accurate. As a result, they substantially reduce the 
data dimensionality by limiting the data set to the sub-
space of a few relevant features and parameters. Then, da-
ta-driven approaches can apply machine learning ap-
proaches to this lower dimensional data set with higher 
reliability and efficiency. Such an approach has already 
been used in a few studies to investigate Huntington’s [81] 
and schizophrenia [82], and has led to considerable im-
provements in the classification of behaviors and sub-
types of these diseases.

CONCLUSION

In the present review, we have outlined how computa-
tional neuroscience can use formal models in different 
levels to present a mechanistic and functional outlook 
and interpretation on psychopathology and its underlying 
pathophysiology. We focused on theory-driven appro-
aches and introduced a new category for these computa-
tional models, which require substantial skills from cel-
lular and molecular neuroscience, network neuroscience, 
cognitive neuroscience, computational neuroscience, 
psychiatry and psychology, computer science, mathe-
matics and engineering to empower the important inter-
disciplinary field of computational psychiatry. Ongoing 
progress in computational neuroscience offers remark-
able opportunities to design and conduct mechanistic 
preclinical studies by focusing on different brain circuits 
models, especially in neurodevelopmental disorders such 
as schizophrenia, ADHD and autism. These mechanistic 
studies may be administered at the level of high level 
manifestations of mental illness using phenotypic models 
and neurorobotics platform, at the level of low level brain 
functioning using neurobiological models, or at the inter-
mediary level by establishing interrelationships between 
the low level and the high level models using different 
types of intermediate models. It is our belief that some 
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challenges in psychiatry and mental health in general 
cannot be overcome without the help of theoretical 
frameworks and computational modeling. However, the 
practical applications of computational models are still in 
their infancy, and there is a long way to go to reach the ul-
timate goal of guiding the design and development of new 
pharmacological or even cognitive therapeutic strategies 
through the mechanistic interpretability of computational 
models.
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