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Abstract

The focus of analyzing data from microarray experiments has shifted from the identification

of associated individual genes to that of associated biological pathways or gene sets. In bio-

informatics, a feature selection algorithm is usually used to cope with the high dimensionality

of microarray data. In addition to those algorithms that use the biological information con-

tained within a gene set as a priori to facilitate the process of feature selection, various gene

set analysis methods can be applied directly or modified readily for the purpose of feature

selection. Significance analysis of microarray to gene-set reduction analysis (SAM-GSR)

algorithm, a novel direction of gene set analysis, is one of such methods. Here, we explore

the feature selection property of SAM-GSR and provide a modification to better achieve the

goal of feature selection. In a multiple sclerosis (MS) microarray data application, both SAM-

GSR and our modification of SAM-GSR perform well. Our results show that SAM-GSR can

carry out feature selection indeed, and modified SAM-GSR outperforms SAM-GSR. Given

pathway information is far from completeness, a statistical method capable of constructing

biologically meaningful gene networks is of interest. Consequently, both SAM-GSR algo-

rithms will be continuously revaluated in our future work, and thus better characterized.

Introduction

With the development of major pathway databases, e.g., the Kyoto Encyclopedia of Gene and

Genomes (KEGG) [1] and Gene Ontology (GO) [2], the coordinated effect of all genes inside

a pathway or gene set on a phenotype has been increasingly explored. These databases organize

different types of biological pathway or gene set information and record co-expressed/co-regu-

lated patterns. Consequently, many pathway or gene-set analysis methods have been proposed

[3–11]. In this article, the phrases “gene set” and “pathway” are used interchangeably.

Feature selection is usually implemented to cope with the high dimensionality issue in bio-

informatics [12]. It has been shown that when a feature selection method incorporates pathway

knowledge, it has a better predictive power and more meaningful biological implication
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[8,13,14]. Supervised group LASSO method proposed Ma et al [15] is one of such methods.

Briefly, this method consists of two steps. First, LASSO is used to identify relevant genes within

each cluster/group. Then the method selects relevant clusters/groups using a group LASSO. In

their work, the clusters are generated using a K-mean method, and thus are mutually exclusive.

In reality, however, it is common to have a gene involving in many gene sets or pathways. An

alternative way to account for pathway knowledge is suggested by [16]. In this algorithm, a

pseudo-gene taking the average expression value of all genes inside a gene set is created to rep-

resent the whole gene set, and then the downstream analysis is conducted using those pseudo-

genes. However, this method is incapable of selecting individual relevant genes.

A novel direction of gene set analysis was proposed by [17], which aims at further reduction

of a significant gene set into a core subset. The reduction step to a smaller-sized core subset is

essential towards understanding the underlying biological mechanisms. The proposed method

by [17] was named as significance analysis of microarray-gene set reduction (SAM-GSR). The

issue addressed by SAM-GSR is also of interest in a feature selection algorithm, which moti-

vates us to carry out feature selection using the SAM-GSR algorithm.

Multiple sclerosis (MS) is the most prevalent demyelinating disease and the principal cause

of neurological disability in young adults [18]. Currently, MS can only be confirmed using

invasive and expensive tests such as magnetic resonance imaging (MRI). Therefore, research-

ers are searching for an easier and cheaper diagnosis of MS with the aids of other technologies

such as microarray [19–21]. However, the number of microarray experiments on MS is limited

and the sample sizes of those studies are predominately small [22]. Consequently, a feature

selection algorithm that downsizes the number of genes under consideration to a manageable

scale is highly desirable for the classification of MS samples.

As a part of the recently-launched Systems Biology Verification (sbv) Industrial Methodol-

ogy for Process Verification in Research (IMPROVER) Challenge [23], MS sub-challenge tar-

geted specifically on the utilization of gene expression data for the purpose of MS diagnosis.

Among the challenge participants who ranked top in this sub-challenge, two used the methods

accounting for pathway knowledge. First, Lauria [24] used Cytoscape [25] to construct two

separate clusters/networks to discriminate MS samples from controls. Since the modeling par-

simony is not a concern in this method, the resultant signature might be not applicable in the

clinical setting. Second, Zhao et al [26] implemented the method by Chen et al. [16] and gener-

ated one pseudo-gene for each pathway by averaging expression values of all genes in that

pathway. Then a logistic regression with elastic net regularization on those resulting pseudo

features was fitted. This method was shown to be inferior to the regularized logistic regression

model on individual genes.

In this paper, we apply SAM-GSR to MS microarray data to explore if SAM-GSR can be

used for the purpose of feature selection. Also, we propose an extension to SAM-GSR that

explicitly accomplishes feature selection.

Materials and Methods

Experimental data

We considered two microarray datasets in this study. The first one included chips from the

experiment E-MTAB-69 stored in the ArrayExpress [27] repository (http://www.ebi.ac.uk/

arrayexpress). All chips were hybridized on Affymetrix HGU133 Plus 2.0 chips. In this study,

there were 26 patients with relapsing-remitting multiple sclerosis (RRMS) and 18 controls

with neurological disorders of a non-inflammatory nature. The second dataset was provided

by the IMPROVER MS sub-challenge, which is accessible on the project website (http://www.

Feature Selection Using SAM-GSR Algorithm

PLOS ONE | DOI:10.1371/journal.pone.0165543 November 15, 2016 2 / 13

Competing Interests: The authors have declared

that no competing interests exist.

http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
http://www.sbvimprover.com/


sbvimprover.com). It was hybridized on Affymetrix HGU133 Plus 2.0, and there were 28

patients with RRMS and 32 normal controls.

Gene sets were downloaded from the Molecular Signatures Database (MSigDB) [5]. We

considered both c2 and c5 categories. The c2 category includes gene sets from curated path-

ways databases such as KEGG and those manually curated from the literature on gene expres-

sion. The current version (version 4.0) of MSigDB c2 category included 4,722 gene sets

annotating on 11,844 unique genes. The c5 category includes 1,454 gene sets annotated by GO

terms.

Experimental data

Raw data of the first dataset (E-MTAB-69) were downloaded from the ArrayExpress reposi-

tory, and expression values were obtained using the GCRMA algorithm [28] and normaliza-

tion across samples was carried out using quantile normalization. The resulting expression

values were on log2 scale. When there were multiple probe sets representing the same gene, the

one with the largest fold change was chosen. Then the resulting expression values of 19,851

unique genes were fed into downstream analysis. Raw data of the second set were downloaded

from the sbv challenge website, and were separately pre-processed in the same way.

Statistical Methods

SAM-GSR. SAM-GSR is an extension of the SAM-GS algorithm [29], with an objective of

identifying the core gene subset within each selected pathway. It consists of two steps:

SAM-GS to select relevant pathways and the reduction step to obtain the core subset. In

SAM-GS step, the following statistic, named as SAM-GS, is defined for gene set j,

SAMGSj ¼
Xjjj

i¼1

d2

i ; di ¼ ð�xdðiÞ � �xcðiÞÞ=ðsðiÞ þ s0Þ

where di is the SAM statistic [30] of gene i and calculated for each gene for gene set j, �xdðiÞ and

�xcðiÞ are the sample averages of gene i for the diseased and control group, respectively. Param-

eter s(i) is a pooled standard deviation and is estimated by pooling samples over two groups. s0

is a small positive constant used to offset the small variability in microarray expression mea-

surements, and |j| represents the number of genes within gene set j. Basically, the SAM-GS sta-

tistic for a gene set is the L2 norm of SAM statistics over all genes within the gene set.

Inside a significant gene set S, where its statistical significance is estimated using a permuta-

tion test by perturbing phenotype-labels for several hundred times, the reduction step gradu-

ally partitions the entire set S into two subsets: the reduced subset Rk and the residual one �Rk

for k = 1,. . ., |j|. After ordering genes in gene set j increasingly, based on the p-value of genes’

SAM statistics, the first k genes are enrolled into Rk. Let ck be the SAM-GS p-value of �Rk, the

final size of Rk is set as the smallest k where ck is larger than a pre-determined threshold for the

first time. For more descriptions on the SAM-GSR algorithms, see the original work [17]. In

addition, Fig 1A provides its graphical elucidation.

When using the SAM-GSR algorithm to execute feature selection, ck can be regarded as a

tuning parameter. Its optimal cutoff value is determined by conducting a sensitivity analysis in

which a grid of values (i.e., 0.05 to 0.5 with an increment of 0.05) is considered. For each value,

a support vector machine (SVM) [31] with the genes inside the resulting reduced subsets is fit-

ted to calculate the misclassified error, i.e., the number of samples being falsely identified over

the total sample size, on the training set. The optimal cutoff value of ck is the one having the

minimal misclassified error and the least number of selected genes. Lastly, we fit a SVM model
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upon the selected genes with ck being set as the optimal cutoff, and evaluate the predictive per-

formance of this final model using the test set.

Modified SAM-GSR. In SAM-GSR, whether a gene is selected into the core reduced sub-

set Rk depends on the magnitude of its SAM statistic. It implies that if in a gene set |di|> |dk|

for genes i and k, gene k is possible to be involved in the reduce subset Rk only when gene i is

in Rk. When the goal is feature selection, however, the magnitude of individual SAM statistic

might not matter so critically.

In this study, we propose to use a penalized machine learning method to perform feature

selection and classify samples simultaneously. Because SVM is one of the widely used super-

vised learning methods, especially suitable for the two-class classification tasks of microarray

data [32], we propose to use a SVM with a Smoothly Clipped Absolute Deviation (SCAD)

[33,34] penalty to do feature selection. In a linear SVM model, the subjects from two distinct

classes are separated by

f ðxÞ ¼
XG

i¼1

wixi þ b

where x = (x1,..,xG) are the gene expression profiles, and xi (i = 1,. . .G), a vector of length n,

represents gene i’s expression profiles for n patients (n is sample size and G is the number of

genes under consideration). And y (y = -1,1) is the class labels, w = (w1,. . ., wG) are the coeffi-

cients before gene expression values and represent the contribution of those genes to the

Fig 1. Graphical illustration of SAM-GSR and modified SAM-GSR algorithms. A. The SAM-GSR algorithm. B.

The modified SAM-GSR algorithm.

doi:10.1371/journal.pone.0165543.g001
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hyperplane. A SVM model aims at finding the optimal hyperplane with maximal margin,

which can be solved by,

min
b;w

X
ð1 � yif ðxiÞÞþ

þ penlðwÞ

the above penalty term penλ(w) is the sum of a SCAD penalty function over all coefficients,

where the SCAD penalty function for coefficient i is defined by [34] as,

plðwiÞ ¼

ljwij if jwij � l

�
ðjwij

2
� 2aljwij þ l

2
Þ

2ða � 1Þ
if l < jwij � al

ðaþ 1Þl
2

2
if jwij > al

8
>>>>>><

>>>>>>:

where both α and λ are tuning parameters. For small coefficients, SCAD has the same behavior

as L1/LASSO penalty [35], shrinking those coefficients to zeros. For large coefficients, however,

its constant penalty produces smaller biases on the estimations. SVM-SCAD is implemented

using R penalizedSVM package [36]. The default value for α is 3.7. Then for the grid of 2−8,2−7,

2−6, . . . and, 214, λ is optimized via 5-fold cross validations (CV).

The procedure in which an SVM-SCAD model is implemented to select features, but

restricting the genes under consideration to those inside the significant gene sets identified by

SAM-GS, is referred to as modified SAM-GSR herein. Fig 1 elucidates graphically on both

SAM-GSR and modified SAM-GSR algorithms.

Statistical Metrics

Usually, using a single metric to evaluate an algorithm introduces biases. An algorithm may be

erroneously claimed to be superior if a metric in favour of it is chosen or to be inferior if an

unfavourable metric is used [23]. To avoid such biases, we used four metrics, namely, Belief
Confusion Metric (BCM), Area Under the Precision-Recall Curve (AUPR), Generalized Brier
Score (GBS), and error rate to evaluate the performance of a classifier.

Specifically, GBS is defined as using the equation by Yeung et al [37] and then dividing it by

the sample size n,

GBS ¼
1

2n

Xn

i¼1

XK

k¼1
ðYik � pikÞ

2

where Yik (1 if subject i belongs to class k, and 0 otherwise) are indicator functions for class k

(k = 1,. . .,K), and pik denotes the predicted probability such that Yik = 1. GBS is in the internal

of (0,1) while a value closer to zero indicates a better predictive. For more detailed description

on GBS, see the work by [37,38].

BCM and AUPR are two metrics used by SBV challenge. As summarized by [39], BCM cap-

tures the average belief/confidence that a sample belongs to a class when indeed it belongs to

this class. AUPR summarizes the ability of correctly ranking the samples known to be in a

given class when sorted by the belief values decreasingly for that class. For these two metrics,

the closer to 1 they are, the better a classifier is.

Statistical language and packages

Statistical analysis was carried out in the R language version 3.1 (www.r-project.org), and R

codes for SAM-GSR were downloaded from Dr. Yasui’s webpage (www.ualberta.ca/~yyasui/

homepage.html).

Feature Selection Using SAM-GSR Algorithm
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Results and Conclusions

The study schema is presented in Fig 2. First, we trained both SAM-GSR and modified

SAM-GSR models on E-MTAB-69. The selected pathways and genes by both algorithms are

provided in Figs 3 and 4.

To evaluate both algorithms, we computed their predictive statistics on the training (i.e.,

E-MTAB-69) and the test sets (i.e., the sbv test set). As shown in Table 1, the performance of

modified SAM-GSR was superior to SAM-GSR on all performance statistics except for one

AURP (0.612 versus 0.644, using the MSigDB c2 category). Then we reversed the order of

these two datasets and reanalyzed them using the sbv MS test set as the training set. The per-

formance statistics for the resulting signatures are given in Table 2. It is observed that the mod-

ified SAM-GSR algorithm outperforms the SAM-GSR algorithm with respect to both BCM

and AUPR, e.g., the modified SAM-GSR achieves a BCM of 0.5 and an AUPR of 0.75 versus

the SAM-GSR algorithm only has a BCM of 0.457 and an AUPR of 0.422, using the pathways

in the MSigDB c5 category.

Interestingly, we observed that the model parsimony of the modified SAM-GSR algorithm

suffers when trained on E-MTAB-69 while its parsimony is better than that of the SAM-GSR

algorithm when trained on the sbv test set. We remark that when the SAM-GS statistic deter-

mines the significance level of a gene set, the decision of whether or not a gene is included in a

reduced subset mainly depends on the magnitude of this gene’s SAM metric and the additive

effect of genes in the reduced subset. Certainly, the number of gene sets in which a gene is

Fig 2. Study schema. Graphical illustration on how to analyze the multiple sclerosis (MS) microarray data.

doi:10.1371/journal.pone.0165543.g002
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involved also plays an important role. When a gene is involved in many gene sets, its likelihood

of being selected increases several times compared to a barely isolated gene contained in only

one or two gene sets. In contrast, such decision in the modified SAM-GSR algorithm hinges

solely on genes’ contribution to the optimal hyperplane (i.e., weights) in the final SVM model.

Also in E-MTAB-69, the controls are those patients with neurological disorders of a non-

inflammatory nature, such that the difference of expression values between MS and control in

this data set is not as dramatic as the sbv test set in which the controls are normal individuals.

After adjusting for the batch effect among different experiments using combat algorithm, the

difference of expression profiles between a normal control and a control with non-inflamma-

tory neurological disorders is distinct. This also explains why the predictive performance when

trained on the sbv test set is not satisfying.

Therefore, we hypothesize that the modified SAM-GSR algorithm compromises on the

model parsimony in order to obtain a good predictive performance when trained on

E-MTAB-69. While the observation that the number of differentially expressed genes (DEGs)

identified in the sbv test set is more than 10 times of that in E-MTAB-68 provides some sup-

port on this conjecture, further investigation is definitely needed.

Fig 3. Selected pathways and genes by both SAM-GSR algorithms using pathways inside the MSigDB c2 category. Gene symbols in purple are the

genes indicated as being directly related to MS by the GeneCards database. The overlapped gene symbols between the SAM-GSR and modified SAM-GSR

algorithms are in bold.

doi:10.1371/journal.pone.0165543.g003
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Fig 4. Selected pathways and genes by both SAM-GSR algorithms using pathways inside the MSigDB c5 category. Gene symbols in purple are the

genes indicated as being directly related to MS by the GeneCards database. The overlapped gene symbols between the SAM-GSR and modified SAM-GSR

algorithms are in bold.

doi:10.1371/journal.pone.0165543.g004

Table 1. Performance statistics of selected genes using E-MTAB-69 as the training set.

E-MTAB-69 sbv Improver test set

Error (%) GBS BCM AUPR Error (%) GBS BCM AUPR

C2: SAM-GSR (18) 20.45 0.121 0.701 0.896 46.67 0.464 0.500 0.644

C2: M-SAM-GSR (271) 0 0.066 0.747 0.992 46.67 0.291 0.520 0.612

C2: L1 as penalty (112) 0 0.083 0.719 0.992 33.33 0.207 0.564 0.776

C5: SAM-GSR (8) 13.64 0.134 0.673 0.904 46.67 0.464 0.500 0.579

C5: M-SAM-GSR (40) 0 0.046 0.800 0.992 43.33 0.365 0.577 0.703

Note: C2 represents the analyses using the pathways in MSigDB c2 category; C5 represents the analyses using the pathways in MSigDB c5 category.

M-SAM-GSR abbreviates for modified SAM-GSR algorithm. GBS: Generalized Brier Score; BCM: Belief Confusion Metric; AUPR: Area Under the

Precision-Recall Curve.

doi:10.1371/journal.pone.0165543.t001
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Comparison with other relevant signatures

We compared several MS diagnosis signatures in the literatures with the ones we obtained

using both SAM-GSR algorithms. Here, we only compared the performance of different signa-

tures on the sbv IMPROVER test set. The performance statistics of those signatures were tabu-

lated in Table 3.

Most relevantly, Guo et al. [40] obtained an 8-gene signature using the same training set.

This 8-gene signature ranked as the second worst, and only outperformed our original submis-

sion to sbv IMPROVER challenge. Compared with the top three teams in sbv MS diagnosis

challenge, we remark that if we had submitted the results of modified SAM-GSR analysis to

sbv IMPROVER challenge, we would have been ranked among top five.

In the worst performed signature, our original submission to the sbv challenge, the Thresh-

old Gradient Descent Regularization (TGDR) [41] algorithm was utilized to conduct feature

selection, and the training data sets included E-MTAB-69 in addition to five other microarray

studies. Among these five microarray experiments, the chips from normal controls were

included. Here, we reran TGDR analysis using E-MTAB-69 as the training set. The predictive

performance improved dramatically, as indicated by the statistics in Table 3. There always

Table 2. Performance statistics of selected genes using the sbv Improver MS data as the training set.

sbv Improver test set E-MTAB-69

Error (%) GBS BCM AUPR Error (%) GBS BCM AUPR

C2: SAM-GSR (257) 0 0.054 0.772 0.995 42.73 0.296 0.486 0.483

C2: M-SAM-GSR (111) 0 0.020 0.901 0.995 59.09 0.316 0.501 0.516

C5: SAMGSR (204) 0 0.046 0.793 0.995 54.55 0.337 0.457 0.422

C5: M-SAM-GSR (72) 0 <0.001 0.993 0.995 40.91 0.409 0.501 0.750

Note: C2 represents the analyses using the pathways in MSigDB c2 category; C5 represents the analyses using the pathways in MSigDB c5 category.

M-SAM-GSR abbreviates for the modified SAM-GSR algorithm. GBS: Generalized Brier Score; BCM: Belief Confusion Metric; AUPR: Area Under the

Precision-Recall Curve.

doi:10.1371/journal.pone.0165543.t002

Table 3. Comparison with other relevant signatures on the sbv Improver set.

Study (size) Training data used Error (%) GBS BCM AUPR

SAM-GSR (8) E-MTAB-69 46.67 0.464 0.500 0.579

M-SAM-GSR (40) E-MTAB-69 43.33 0.365 0.577 0.703

Lauria (n>100) E-MTAB-69 — — 0.884 0.874

Tarca (n = 2) GSE21942 (on Human Gene 1.0 ST) — — 0.629 0.819

Zhao (n = 58)a 7 other data besides E-MTAB-69 30 — 0.576 0.820

Zhao (n = 84)b 7 other data besides E-MTAB-69 35 — 0.549 0.636

Tian (n = 28) 1 5 other data besides E-MTAB-69 68.33 0.546 0.345 0.362

Tian (n = 38) 2 E-MTAB-69 38.33 0.290 0.559 0.593

Guo (n = 8) * E-MTAB-69 46.67 0.462 0.499 0.504

Note: M-SAM-GSR abbreviates for the modified SAM-GSR algorithm. GBS: Generalized Brier Score; BCM: Belief Confusion Metric; AUPR: Area Under the

Precision-Recall Curve; —: not available.

* The predictive statistics on the test set for Guo’s study were calculated based on the 8-gene signature they provided in their article.
1The original submission by us to sbv IMPROVER using the TGDR algorithm, it was ranked around 30 among 54 participants.
2We trained TGDR on E-MTAB-69 to evaluate if different training sets result in difference performance of an algorithm.
aZhao et al used elastic net to select individual genes, this submission ranked the third place in sbv MS subtask.
bZhao et al used elastic net to select pseudo genes created by the averages of the genes inside pathways.

doi:10.1371/journal.pone.0165543.t003
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exists data dependency for a feature selection algorithm [42]. Additionally, we think that the

expression value profiles may be still be subject to batch effect even though we adjusted for it

using combat algorithm [43]. Lastly, the distinct difference between normal controls and con-

trols with other diseases might also play a role.

Further verification using lung adenocarcinoma (AC) datasets

To further evaluate on both SAM-GSR algorithms, we applied these two algorithms to another

set of real-world datasets. The objective is to discriminate histology stage I from stage II of

lung adenocarcinoma patients. We trained both algorithms on a microarray dataset (GEO

accession No: GSE 50081) and then evaluated the resulting signatures using 70 AC patients at

early stages (i.e., stage I and II) in the RNA-seq data stored in The Cancer Genome Atlas

(https://tcga-data.nci.nih.gov/tcga/). In this application, we only considered the pathways in

the MSigDB c5 category.

For the RNA-seq data, Counts-per-million (CPM) values were calculated and log2 trans-

formed by Voom function [44] in R limma package. For the microarray data, expression values

were obtained using the fRMA algorithm [45], and then quantile normalization was carried

out and those expression values were log2 transformed.

The results for both SAM-GSR algorithms in the AC application are given in Table 4. More-

over, we made a comparison of both SAM-GSR algorithms with three other feature selection

algorithms, namely, SVM-SCAD, LASSO, and moderated t-test. These three algorithms are

either well known in the field, e.g., LASSO or very relevant, e.g., SVM-SCAD. The perfor-

mance statistics are presented in Table 4 as well. It is shown that modified SAM-GSR performs

the best with respect to GBS and BCM, and SAM-GSR performs worse than SVM-SCAD in

terms of predictive error, GBS, and BCM but ranks as the first in terms of AUPR. Overall, the

modified SAM-GSR algorithm is the best among these five methods if all performance statis-

tics are considered together.

Discussion

The results of real-world applications show that the modified SAM-GSR algorithm has similar

or better performance compared with the SAM-GSR algorithm and other novel feature selec-

tion algorithms. Moreover, the modified SAM-GSR algorithm has its distinguished merits.

First, it requires less computational burden given it applies penalized SVM once instead of sub-

sequently evaluating on SAM-GS statistics of the reduced subsets. Second, it automatically pro-

duces a final model that can be used to calculate a new sample’s posterior probability whereas

SAM-GSR needs an extra application of SVM in order to obtain such probability.

Table 4. Performance statistics for the lung adenocarcinoma application.

Method Size TCGA RNA-Seq data

Error (%) GBS BCM AUPR

SAM-GSR 111 35.7 0.357 0.5 0.692

M-SAM-GSR 89 44.3 0.312 0.552 0.666

SVM SCAD 117 32.9 0.329 0.54 0.645

Lasso 84 52.9 0.528 0.511 0.504

Moderated t-test 329 35.7 0.357 0.5 0.569

Note: M-SAM-GSR abbreviates for the modified SAM-GSR algorithm. GBS: Generalized Brier Score; BCM: Belief Confusion Metric; AUPR: Area Under the

Precision-Recall Curve

doi:10.1371/journal.pone.0165543.t004
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To conclude, by incorporating the additional pathway knowledge contained in gene sets,

both SAM-GSR algorithms have good performance, and they can be utilized for feature selec-

tion indeed. The modified SAM-GSR algorithm has advantages over the SAM-GSR algorithm.

In the clinical setting, a feature selection algorithm that downsizes the number of genes to an

understandable scale is imperative when using gene expression profiles for diagnostic pur-

poses. Focusing on a smaller number of genes facilitates biological insight into disease pro-

cesses and thus provides insight on the targeted therapies and intervention strategies.

Furthermore, feature selection makes the replacement of a high-throughput microarray tech-

nology with some cheaper and quicker alternatives such as real-time PCR possible, thus

increasing the applicability of the gene biomarkers in routine practice.

As indicated by the simulations in S1 File, both SAM-GSR algorithms have one drawback:

when the true markers are only involved in few gene sets, both algorithms are highly unlikely

to identify them. To alleviate or even eliminate this disadvantage, some specific modification

on the SAM-GS step is needed. Moreover, the way of the SAM-GSR algorithms account for

the pathway knowledge is obviously not seamless. Ignoring the pathway topology completely,

the SAM-GSR algorithms heavily weigh on the number of gene sets inside which a gene is con-

tained. Future study on these topics is warranted.

Given that pathway information is far from completeness, especially for an under-investi-

gated disease such as MS, the de novo construction of biologically meaningful gene networks

using a statistical method is recommended. The basic requirement for such a method is that it

must take interactions and interplay among genes into account so that a gene is possible to

appear in multiple gene sets. Then using the more appropriate and comprehensive pathway

information, both SAM-GSR algorithms will be revaluated and better characterized.

Supporting Information

S1 File. Simulations to further evaluate on both SAM-GSR algorithms.

(DOCX)
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