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Abstract: The most frequently diagnosed histological types of cervical cancer (CC) are squamous cell
carcinoma (SCC) and adenocarcinoma (ADC). Clinically, the prognosis of both types is controversial.
A molecular profile that distinguishes each histological subtype and predicts the prognosis would
be of great benefit to CC patients. Methods: The transcriptome of CC patients from The Cancer
Genome Atlas (TCGA) was analyzed using the DESeq2 package to obtain the differentially expressed
genes (DEGs) between ADC and SCC. The DEGs were validated on a publicly available Mexican-
Mestizo patient transcriptome dataset (GSE56303). The global biological pathways involving the
DEGs were obtained using the Webgestalt platform. The associations of the DEGs with Overall
Survival (OS) were assessed. Finally, three DEGs were validated by RT-qPCR in an independent
cohort of Mexican patients. Results. The molecular profiles of ADC and SCC of the CC patients of the
TCGA database and the Mexican-Mestizo cohort (GSE56303) were determined obtaining 1768 and 88
DEGs, respectively. Strikingly, 70 genes were concordant—with similar Log2FoldChange values—in
both cohorts. The 70 DEGs were involved in IL-17, JAK/STAT, and Ras signaling. Kaplan-Meier
OS analysis from the Mexican-Mestizo cohort showed that higher GABRB2 and TSPAN8 and lower
TMEM40 expression were associated with better OS. Similar results were found in an independent
Mexican cohort. Conclusions: Molecular differences were detected between the ADC and SCC
subtypes; however, further studies are required to define the appropriate prognostic biomarker for
each histological type.

Keywords: cervical cancer; adenocarcinoma; squamous cell carcinoma

1. Introduction

Despite early screening programs, cervical cancer (CC) is an unresolved health issue.
Although its incidence has decreased by approximately 40%, it is currently the fourth
leading cause of cancer-related death in women, accounting for an estimated 341,000 deaths
worldwide [1]. Unfortunately, in developing countries, most tumors are diagnosed at
advanced clinical stages (75–90%), at which point the tumors are often unresponsive to
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standard treatment; thus, many CC patients die due to disease recurrence or progression [2].
The most frequent histological types of CC are squamous cell carcinoma (SCC), which
accounts for approximately 75–90% of CCs, followed by adenocarcinoma (ADC), which
accounts for approximately 10–25% of all CC cases [3]. It is well-described that persistent
infection with high-risk human papillomavirus (HR-HPV) types 16, 18, 45, 31, 33, 52, 58,
and 35 is the causal factor in the development of CC [4]. Strikingly, several reports have
described that HPV16 is more frequent in SCCs, and HPV18 and HPV45 in ADCs [5–7].
These histologic types are relevant in terms of patient prognosis; according to National
Comprehensive Cancer Network (NCCN) guidelines, both are usually treated similarly,
i.e., treatment is based on surgery for early disease and chemoradiotherapy for advanced
disease, with survival outcomes for both histologic types being uncertain [8]. Some studies
reported that ADC has a poorer prognosis than SCC patients [9–11]. For instance, Jung
E. et al., in a cohort of 1133 CC patients, reported that the ADC subtype was a significant
independent factor for poor overall survival (OS) (p = 0.0001). Likewise, Yamauchi M. et al.
reported in a smaller cohort that ADC had a significantly poorer prognosis in CC patients
(p = 0.001) [11]. On the other hand, other studies reported that ADC showed recurrence
and survival rates equivalent to those of SCC patients [12,13]. For instance, Winer I. et al.
reported, in a small cohort of patients, that the 5-year OS was comparable for ADC and SCC
(98.2% and 95.2%, respectively, p = 0.369) [14]. Additionally, in a larger cohort of patients,
Xie X. et al. reported that there was no difference in the 5-year survival rate between SCC
and ADC patients (87.3% vs. 82.4%; p > 0.05) [12].

Considering these contradictory data, it is important to find molecular differences
that distinguish each subtype based on the gene expression profile and that can be used as
prognostic biomarkers for these patients. Some attempts have been made to find molecular
differences between ADC and SCC; for instance, Lin W. et al. identified 1733 genes that
distinguish ADC from SCC in the lung, esophagus, and cervix; however, they suggested
that it is only a catalog of genes and markers that should be studied further [13]. In another
study, using microarrays and RT-qPCR assays, Chao A. et al. identified a group of four
genes (CEACAM5, TACSTD1, S100P, and MSLN) that were overexpressed in ADC vs. SCC;
in this study, CEACAM and TACSTD1 were prognostic factors [15]. Moreover, transcription
factors encoding genes PAX6, PDX1, HNF4A, HNF1A, HNF4G, and FOXA3 show higher
expression levels in cervical ADC as compared with cervical SCC [16]. These findings
demonstrate that it is conceivable to describe different gene profiles for ADC and SCC.

Despite the molecular differences between ADC and SCC mentioned above, the
evidence is not conclusive, and this field needs to be explored further. In the present
work, our major aim was to identify those molecular profiles that distinguish ADC and
SCC and that may have prognosis value. To achieve this, we downloaded transcriptome
data corresponding to 309 CC patients from TCGA. We compared ADC vs. SCC and
identified 1768 differentially expressed genes (DEGs) between the two histological types.
These data were validated in a Mexican-Mestizo independent cohort (GSE56303), and
the results were consistent with those obtained with TCGA analysis. Strikingly, 70 genes
were concordant—with similar Log2FoldChange values—in both cohorts. Moreover, we
utilized three different databases to obtain the possible biological pathways in which these
DEGs are involved, and we noticed that SCC tumors have a higher level of activation of
critical cancer pathways, such as IL17, JAK-STAT, and Ras, than ADC tumors. Strikingly,
of the DEGs, higher GABRB2 and TSPAN8 expression and lower TMEM40 expression
were associated with better OS in the Mexican-Mestizo independent cohort (GSE56303).
Similarly, when we validated by qPCR the expression of these genes in an independent
Mexican cohort, we noted that high expression of GABRB2 and low expression of TMEM40
was associated with better OS.
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2. Materials and Methods
2.1. Analysis of Differential Expression

TCGA data of all CC samples (Stage I-IV) [17,18] were downloaded using the Biocon-
ductor package TCGA biolinks [19]. Differential expression analysis was carried out using
the DESeq2 package [20], where an adjusted (adj) p-value < 0.01 and a log2FoldChange
>2 or <2 were considered significant. Additionally, we analyzed the expression profiles
of an independent of 89 Mexico-Mestizo patients diagnosed with local advanced cervical
cancer (LACC), obtained from the publicly available database GEO GSE56303 using the
R package GEOquery [2,21,22]. This dataset was previously used to obtain an mRNA sig-
nature capable of predicting the treatment response in CC patients [2]. The data obtained
were normalized using the robust multiarray averaging (RMA) method, and differential
expression analysis was carried out using the limma package [23]. An adj p-value < 0.05
was considered in order to indicate a significant difference. To construct the heatmaps, a
Z-Score transformation was applied to the normalized gene expression values; next, we em-
ployed a Hierarchical cluster analysis using the Euclidian distance and the complete-linkage
clustering algorithm with the hclust R package.

2.2. Cervical Samples

The Mexican independent cohort included 31 CC patients from 2010 to 2013 through
the Instituto Nacional de Cancerología of Mexico City (INCan). Of these, fifteen were ADCs
and sixteen were SCCs. This study was approved by INCan’s Review Board and Ethics
Committee (015/012/IBI-CEI/961/15). All patients of this study agreed and signed the
consent form. After a punch biopsy, tumor samples were segmented into two pieces, one
for pathological confirmation and another for nucleic acid separation.

2.3. RNA Isolation and qPCR

In order to validate differentially expressed genes (DEG), we performed validation by
qPCR. Total RNA was extracted from three cuts of FFPE tissue blocks using the RNeasy
FFPE Kit (Cat. No. 73504 Qiagen. Hilden, Germany). RNA was quantified in a Qubit
3.0 Fluorometer with a Qubit RNA HS Assay Kit (Cat. No. Q32852. Thermo Fisher
Scientific. Waltham, MA, USA). Reverse transcription was performed with 1000 ng of
RNA using a High-Capacity cDNA Reverse Transcription Kit (Cat. No. 4374966. Thermo
Fisher Scientific. Vilnius, Lituania), following the manufacturer’s recommendations. Quan-
titative real time PCR was performed with Luminaris HiGreen qPCR Master Mix (Cat.
No. K0994) on Step One System (Thermo Fisher Scientific) with primers for GABRB2
Fw: GCACTGGGCAGACTAAGTTGG Rv: GGGTCATTGACACTCTGCGCA, TSPAN8 Fw:
TGGTCCTGTATTGCCAGATCG Rv: GGTCTAGCTAGCCGAGACATTT and TMEM40 Fw:
CCAGAAGTTTAGGCTGACAGGGT Rv: GGGCTGGTGCCAACATTCAGAC, data were
normalized with GAPDH housekeeping gene.

2.4. CC Transcriptome and Pathway Analyses

Pathway analysis of the differentially expressed genes of both cohorts (TCGA and
Mexican-Mestizo cohort) was assessed using a Gene Set Enrichment Analysis (GSEA)
with the Webgestalt platform [24], where a p-value < 0.05 was considered to indicate a
significant difference.

2.5. OS Analysis

We obtained the clinical data from the 309 cervical tumors from the TCGA, the 89 pa-
tients from the Mexican-Mestizo cohort and the 31 patients in the Mexican independent
cohort. For each cohort, patients were divided in two groups: high and low, depending
in the median expression of each gene. Next, the OS of each group was evaluated using
the Kaplan-Meier method, and the statistical significance of survival differences was de-
termined with the log-rank test. Univariate and multivariate Cox proportional hazard
regressions were assessed using the survival package, implemented in the R language.
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A p-value < 0.05 was considered as significant. OS was defined as the time diagnosis to
the date of death or last contact. It is important to explain that for the OS analyses, we
possessed complete 5-year follow-up information for the Mexican-Mestizo cohort and the
Mexican independent cohort. However, for the TCGA patients, we used only the data that
were available, since follow-up information was not available for all patients

3. Results
3.1. Determination of the Molecular Profile Distinguishing ADC and SCC among CC Patients
from the TCGA Database

Our first aim was to determine molecular differences between SCC and ADC. Thus,
we analyzed the transcriptomes of the TCGA CC cohort. This dataset contains information
on 260 SCC and 49 ADC tumors from patients of different ethnicities. The clinical charac-
teristics are shown in Table 1. It should be noted that the clinical data of the TCGA cohort
only contained the HPV information from 22 patients (7%) (Table S1), whereas 63 patients
(70.78%) from the Mexican-Mestizo cohort were positive to HPV infection, along with all
patients from Mexican independent cohort (Table S2).

Table 1. Clinical characteristics of the TCGA cohort.

Characteristics Total (n = 309) SCC (n = 260) ADC (n = 49)

Ethnicity Hispanic or Latino 24 (7.76%) 21 (8.07%) 3 (6.12%)
Not Hispanic or Latino 171 (55.33%) 145 (55.76%) 26 (53.06%)
Not reported 114 (36.91%) 94 (36.15%) 20 (40.81%)

FIGO Stage
Stage I 163 (52.75%) 129 (49.61%) 34 (69.38%)
Stage II 70 (22.65%) 63 (24.3%) 7 (14.28%)
Stage III 46 (14.88%) 43 (16.53%) 3 (6.12%)
Stage IV 21 (6.79%) 17 (6.53%) 4 (8.16%)
Not reported 9 (2.91%) 8 (3.07%) 1 (2.04%)

SCC, squamous cervical carcinoma; ADC, adenocarcimoma of cervix.

The results showed 1768 unique DEGs between SCC and ADC (adj p-value < 0.05,
log2FoldChange >2 or <2) (Table S3), where most of the ADC tumors were clustered
together (Figure 1). This finding confirms the existence of molecular differences between the
two histological types of cervical tumors. A list of the top DEGs between the two histological
types is depicted in Table 2.

3.2. Validation of the Molecular Profile Obtained from the TCGA Database in a Mexican-Mestizo
Independent Cohort

To validate the differential expression profile between SCC and ADC obtained from
the TCGA data analysis, we utilized an online, publicly available transcriptome dataset
(GSE56303) [2]. This dataset only includes a Mexican-Mestizo population, which com-
prises 89 CC patients, 81 of whom had SCC and 8 of whom had ADC. The analysis of
DEGs between the two histological types revealed a profile of 130 transcripts that sepa-
rated CC patients into ADC vs. SCC subgroups (p adj < 0.05) (Table S4). Strikingly, the
130 differentially expressed transcripts corresponded to 88 unique genes, of which 52 were
overexpressed and 36 were downregulated (Figure 2). HNF1A-AS1, SPINK1, EPS8L3,
PROM1, and TM4SF5 were the most overexpressed genes, whereas CLCA2, CALML3,
PKP1, GPR87, and SPRR2A were the most downregulated genes in ADC (Table 3). This
finding suggested a histology-driven molecular profile.

Notably, of the 88 unique genes differentially expressed between ADC and SCC
patients in the Mexican-Mestizo cohort, 70 were also differentially expressed in the TCGA
cohort and even presented a similar log2FoldChange values (Figure 3) (Table S5). These
findings show a high concordance of the molecular differences of the two histological types
between cohorts.
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Figure 1. Molecular profile distinguishing cervical ADC and SCC in CC patients from the TCGA
Database. Each column represents a patient with CC, and each row represents the expression of
a gene. Gene expression changes are represented in blue (upregulated), red (downregulated), and
white (no significant change or the absence of data). Patients with SCC are represented in green and
ADCs in purple. There were 1768 unique DEGs between SCC and ADC tumors (adj p-value < 0.05,
log2FoldChange >2 or <2), and most of the ADC tumors were clustered together.

Table 2. Top 15 DEGs in ADC versus SCC in the TCGA dataset.

Over-Expressed Under-Expressed

Gene log2FC Gene log2FC

REG4 8.41 CRNN −9.38
TM4SF4 8.27 KRT14 −8.57
TAAR1 7.54 TMPRSS11B −8.17
FABP1 7.52 CLEC2A −8.07
SLC17A4 7.42 SPRR2E −7.84
ANKRD40CL 7.32 TMPRSS11BNL −7.82
REG1A 6.77 LCE3E −7.78
REG1B 6.65 SERPINB12 −7.78
MGAM2 6.63 KPRP −7.73
LOC105375166 6.57 LCE3D −7.66
MUC17 6.57 TMPRSS11A −7.56
CCL15 6.33 SPRR2G −7.33
SLC39A5 6.26 KRT6C −7.31
LOC107105282 6.23 LINC02582 −7.30
CDH17 6.20 KRT1 −7.26
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Table 3. Top 15 DEGs in ADC versus SCC in the Mexican-Mestizo CC dataset.

Overexpressed Underexpressed

Gene log2FC Gene log2FC

HNF1A-AS1 5.30 CLCA2 −4.02
SPINK1 4.20 CALML3 −3.48
EPS8L3 3.97 PKP1 −3.47
PROM1 3.93 GPR87 −3.42
TM4SF5 3.86 TP63 −3.41
EPS8L3 3.86 SPRR2A −3.23
MUC13 3.83 SPRR1B −3.18
USH1C 3.77 SERPINB3 −3.17
CLRN3 3.75 GPR87 −2.98
HGD 3.73 ZNF750 −2.88

MGAM2 3.66 SERPINB4 −2.86
HGD 3.63 S100A9 −2.85

TSPAN8 3.48 TP63 −2.84
ARSL 3.31 BTBD11 −2.75

HNF4A 3.25 KRT6C −2.73
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represents the 88 unique DEGs in the Mexican-Mestizo CC dataset. Green represents the 70 DEGs
from the TCGA dataset.

3.3. Signaling Pathway Enrichment Analysis in DEGs between ADC and SCC Subtypes

Once we recognized that there was a differential expression profile between SCC and
ADC, we decided to determine which signaling pathways the DEGs were involved in. For
this purpose, we performed an analysis using the Webgestalt platform exploiting three dif-
ferent databases—the Kyoto Encyclopedia of Genes and Genomes (KEGG), WikiPathways,
and Reactome databases—to obtain a global pathway assessment of the deregulation of
both subtypes. It is important to mention that each database has a different set of manually
curated genes; thus, the results could differ between them. In the KEGG database analysis,
the pathways with the highest number of deregulated genes were the cytokine-cytokine
receptor interaction, estrogen signaling and IL-17 signaling pathways. Interestingly, we
also found that the JAK-STAT signaling pathway was significantly enriched in this analysis
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(Figure 4A). When assessing the WikiPathways database, we found that Ras signaling was
highly enriched in DEGs (Figure 4B). In the Reactome database analysis, we also found
deregulation in pathways associated with the immune response, such as cytokine-cytokine
receptor interaction, and again, the estrogen signaling pathways, and the IL-17 and JAK-
STAT signaling pathways (Figure 4C). Interestingly, our results show that SCC tumors have
a higher level of activation of critical cancer pathways, such as IL17, JAK-STAT, and Ras,
than ADC tumors (Figure 4A–C). Overall, we assessed different databases and observed
enrichment of multiple signaling pathways that are commonly dysregulated in cancer,
suggesting that our results are highly reliable and independent of the database used.
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Figure 4. Signaling pathway enrichment analysis of DEGs between ADC and SCC patients per-
formed with the WebGestalt platform. (A) Enriched pathways in the KEGG database analysis.
(B) Enriched pathways in the WikiPathways database analysis. (C) Enriched pathways in the Re-
actome database analysis. The size of the dots represents the number of DEGs in the pathway,
while the dot color represents the significance of the analysis, where red shows a more significantly
enriched pathway.

To determine whether the DEGs between SCC and ADC are correlated with OS, we
used survival data from the TCGA, Mexican-Mestizo, and independent Mexican cohorts.
The Kaplan-Meier curves showed no significant difference between the survival of SCC vs.
ADC patients in the TCGA dataset (Figure S1). However, when we used the survival data
from the Mexican-Mestizo cohort, the Kaplan-Meier analysis showed that high expression
of the DEGs GABRB2 and TSPAN8 and underexpression of TMEM40 were associated with
favorable OS (Figure 5). Moreover, the univariate and multivariate cox-regressions, using
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these genes, HPV infection, and tumor histology as covariates, showed that only TMEM40
and GABRB2 were able to independently differentiate the OS of the patients, whereas HPV
infection or tumor histology were not significant factors for the OS (Likelihood ratio test
p = 0.05, Wald test p = 0.09, Logrank test p = 0.06) (Table 4). Additionally, we performed
qPCR to validate the expression of the DEGs GABRB2, TSPAN8, and TMEM40 in the
31 patients of the independent Mexican cohort. Using the median expression value of each
gene validated, patients were sorted into two groups, those with high and low expression.
Similarly to Mexican-Mestizo cohort, Kaplan-Meier curves showed that Mexican patients
with high expression of GABRB2 and underexpression of TMEM40 were associated with
favorable OS (Figure 6).
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Table 4. Univariate and multivariate cox regressions in the Mexican-Mestizo CC dataset.

Univariate Analysis Multivariate Analysis

Overall Survival HR (95% CI) p-Value HR (95% CI) p-Value
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expression
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4. Discussion

It is well described that persistent infection with HR-HPV is the causal factor in the
development of CC [25]. Several reports have described that HPV16 is more frequent
in SCCs, and HPV18 and HPV45 in ADCs [5–7]. Hence, it is to be expected that there
are molecular and clinical differences in both histologic subtypes. In this regard, several
reports have described controversial data about the prognosis of CC patients with ADC
and SCC. For instance, some of them have reported that ADC is associated with a poorer
prognosis than SCC [9–11]. However, other studies described that ADC and SCC displayed
equivalent survival outcomes [11,12]. For instance, in a small cohort of patients, the 5-year
OS was comparable for ADC and SCC (98.2% and 95.2%, respectively, p = 0.369) [14].
Additionally, in a larger cohort of patients, it was reported that there was no difference in
the 5-year survival rate between SCC and ADC patients (87.3% vs. 82.4%; p > 0.05) [12].
In this respect, researchers have focused on identifying molecular differences unique to
one or another histological subtype so that they can be used as prognostic biomarkers
for these patients. Nonetheless, this field needs to be investigated further. In this work,
we identified a molecular profile of DEGs between ADC and SCC, in CC patients from
TCGA and in the independent Mexican-Mestizo cohort. Despite the fact that the TCGA
database includes patients from different ethnic groups and all clinical stages, we detected
that, of the DEGs, 70 overlapped with genes from the Mexican-Mestizo database and even
displayed a similar log2FoldChange values, thus demonstrating a high concordance in
the molecular differences between the two histological types in the datasets. Similarly,
other studies have demonstrated molecular differences between SCC and ADC histologic
types of CC patients. For instance, Lin W.E. et al. analyzed TCGA data and reported
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1733 DEGs between ADC and SCC from CC patients [13]. Likewise, Chao A. et al., through
microarray assays, revealed a profile of DEGs between ADC and SCC samples from CC
patients; TSPAN-3, CEACAM5, TACSTD1, MSLN, and S100P were of particular interest,
as they were overexpressed in ADC [15]. Moreover, transcription factors encoding genes
PAX6, PDX1, HNF4A, HNF1A, HNF4G, and FOXA3 show higher expression levels in
cervical ADC as compared with cervical SCC [16]. These findings confirm that there are
molecular differences between ADC and SCC.

The molecular differences between ADC and SCC also have an impact on signaling
pathways that promote disease. In this work, the KEGG, WikiPathways, and Reactome
databases were employed to elucidate these differences. We found that SCC tumors have a
higher level of activation of critical cancer pathways, such as IL-17, JAK/STAT, and Ras
signaling, compared to ADC tumors. In this respect, it is well-known that IL-17 is the central
cytokine of the Th17 response during persistent infection with HR-HPV; this response
triggers chronic inflammation of a long duration and the production of IL-17, among
other pro-inflammatory cytokines, hence creating a favorable environment for the tumor
development associated with associated with poor CC prognosis [26–28]. Additionally,
Punt S. et al. reported that the predominant cell type expressing IL-17 in SCC CC is the
neutrophilic granulocyte and directly contributes to tumorigenesis [29,30]. Although there
are no studies that evaluate the correlation between IL-17 and its histological subtypes
(ADC and SCC), we observed that SCC has a higher level of IL-17 pathway activation.
JAK/STAT signaling was another deregulated pathway in our study. This pathway has
been found involved in proliferation, invasion, survival, inflammation, and immunity in CC
patients [31]. Strikingly, there is a connection between JAK/STAT pathway and Th17 cells,
since JAK/STAT pathway is necessary for the differentiation of Th cells [32]. The aberrant
signaling of JAK/STAT pathway has not been associated with any histological subtype
(ADC vs. SCC). However, it is expected that this pathway is altered in both subtypes,
nonetheless we were able to distinguish that it is enriched in the SCC subtype, which is
an interesting fact that needs to be analyzed in depth. Another pathway enriched in our
study was Ras signaling. Aberrant activation of this pathway is common in several cancers,
including CC, which often results from the presence of mutations and amplifications of
KRAS. For instance, Zou Y. et al. reported that the frequency of the KRAS mutation ranged
from 8.0–17.5% in cervical ADC [33], to absent or rare in SCC, which suggested that KRAS
mutations are frequent and might be a driving factor for the development of cervical ADC
but not SCC [34,35]. However, in our study, we observed that the Ras pathway has a higher
level of activation in SCC than ADC, which may be due to mutations or alterations in
other elements of the pathway [33]. According to the fact that these pathways are more
overexpressed in SCC than in ADC, it leads us to speculate that SCC seems to be more
aggressive than ADC; however, the candidate pathways and genes for distinguishing the
subtypes need to be further verified.

A main focus of this work was to identify potential genes associated with the prognosis
of ADC or SCC, and we generated Kaplan-Meier survival curves with the Mexican-Mestizo,
Mexican, and TCGA patient’s clinical data. We noticed that GABRB2 and TSPAN8 over-
expression and TMEM40 under-expression were associated with favorable OS, in the
Mexican-Mestizo and independent Mexican cohorts. Regarding the role of these genes in
cancer, there has been only one report associating GABRB2 overexpression with lymph
node metastasis in thyroid cancer [36]. TSPAN8 expression is correlated with a poor progno-
sis in breast cancer [37], renal cell carcinoma [38], and pancreatic cancer [39]. However, its
role in CC had not yet been studied. On the other hand, TMEM40 has been poorly studied
in cancer, but a study proposed that this protein plays a crucial role in proliferation and
apoptosis via the p53 signaling pathway [40] and may be a potential diagnostic biomarker
for bladder cancer [41]. In our study, we noticed that the expression levels of GABRB2,
TSPAN8, and TMEM40 were not associated with the OS of TCGA CC patients (Figure
S1). In this respect, it is well-known that the TCGA database contains incomplete or no
information regarding the survival of many patients. This often occurs because almost all of
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the patients are untreated and thus have no response data and short follow-up periods [17].
Moreover, Lin W.E. noted that the TCGA database is interesting because it includes patients
of different ethnicities; however, although TCGA datasets are generally large, they may not
be representative of the general population [13]. It is possible that for this reason, in our
analysis, we did not find any association between the expression of these genes and OS
with the TCGA CC patients. Likewise, it is reasonable to assume that there is a consistent
molecular profile for each histological subtype. Taken together, it is important to note that
we found molecular differences between the two histologies (ADC vs. SCC); nevertheless,
in order to identify a specific prognostic biomarker for each subtype it is necessary to
expand the sample of ADCs, since, in the cohorts used, including the TCGA cohort, the
number of ADCs is limited. Therefore, the correlation of these genes with the survival or
prognosis of patients’ needs to be studied meticulously.

5. Conclusions

These findings are relevant since they show a high concordance of molecular differ-
ences for ADC versus SCC between independent cohorts, independently of HPV type, thus
opening a window of opportunity to identify new prognostic biomarkers by histological
type. Nonetheless, further studies are required to define these findings.
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