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A B S T R A C T

The transition from childhood to adolescence is marked by distinct changes in behavior, including how one
values waiting for a large reward compared to receiving an immediate, yet smaller, reward. While previous
research has emphasized the relationship between this preference and age, it is also proposed that this behavior
is related to circuitry between valuation and cognitive control systems. In this study, we examined how age and
intrinsic functional connectivity strength within and between these neural systems relate to changes in dis-
counting behavior across the transition into adolescence. We used mixed-effects modeling and linear regression
to assess the contributions of age and connectivity strength in predicting discounting behavior. First, we iden-
tified relevant connections in a longitudinal sample of 64 individuals who completed MRI scans and behavioral
assessments 2–3 times across ages 7–15 years (137 scans). We then repeated the analysis in a separate, cross-
sectional, sample of 84 individuals (7–13 years). Both samples showed an age-related increase in preference for
waiting for larger rewards. Connectivity strength within and between valuation and cognitive control systems
accounted for further variance not explained by age. These results suggest that individual differences in func-
tional brain organization can account for behavioral changes typically associated with age.

1. Introduction

Temporal discounting (also known as inter-temporal choice or delay
discounting) is the process of assessing the value of waiting for a future
reward depending on the magnitude of the reward and the delayed
time. Individuals vary in their temporal discounting behavior, with
some having a stronger preference for taking a smaller immediate re-
ward versus waiting for a larger reward, and vice versa (Sadaghiani and
Kleinschmidt, 2013). Previous experimental studies suggest a positive
relationship between chronological maturation (age) and the tendency
to prefer waiting for the larger reward (de Water et al., 2014; Steinberg
et al., 2009), although some studies have found evidence for a non-
linear relationship in the transition into adolescence (Scheres et al.,
2014). Interestingly, the development of temporal discounting with age
may be a stable marker of liability for disinhibitory psychopathologies

such as ADHD even when psychopathological symptoms change with
age (Karalunas et al., 2017). It has been proposed that brain function
and organization can explain individual differences in temporal dis-
counting behavior (Christakou et al., 2011; Hare et al., 2014; Li et al.,
2013; Scheres et al., 2013; van den Bos et al., 2014). Therefore, in this
study, we analyzed how chronological maturation interacts with func-
tional brain organization to predict temporal discounting.

1.1. Temporal discounting as a measure of decision-making preference

Tasks assessing temporal discounting behavior can be used to
measure an individual’s preference for a smaller-sooner reward (SSR) in
comparison to a larger-later reward (LLR) (Green et al., 1997). These
tasks typically ask individuals to choose between two rewards that vary
in both the reward size and the required delay time until the amount is
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acquired (Myerson and Green, 1995). For example, participants typi-
cally respond to several questions in the following format: “At the
moment, what would you prefer?” Below the question two options are
presented (e.g. “$7.00 now”, “$10 in 30 days”). The SSR and LLR vary
in both delay interval and reward size over successive trials; this way,
the subjective value of temporal reward can be measured. Individuals
preferring the SSR are characterized to have greater temporal dis-
counting; conversely, individuals preferring the LLR are characterized
to have less temporal discounting. One way to measure this subjective
value of temporal reward is through the use of indifference points (the
delay duration at which the magnitude of SSR equals the magnitude of
LLR) (Richards et al., 1999). The indifference points are useful in cal-
culating a single index of discounting rate, and in determining the value
of the delayed reward (Yi et al., 2010). Specifically, plotting the in-
difference points in a series yields a discount curve, which describes the
rate at which the value of reward decreases over time.

1.2. Brain networks involved in temporal discounting

Cortico-striatal circuitry is involved in decision-making processes
(Haber and Knutson, 2009), including temporal discounting (Peters and
Büchel, 2011). In the present study, we focus on two cortico-striatal
systems (defined a priori) that have been consistently correlated with
different outcomes of an individual’s preference and value (Peters and
Büchel, 2011; van den Bos et al., 2014): a valuation system (amygdala,
medial orbitofrontal cortex, posterior cingulate cortex, ventromedial
prefrontal cortex, and ventral striatum) and a cognitive control system
(ventral lateral prefrontal cortex, dorsal anterior cingulate cortex,
dorsolateral prefrontal cortex, dorsal striatum, and inferior frontal
cortex) (See Fig. 1a). Specifically, increased structural connectivity
between the striatum and cortical control regions have been found to be
related to decreased temporal discounting, whereas increased structural
connectivity between the striatum and subcortical valuation regions
were related to increased temporal discounting in adults (van den Bos
et al., 2014). We also assessed connectivity between these networks and
the supplementary motor area and hippocampus, given their involve-
ment in intertemporal choice behavior (Peters and Büchel, 2010;
Scheres et al., 2013; van den Bos et al., 2014).

Brain networks involved in temporal discounting can be inter-
rogated with MRI in multiple ways, including task-based fMRI studies
in which participants are asked to make temporal discounting deci-
sions. Overall, it has been theorized that adults with high temporal
discounting preference are more likely to show greater recruitment of
the control network and less recruitment of the valuation network when
choosing a LLR over a SSR (van den Bos and McClure, 2013; Volkow
and Baler, 2015). While task-evoked brain activity can inform us on the
functionality of cortical networks during specific contexts, intrinsic
brain activity at rest can be used to measure an individual’s functional
brain organization. The intrinsic activity of the brain reflects, in part,
past activities, and these fluctuations impact future behavior
(Sadaghiani and Kleinschmidt, 2013). Brain functionality and fluctua-
tions are believed to determine and shape connectivity patterns. Here,
we study the brain’s intrinsic connectivity using resting-state functional
connectivity MRI (rs-fcMRI) (Power et al., 2014b), which characterizes
the functional relationship between brain regions while a participant is
not performing a specific task by correlating slow spontaneous fluc-
tuation of the blood oxygen level dependent (BOLD) signal. These in-
trinsic activity correlations can reveal the cohesive connections and
interactions present in neuronal networks (Boly et al., 2008). Previous
studies in adults have found that intrinsic brain connectivity within
cortico-striatal networks were related to an individual’s temporal dis-
counting preference (Calluso et al., 2015; Li et al., 2013).

1.3. Development of brain networks underlying temporal discounting

It is hypothesized that differential rates of maturation across

cortico-striatal systems, and the protracted development of the inter-
connections between them, are related to changes in behavior across
development (Casey, 2015; Costa Dias et al., 2012, 2015; van den Bos
et al., 2015). In adults, it has been theorized that greater recruitment of
control networks (and less recruitment of the valuation networks) are
indicative of choosing the LLR, however, it is currently unclear if this
brain-behavior relationship is present throughout development. One of
the first task-based fMRI studies of temporal discounting examined the
impact of age-related (ages 12–32 years; males) changes in brain acti-
vation when deciding between a SSR and a LLR (Christakou et al.,
2011). This study demonstrated that when choosing an immediate re-
ward, increased recruitment of the vmPFC and decreased recruitment of
the ventral striatum, insula, anterior cingulate, occipital, and parietal
cortices was related to increasing age and preference for LLR. Further,
greater coupling between the ventral striatum and vmPFC was also
related to increasing age and preference for LLR, suggesting that in-
creased functional connectivity between the vmPFC and ventral
striatum (regions of the valuation network) might be one neural me-
chanism underlying developmental changes in the preference for de-
layed rewards.

Another theory is that neural systems involved in three cognitive
processes: valuation (i.e., the value placed on a certain stimuli or out-
come), cognitive control (i.e., engaging in goal-directed cognitive pro-
cesses), and prospection (i.e., thinking about the future), are involved in
the process of temporal discounting (Peters and Büchel, 2011). Using
this framework, Banich et al. (2013) compared the behavioral and
neural correlates of temporal discounting in younger (14–15 years) and
older (17–19 years) adolescents, and how these measures related to an
individual’s self-reported tendency to think beyond the present. Beha-
viorally, older adolescents were more likely to choose a delayed reward
over an immediate reward, and were slower than younger adolescents
to choose the immediate reward (Banich et al., 2013). The pattern of
brain activity related to intertemporal decision making was more dis-
tinct when choosing between immediate versus delayed rewards in the
older adolescents compared to the younger adolescents (Banich et al.,
2013). Across groups, individuals who reported a greater tendency to
think beyond the present showed decreased recruitment of cognitive
control regions during the temporal discounting task. These results
suggest that both age and individual differences are related to the
neural processing of temporal discounting.

Another study found that greater white matter integrity in pathways
connecting the frontal and temporal cortices with other areas of the
brain were positively correlated with the preference for delayed re-
wards across ages 9–23 years (Olson et al., 2009). Some of these cor-
relations were developmentally related, whereas some of the effects
appeared to be age-independent. For example, the relationship between
greater white matter integrity in right frontal and left temporal regions
and increased preference for delayed reward was not attributable to
age. However, the relationship between integrity of white matter in left
frontal, right temporal, right parietal (as well as some subcortical-cor-
tical circuits) and the preference for delayed reward was age-related, as
these white matter tracts also increased in integrity across the age range
studied. These results show that both age and individual differences in
neural circuitry are related to an individual’s preference for immediate
versus delayed rewards. A recent longitudinal study examined the re-
lationship between temporal discounting and fronto-striatal circuitry in
individuals between the ages of 8–26 (Achterberg et al., 2016). This
study found that preference for LLR increased non-linearly between
childhood and early adulthood, and that greater fronto-striatal white
matter integrity was related to the preference for LLR (Achterberg et al.,
2016).

Taken together, these studies demonstrate that people, on average,
show increasing preference to wait for larger rewards rather than take
immediate (smaller) rewards as they get older, but the increase may be
nonlinear. Individual differences across development in temporal dis-
counting preference are related to differences in functional brain
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organization. How one comes to choose a smaller immediate reward
over a larger distant reward could be related to how that individual
values the proposed reward, or it could be related to how well that
individual can inhibit reflexive urges or the ability to think about the
future. The development of brain systems involved in evaluating re-
wards, cognitive control, and thinking about the future all appear to
contribute to the developmental changes in how we process situations
that involve us making a choice between an immediate outcome and a
distant outcome.

1.4. Current study

This current project examines how developmental changes in
functional connectivity between and within the cognitive control net-
work, valuation network, hippocampus and SMA relate to temporal
discounting preferences during the transition into adolescence.
Specifically, we examined if changes in functional connectivity strength
could explain additional variance in temporal discounting preferences
above chronological age. Previous studies have reported no significant
difference in discounting behavior between boys and girls (Cross et al.,
2011; Lee et al., 2013), suggesting that any sex effects are likely to be
small. Therefore, to conserve statistical power, the relationship between
sex and temporal discounting behavior was not examined.

2. Methods

2.1. Participants

Our two neurotypical samples were drawn from an ongoing long-
itudinal project examining brain development in children, recruited
from the community, with and without attention-deficit/hyperactivity
disorder (ADHD). Our first sample consisted of 64 individuals with 2 or
3 longitudinal scans each (n= 137 scans), and our second, cross-sec-
tional, sample consisted of 84 individuals. Details for both samples are
included in Table 1. All participants were typically-developing children
without psychiatric diagnoses and exhibited typical neurological pat-
terns of thoughts and behavior throughout the study. Psychiatric status
was evaluated based on evaluations with the Kiddie Schedule for Af-
fective Disorders and Schizophrenia (KSADS; Puig-Antich and Ryan,
1986) administered to a parent; parent and teacher Conners’ Rating
Scale-3rd Edition (Conners, 2003); and a chart review that required the
agreement between a child psychiatrist and neuropsychologist. Any
participant who was identified as having a current psychiatric, neuro-
logical, or neurodevelopmental disorder was excluded from the present
study. IQ was estimated with a three-subtest short form (block design,
vocabulary, and information) of the Wechsler Intelligence Scale for
Children, 4th Edition (Wechsler, 2003).

Fig. 1. Brain systems of interest and regions of interest. [A] Brain networks (including two other regions out of the networks) included in this study. The regions in
red represent the cognitive control network. The regions in blue represent the valuation network. The regions in green and purple represent the supplementary motor
area and the hippocampus, respectively. [B] Each brain region included in this study. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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2.2. Temporal discounting task

The temporal discounting task evaluates personal preference for a
hypothetical delayed or immediate reward. Participants were presented
a computerized task with a series of questions, and were read the fol-
lowing instruction before proceeding to the task:

For the next task, you can choose between two options by clicking
on it using the computer mouse. You can change your selection as
often as you would like. Once you have decided which option you
prefer, you can go on to the next question by clicking on the ‘next
question’ box. One option will always be some amount of money
available now. The other option will always be some amount of
money later. The waiting period will vary between now and 180
days. Imagine that the choices you make are real– that if you choose
‘money now’ you would receive that amount of money at the end of
the task and that if you choose ‘money later’ that you would actually
have to wait before receiving the money. So, what are you going to
do?

The computer-based task consisted of 92 questions with an option to
get a smaller reward immediately or get a larger amount of money
($10.00) at a later time period. Most of the participants were presented
delays in intervals of 7, 30, 90, 180 days; a small percent of the par-
ticipant were presented with different delay intervals of 1, 7, 30, 90
days.

Our temporal discounting task was analyzed by multivariate
mathematical equations to measure an individual’s decision-making
preference. Reward in relation to the time span is usually used to
measure the preference of an individual or a collective population
generalized by age.

There are many mathematical ways to analyze temporal discounting
task, however, for this experiment we choose Area Under Curve (AUC).
AUC (see Box 1) best represents the preference of the participants as it
takes into consideration the indifference point and the corresponding
delay time (Myerson et al., 2001). AUC is equated to best represent the
variables present in this experiment; it takes into account the sum of
indifference and delay points acquired through temporal discounting,
and outputs one value making it easier for analysis (Myerson et al.,
2001).

The x2 and x1 are the delayed points, and y2 and y1 represent the
indifference points that correspond to the delays (Hamilton et al., 2015;
Odum, 2011). The AUC outputs a signal value between 0 and 1; a lower
number represents less tolerance for the delay time and greater

possibility to disregard the value of the reward (Myerson et al., 2001;
Odum, 2011). The closer the AUC value is to zero, the more temporal
discounting is present, and therefore the participant is less likely to wait
for a larger reward. Likewise, the farther away the AUC value is to zero,
the more likely the participant is going to wait for the larger reward to
be received at a later time.

Three validity criteria were applied to the quantification of AUC.
The first criterion was to make sure that an indifference point for a
specific delay was not greater than the preceding delay indifference
point by more than 20% or $2 (Johnson and Bickel, 2008). The next
criterion was the requirement for the final indifference point, at 180
days, to be less than the first indifference point, at 0 days, to indicate
variation in subjective value of rewards across (Johnson and Bickel,
2008). The final criterion was to require the first indifference point, at 0
day, to be at least 9.25. This last criterion was enforced because a lower
value indicates that the participant chose multiple time to receive the
smaller “now” over the larger “now”, suggesting poor task engagement
or misunderstanding of the task (Mitchell et al., 2015).

2.3. MRI acquisition

MRI was acquired using a 3.0 T Siemens Magnetom Tim Trio
scanner with a twelve-channel head-coil at the Oregon Health & Science
University Advanced Imaging Research Center. One high-resolution T1-
weighted MPRAGE (TR=2300ms, TE= 4ms, FOV=240×256mm,
1mm isotropic, sagittal acquisition) and multiple T2-weighted echo
planar imaging (TR=2500ms, TE=30ms, FOV=240×240mm,
3.8 mm isotropic, either 82 or 120 volumes, axial acquisition, 90° flip
angle) series were acquired during each scan visit. Functional data were
collected at rest, in an oblique plane (parallel to anterior commissure-
posterior commissure plane), and steady state magnetization was as-
sumed after five frames (∼10 s). Participants were instructed to stay
still and fixate their gaze on a standard fixation-cross in the center of
the display during the acquisition of resting state scans.

2.4. Image processing

The data were processed following the minimum processing steps
outlined by the Human Connectome Project (Glasser et al., 2013),
which included the use of FSL (Jenkinson et al., 2012; Smith et al.,
2004; Woolrich et al., 2009) and FreeSurfer image analysis suite
(http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl et al.,
1999). With this method, gradient distortion corrected T1w and T2w

Table 1
Participant demographic characteristics for each sample.

Longitudinal Sample Characteristics Cross-sectional Sample
Characteristics

All Female Male All Female Male

N 64 23 41 84 42 42
Age mean (SD) 10.8 (1.83) 10.6 (1.95) 10.9 (1.77) 10.3 (1.39) 10.3 (1.34) 10.3 (1.44)
Age range 7.3–15.7 7.3–15.7 7.5–14.5 7.3–13.3 8–13.3 7.2-13.2
AUC mean (SD) 0.51 (0.273) 0.51 (0.261) 0.51 (0.281) 0.45 (0.288) 0.44 (0.306) 0.47 (0.273)
AUC range 0.04–1 0.07–0.99 0.04–1 0.02–0.98 0.03–0.98 0.02–0.98
IQ mean (SD) 115.3 (13.95) 116.6 (9.58) 114.6 (15.88) 116.5 (13.82) 114.5 (14.86) 118.4 (12.59)
IQ range 72–144 98 - 132 72 - 144 78 - 148 78 - 144 96 - 148
N visits 137 49 88 84 42 42
2 visits 55 20 35 – – –
3 visits 9 3 6 – – –

Box 1
AUC Equation.

=AUC x x( ) y y
2 1 2

1 2
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volumes are first aligned to MNI’s AC-PC axis and then nonlinearly
normalized to the MNI atlas. Next, the T1w and T2w volumes are re-
registered using boundary based registration (Greve and Fischl, 2009)
to improve alignment. The brain of each individual is then segmented
using the ‘recon-all’ FreeSurfer functions, which are further improved
by utilizing the enhanced white matter-pial surface contrast of the T2w
sequence. The initial pial surface is calculated by finding voxels that are
beyond± 4 standard deviations from the grey matter mean. The re-
sulting parameter is then used to make sure no lightly myelinated grey
matter is excluded. The estimated segmentation is refined further by
eroding it with the T2w volume. Of the 221 total scan visits included in
this study, 51 (23%) were processed without a T2w volume, either
because this sequence was not acquired or was judged as being of low
quality. These 51 were processed using FreeSurfer’s regular T1 seg-
mentation algorithm (Fischl et al., 2002). Next, the preliminary pial
surface and white matter surface are used to define an initial cortical
ribbon. The original T1w volume is smoothed with the ribbon using a
Gaussian filter with a sigma of 5mm. Then, the original T1w image is
divided by the smoothed volume to account for low frequency spatial
noise. This filtered volume is used to recalculate the pial surface, but
now using 2 (instead of 4) standard deviations as threshold to define the
pial surface. These segmentations are then used to generate an in-
dividualized 3D surface rendering of each individual, which is finally
registered to the Conte 69 surface atlas as defined by the Human
Connectome Project. This registration process allows all data types
(cortical thickness, grey matter myelin content, sulcal depth, function
activity, functional and structural, connectivity, etc.) to be aligned di-
rectly within and between individuals. All T1w and T2w MRI scans
were quality controlled for any noticeable movement through visual
inspection of raw and reconstructed images. The images were assessed
in a pass or fail manner; scans that failed were excluded from the
samples included in the present study.

Functional EPI data are registered to the first volume using a 6-
degrees of freedom linear registration and corrected for field distortions
(using FSL’s TOPUP), except for two scans (of 221) where no field map
had been acquired. Next the EPI volumes are averaged, with each vo-
lume of the original time series re-registered to the average EPI volume
using a 6-degrees of freedom linear registration. This last step avoids
biases due to a single frame being used, which may be confounded by
variability of movement across a given run. The average EPI volume is
then registered to the T1w volume. The matrices from each registration
step are then combined, such that each frame can be registered to the
atlas all in a single transform (i.e. only one interpolation).

The resulting time-courses are then constrained by the grey matter
segmentations and mapped into a standard space of 91,282 surface
anchor points (greyordinates). This process accounts for potential par-
tial voluming by limiting the influence of voxels that “straddle” grey
and non-grey matter voxels (pial surface, white matter, ventricles,
vessels, etc). Two thirds of the greyordinates are vertices (located in the
cortical ribbon) while the remaining greyordinates are voxels within
subcortical structures. Thus, the BOLD time courses in greyordinate
space are the weighted average of the volume’s time courses in grey
matter, where the weights are determined by the average number of
voxels wholly or partially within the grey matter ribbon. Voxels with a
high coefficient of variation are excluded. Next, the surface time
courses are downsampled to the greyordinate space after smoothing
them with a 2mm full-width-half-max Gaussian filter.

The additional preprocessing steps necessary for resting-state func-
tional connectivity analyses consist of regressing out the whole brain
(in this case the average signal across all greyordinates (e.g., see
Burgess et al., 2016), ventricle and white matter average signal, and
displacement on the 6 motion parameters, their derivatives and their
squares (Power et al., 2014a). All regressors are individualized and
specific to the participant, based on their own segmentations. The re-
gression’s coefficients (beta weights) are calculated solely on the frames
where the frame displacement is below 0.3mm to reduce the influence

of movement “outliers” on the output data, but all the time courses are
regressed to preserve temporal order for temporal filtering. Finally,
time courses are filtered using a first order Butterworth band pass filter
with cutting frequencies of 9mHz and 80mHz.

We applied a strict motion censoring procedure to the resting-state
images (Fair et al., 2012b; Power et al., 2012) which takes the absolute
value of the backward-difference for all rotation and translation mea-
sures in millimeters, assuming a brain radius of 50mm, and summates
those absolute backward-differences for a measure of overall framewise
displacement (FD). Volumes with a displacement exceeding 0.2mm
were excluded, and we also removed frames with less than five con-
tiguous frames of low motion data between instances of high motion
(FD > 0.2mm) data to confidently account for motion effects on ad-
jacent volumes (Power et al., 2014a). Only participants with greater
than 5min of high quality data were included in the present analysis.
The mean framewise displacement of participants in the first sample
was 0.08 ± 0.02mm; range 0.05–0.13mm. The mean framewise dis-
placement of participants in the second sample was 0.09 ± 0.02mm;
range 0.04–0.13mm. More information on the motion characteristics
on the full sample (i.e. including those excluded) can be viewed in
Dosenbach et al., (2017).

2.5. Regions of interest

Our regions of interest (ROIs) included regions within valuation and
cognitive control systems, as well as hippocampus and supplementary
motor area (SMA). For our cortical ROIs, we selected regions within
each of these networks from the Deskan-Killiany atlas provided by
FreeSurfer (Desikan et al., 2006). While other parcellations can be
considered, we chose this parcellation in order to examine anatomi-
cally-defined cortical regions that have been identified in previous
work. Cortical reconstruction and volumetric segmentation was per-
formed with the FreeSurfer image analysis suite, which is documented
and freely available for download online (http://surfer.nmr.mgh.
harvard.edu/). The technical details of these procedures are described
in prior publications (Dale et al., 1999; Fischl et al., 2002; Fischl and
Dale, 2000). FreeSurfer uses individual cortical folding patterns to
match cortical geometry across subjects (Fischl et al., 1999), and maps
this parcellation of the cerebral cortex into units with respect to gyral
and sulcal structure (Desikan et al., 2006; Fischl et al., 2004). Our
striatal and subcortical ROIs were defined based on FreeSurfer’s ana-
tomical segmentation procedure. For the purposes of this study, we
examined the nucleus accumbens (NAcc), pallidum, amygdala, medial
orbitofrontal cortex (mOFC), and posterior cingulate cortex (PCC) as
part of the valuation network, and the caudate, putamen, anterior
cingulate cortex (ACC), dorsal anterior cingulate cortex (dACC), dor-
solateral prefrontal cortex (dlPFC), inferior frontal gyrus (IFG), and
ventrolateral prefrontal cortex (vlPFC) of the cognitive control network
(Fig. 1; SI Table 1).

2.6. Statistical analysis

In this study, we first tested to see whether chronological age could
be used to predict temporal discounting preference as measured by
AUC. We then tested to see if the strength of connectivity between each
of our ROIs was able to explain variance in temporal discounting AUC
values above chronological age. All analyses were conducted in R
version>3.3.3 (https://www.r-project.org/). The script we used to
conduct these analyses is freely available online to facilitate reprodu-
cibility and replication efforts (https://github.com/katemills/temporal_
discounting).

2.7. Sample 1

For our first, longitudinal, sample we tested each of these questions
using mixed-effects models with the nlme package implemented
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through R. Mixed effects modeling accounts for the non-independence
of the data collected from the same individual over time and allows for
unequal spacing between data collection points. This statistical analysis
contains both the average slope and intercepts of the parameter (fixed
effects), and varying intercept for each individual that is a random
deviation of the fixed effect (random effect). We tested the following
three polynomial models to predict AUC from chronological age:

= +Linear age model y x: ( )0 1

= + +Quadratic age model y x x: ( ) ( )0 1 2
2

= + + +Cubic age model y x x x: ( ) ( ) ( )0 1 2
2

3
3

Where y is the AUC value, and 0 represents the intercept; x represents
the participant’s age; and and,1 2 3 represent regression coefficients.
We centered age for all analyses (10.70 years). The three age models
were compared and tested against a null model that only included the
random intercept for each individual. The best fitting model was de-
termined by Akaike Information Criterion (AIC) and likelihood ratio
(LR) statistics using the heuristic of parsimony. The model with the
lowest AIC value that was significantly different (p < .05), as de-
termined from LR tests, from less complex models was chosen.

To identify the connections that could predict an individual’s AUC
score above chronological age, we used LR statistics to compare models
including a connection of interest (COI) correlation coefficient as an
interaction and/or main effect added to the age only model. These brain
connectivity models were then compared against each other as well as
the best fitting age model. The model with the lowest AIC value that
was significantly different (p < .01) from less complex models was
selected as the best fitting model. To account for the possibility that
brain connectivity alone could account for more variance in AUC values
than the age-only model or the multivariate models, we also tested to
see if a model including the COI correlation coefficient, but not age, was
the best fitting model. We identified connectivity-only models if they
had lower AIC than the age only models, and were also both sig-
nificantly different and had lower AIC than the other more complex
models. Finally, we examined if including key covariates measures such
as IQ, puberty, or race impacted these models (see Supplementary
methods).

2.8. Sample 2

We examined the same questions in the second sample to test the
replicability of the results obtained from the first sample. As we wanted
to examine the generalizability of the effects and developmental trends
observed in our first sample, we set out to test the relevant connections
observed from the analysis of the first sample in a cross-sectional
sample with a similar, but not identical, age range. Further, by testing
the relevant connections observed from the analysis of the first sample
in this second, independent, sample reduces the likelihood of reporting
false positives.

Similar to our first sample, we first examined the relationship be-
tween AUC and chronological age, specifically by comparing linear to
nonlinear models (quadratic & cubic). Since these data were cross-
sectional, we used regular linear regression to fit these models and

compared models through F tests (p < .05). Age was centered for all
analyses (10.23 years). Once the best age model was determined, we
tested if adding COI correlation coefficients to the model would im-
prove the model fit through F tests (p < .05). We only examined the
COIs that were determined to explain additional variance in AUC above
age in the first sample. As with the longitudinal sample, we examined if
including key covariates measures such as IQ, puberty, or race impacted
these models (Supplementary methods).

2.9. Developmental analysis

To test whether developmental changes in functional connectivity
within relevant COIs could predict future temporal discounting pre-
ference, we performed a post-hoc linear regression analysis with base-
line AUC, change in functional connectivity, and age at the second time
point as predictors for AUC at the second timepoint (see Supplementary
methods). To assess if developmental changes in connectivity were
more informative for predicting future temporal discounting preference
at certain ages, we also examined the interaction between change in
functional connectivity and age at the second time point. The models
were only conducted for the relevant COIs identified in the previous
analyses, and only for the participants in the longitudinal sample.
Models were compared with F tests (p < .05).

3. Results

3.1. AUC increases from late childhood into early adolescence

Model comparisons between the null, linear age, quadratic age, and
cubic age models are presented in Table 2. Of the three age models
tested, the quadratic model best represented the relationship between
age and AUC in this longitudinal sample (LR quadratic model vs. null:
13.2, p < .002). The results of this model suggest that, on average,
each yearly increase in age across this sample was associated with an
increase of 0.04 AUC, with a negative rate of change (−0.01) (Table 3;
Fig. 2). These results should be interpreted from the predicted intercept
at age 10.70 years (0.55). The graph illustrates a group-level increase in
AUC until age ∼11 years, but relative stability in AUC between ages
11–14 years.

In our second, cross-sectional, sample, we found evidence for a
linear relationship between age and AUC (Fig. 2; blue). The linear
model for this sample suggests that, on average, each yearly increase in
age across this sample was associated with an increase of 0.05 AUC
(Table 3; Fig. 2). These results should be interpreted from the predicted
intercept at age 10.23 years (0.45). Overall, the graph shows a similar
increase in AUC across the age period studied as is visible in the
longitudinal sample.

3.2. Brain connectivity explains variance in AUC not accounted for by age

In the first sample, we found that AUC was best predicted by models
including both age and connectivity for fifty-eight COIs (SI Table 2).
Many of the connections (40%) were between regions within the cog-
nitive control network, whereas 10% of connections were between re-
gions within the valuation network. 36% of the connections were

Table 2
Comparison of polynomial age models for the longitudinal sample.

Longitudinal sample

Model df AIC BIC logLik Test L.Ratio p-value

Null Model 1 3 25.0 33.7 −9.5
Linear age 2 4 18.8 30.4 −5.4 1 vs 2 8.2 0.0042
Quadratic age 3 5 15.8 30.4 −2.9 2 vs 3 5.0 0.0257
Cubic age 4 6 15.4 32.9 −1.7 3 vs 4 2.4 0.1226

Table 3
Fixed effects for best fitting (quadratic) age model predicting AUC for the
longitudinal sample.

Longitudinal Sample

Value Std. Error DF t-value p-value

Intercept 0.55 0.03 71 17.0 < 0.0001
Linear age 0.04 0.01 71 3.2 0.0021
Quadratic age −0.01 0.01 71 −2.2 0.0291
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between the cognitive control network regions and the valuation net-
work regions. None of the identified connections included connections
between the control network and the SMA or the hippocampus, how-
ever, one connection between the valuation network and hippocampus
and three connections between the valuation and the SMA were iden-
tified as relevant to predicting AUC. All four possible connections be-
tween the SMA and hippocampus were identified as relevant to pre-
dicting AUC.

Of the fifty-eight connections identified in the first sample, only
nine were replicated in the cross-sectional sample (Table 4; Fig. 3).
Three of the nine connections represented connections within regions of
the cognitive control system (left dlPFC – right dACC; bilateral dlPFC;
bilateral superior frontal cortex); three represented connections within
regions of the valuation system (right pallidum – left PCC; right pal-
lidum – right PCC; right mOFC – left amygdala); and three represented
connections between these two systems (left dlPFC – right PCC; left
superior frontal cortex – right PCC; left mOFC – right vlPFC). Model
statistics for these nine models are detailed for both the longitudinal
sample and cross-sectional sample in Table 4. Neither the best fitting
models, nor the effects of interest, were impacted by the inclusion of IQ
as a covariate, and the inclusion of puberty or race as a covariate had a
minimal impact, if any, on the models and effects of interest (Supple-
mentary Table 3).

The majority of the identified connections showed similar effects
across samples. The three connections within the cognitive control
system impacted the prediction of AUC similarly in both samples: in-
dividuals with greater connectivity strength between these cognitive
control regions were predicted to have a preference for LLR (higher
AUC) across the age ranges studied. The beta values for the main effect
of connectivity were similar across the samples as well, with con-
nectivity beta estimates ranging from 0.26–0.37 for the longitudinal
sample, and 0.30–0.42 for the cross-sectional sample.

The three connections within the valuation system also impacted
the prediction of AUC similarly in both samples: individuals with
greater connectivity strength between these valuation regions were
predicted to have a preference for the SSR (lower AUC) across the age
ranges studied. The beta values for the main effect of connectivity were
similar across the samples as well, with connectivity beta estimates
ranging from −0.38 to −0.23 for the longitudinal sample, and −0.58

to −0.27 for the cross-sectional sample. The impact of connectivity
between the right pallidum and PCC on predicting AUC with age was
virtually identical for both cortical hemispheres.

Individuals with greater connectivity strength between the left
mOFC and right vlPFC were predicted to have a preference for LLR
(higher AUC) across the age ranges studied, similar to patterns found
for connections between the cognitive control regions. Connectivity
between these two regions was a better predictor of AUC than age alone
in the cross-sectional sample. Within the longitudinal sample, con-
nectivity strength between the right PCC and the left dlPFC or left su-
perior frontal cortex interacted with the quadratic age term to predict
AUC, with stronger connectivity strength predicting a preference for
LLR (higher AUC) only at the tail ends of the age range. Within the
cross-sectional sample, participants with greater connectivity strength
between the right PCC and left dlPFC were predicted to have a pre-
ference for LLR (higher AUC). Connectivity between the right PCC and
left superior frontal cortex was a better predictor of AUC than age alone
in the cross-sectional sample, with individuals with greater connectivity
strength between these regions showing a preference for LLR (higher
AUC).

3.3. Developmental analysis

We found that, in addition to baseline AUC, developmental changes
in functional connectivity between three of the nine identified con-
nections were able to predict subsequent AUC (Supplementary Table 4).
Increased strength between the left dlPFC and right dACC across time
was associated with increased preference for waiting for LLR, whereas
the opposite developmental finding was observed for connectivity be-
tween the right PCC and right pallidum. This is in line with our finding
that increased strength between cognitive control regions, and de-
creased strength between valuation system regions, is related to in-
creased preference for LLR in the transition into adolescence. Further,
developmental changes in connectivity strength between the left
amygdala and right mOFC interacted with the age of the participant at
the second timepoint to explain variance in future temporal discounting
after controlling for baseline temporal discounting preference.

4. Discussion

In this study, we investigated whether individual differences in
functional brain organization are associated with temporal discounting
preferences in the transition into adolescence. Specifically, we tested if
functional connectivity between regions involved in valuation and
cognitive control, as well as the hippocampus and SMA, could explain
variance in temporal discounting preference (AUC) above chronological
age. To ensure validity of our reported results, we tested these models
in two independent datasets: a longitudinal dataset of children aged
7–15 years and a cross-sectional dataset of 7–13 year olds.

In both samples, longitudinal and cross-sectional, we observed a
group-average increase in AUC between late childhood and early ado-
lescence. We found evidence that the relationship between age and
AUC was best represented by a quadratic trajectory in our longitudinal
sample, with AUC increasing between ages 7–11 years before stabi-
lizing. For the cross-sectional sample, we identified a linear increase in
AUC between ages 7–13 years. While the best fitting model differed
between these samples, the overall pattern observed in both samples
reflected a general trend for our participants to prefer waiting for a
later, larger reward (LLR) as they got older.

This result supports the theory that temporal discounting pre-
ferences shift in the transition into adolescence (Achterberg et al., 2016;
Scheres et al., 2014). Scheres et al., (2014) demonstrated in a cross-
sectional sample encompassing ages 6–19 years that adolescents were
more likely to wait for the LLR in comparison to children and young
adults. Achterberg et al., (2016) similarly found that the ability to delay
gratification increased from childhood into adolescence. It is important

Fig. 2. Best fitting age models for AUC. The green line represents the predicted
model fit for AUC for sample 1 (longitudinal sample) and the blue line re-
presents the predicted model fit for AUC for sample 2 (cross-sectional sample).
Shading represents the 95% confidence intervals. Raw data are plotted in the
background, with each individual measurement representing a circle, and lines
connecting data collected from the same individual across time. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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to note that, although we found a group-average increase in AUC across
the transition into adolescence, there was substantial individual varia-
bility (see Fig. 2). Further, because our sample age range ends at 15
years we cannot be sure if the preference for LLR declines between mid-
to-late adolescence.

4.1. Individual differences in functional connectivity are related to temporal
discounting preference

The current study proposed that individual variability in temporal
discounting preference could be explained by differences in functional
brain organization. To test this hypothesis, we examined if intrinsic
functional connectivity between a set of a priori regions of interest and
networks could improve the “age only” models in predicting an in-
dividual’s temporal discounting preference. To mitigate false positives
and overfitting, we implemented both a stringent model selection
procedure utilizing AIC as well as Likelihood Ratio tests paired with
replication in an independent sample. We found nine distinct brain
connections were able to explain variance in temporal discounting
preference above age alone in both our longitudinal and cross-sectional
samples. These findings suggest that individual differences in functional
brain connectivity can explain individual variability in temporal dis-
counting preferences during the transition to adolescence.

Our results demonstrate that individuals with greater connectivity

between cortical regions within cognitive control systems are more
inclined to choose LLR. Specifically, we found that greater connectivity
between the left dlPFC and the right dACC, bilateral dlPFC, and bi-
lateral superior frontal cortex, relate to a preference for LLR for in-
dividuals across the transition into adolescence (Fig. 3a–c). Our post-
hoc analysis revealed that developmental increases in connectivity
strength between the left dlPFC and right dACC across the transition
into adolescence was associated with increased preference for waiting
for LLR.

Across samples, we found evidence that greater connectivity be-
tween right pallidum and the bilateral PCC was associated with a pre-
ference for SSR across the transition into adolescence. Specifically,
greater connectivity between these valuation regions predicted lower
AUC for individuals across the age ranges studied (Fig. 3d and e). These
results align with previous findings showing individual differences in
cortico-striatal circuitry are related to temporal discounting preferences
(van den Bos et al., 2014, 2015). Our post-hoc analysis revealed that
developmental decreases in connectivity strength between the right
pallidum and right PCC across the transition into adolescence was as-
sociated with increased preference for waiting for LLR.

Our results also demonstrate that greater connectivity between the
left amygdala and right mOFC was related to increased preference for
the SSR in the transition to adolescence (Fig. 3f). While a main effect
was found for the cross-sectional sample, there was an interaction

Fig. 3 a–c. Relationship between cognitive control regions and AUC. The cortical regions involved in the connectivity between two cognitive control systems are
represented by red on the brain. Pink trajectory represents AUC for an individual with 1 standard deviation higher connectivity than the mean between the two
regions. Purple trajectory represents predicted AUC for participants with the mean connectivity strength between the two regions. Blue trajectory represents AUC for
an individual with 1 standard deviation lower connectivity than the mean between the two regions. Raw data are plotted in the background, with each individual
measurement representing a circle, and lines connecting data collected from the same individual across time. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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between connectivity and the quadratic age term for the longitudinal
sample. This presents the possibility that the relationship between
greater connectivity between the left amygdala and right mOFC and
temporal discounting preference is not static across ages 7–15 years.
Indeed, our post-hoc analysis demonstrated that developmental
changes in connectivity strength between the left amygdala and right
mOFC interacted with the age of the participant at the second timepoint
to explain variance in future temporal discounting after controlling for
baseline temporal discounting preference. While increased strength
between the left amygdala and right mOFC across time was generally
related to increased preference for later larger rewards, this negatively
interacted with age at the second time point. This suggests that the
strengthening of these two valuation regions is related to increased
preference for later larger rewards for younger participants.

Previous cross-sectional work has found evidence suggesting that
age-related increases in connectivity between the ventral striatum and
vmPFC is related to increasing preference for LLR (Christakou et al.,
2011). While the results from the present analysis did not demonstrate
this same developmental effect between these two specific regions, the
results from our post-hoc analysis suggest that increased connectivity
between subcortical-cortical regions of the valuation network might be
a mechanism underlying developmental changes in the preference for
delayed rewards. We found that developmental increases in con-
nectivity between the pallidum and PCC, as well as between the

amygdala and mOFC, predicted a maturational shift to prefer LRR. In
addition, the effect of increased connectivity between the amygdala and
mOFC interacted with age in predicting developmental changes in
temporal discounting preference, which suggests that older participants
with increased connectivity prefer the SSR. This finding suggests that
developmental increases in connectivity strength between those regions
are predictive of increased preference for the LLR in late childhood,
however, as participants get older, the pattern is reversed. This could be
due to the differences in the regions that are age driven (van den Bos
et al., 2015). Increased white matter integrity in fronto-striatal tracts
between late childhood and early adulthood is related to increased
preference for LLR (Achterberg et al., 2016). This is in keeping with our
post-hoc interaction found between the amygdala and mOFC. However,
in our study, rather than finding fronto-striatal tracts to be predictive of
temporal discounting, we found the fronto-limbic tracts were of greater
relevance in predicting later temporal discounting behavior.

While we found evidence that greater connectivity between the
right PCC and the left dlPFC or left superior frontal cortex was related
to greater preference for LLR for individuals across ages in the cross-
sectional sample, the best fitting models in the longitudinal sample
suggested a nonlinear relationship between this strength of these con-
nections and AUC preference across age (Fig. 3g and h). We found that
greater connectivity between the left mOFC to right vlPFC (the pars
orbitalis region of the inferior frontal gyrus) was related to increased

Fig. 3 d–f. Relationship between valuation regions and AUC. The cortical and subcortical regions involved in the connectivity between two valuation systems are
represented by blue on the brain. Pink trajectory represents AUC for an individual with 1 standard deviation higher connectivity than the mean between the two
regions. Purple trajectory represents predicted AUC for participants with the mean connectivity strength between the two regions. Blue trajectory represents AUC for
an individual with 1 standard deviation lower connectivity than the mean between the two regions. Raw data are plotted in the background, with each individual
measurement representing a circle, and lines connecting data collected from the same individual across time. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

J. Anandakumar, et al. Developmental Cognitive Neuroscience 34 (2018) 101–113

110



preference for LLR across the transition into adolescence. This possibly
reflects that stronger functional connectivity at rest between these re-
gions reflects the ability for the vlPFC/IFG to regulate mOFC signaling
(Hare et al., 2009). In both samples, a main effect of greater con-
nectivity between the dlPFC and several regions predicted higher AUC
(increased preference for LLR or less discounting) for individuals across
the transition into adolescence. This result held for connections be-
tween the dlPFC and dACC, bilateral dlPFC, as well as dlPFC and PCC,
further underscoring the role of dlPFC in the development of temporal
discounting behavior (Wang et al., 2017).

4.2. Role of dopaminergic signaling in temporal discounting behavior

All of the identified relevant connections between regions of the
valuation network (amygdala, mOFC, PCC, and pallidum) showed a
negative relationship with AUC, with stronger connectivity predicting a
greater preference for SSR across participants. This could be related to
the abundance of dopaminergic signaling in the valuation network.
Multiple studies have shown that areas of the brain with dopaminergic
innervation are involved in temporal discounting preference
(Kobayashi and Schultz, 2008; Pine et al., 2010). Furthermore, it has
been reported that individuals with increased dopamine release are
more inclined to choose the SSR (Joutsa et al., 2015). Crossover work in
animal models might allow for direct testing of this hypothesis

(Grayson and Fair, 2017; Grayson et al., 2014; Miranda-Dominguez
et al., 2014; Stafford et al., 2014).

One hypothesis is that changes in the cortico-striatal circuitry that
occur in the transition into adolescence are related to hormonal changes
that affect the interaction within the networks (Blakemore et al., 2010;
Chambers et al., 2003). Specifically, these hormonal changes impact
and influence motivation towards reward seeking behaviors (Luciana
and Collins, 2012). Pubertal hormones and neurotransmitters, such as
sex hormones and dopamine, affect regions across the brain, but their
effects (especially dopamine) on the vmPFC, NAcc, and caudate might
influence the development of cognitive capacities such as abstract
thinking, problem solving, and working memory (Chambers et al.,
2003).

4.3. Limitations and future directions

This study examined temporal discounting preference as it relates to
biological measures. However, social environmental factors can impact
an individual’s subjective value of money and preference for waiting for
a LLR. For example, a previous study found that individuals who grew
up in lower socio-economic status environments (SES) preferred SSR,
whereas individuals who grew up in higher SES environments preferred
LLR (Griskevicius et al., 2013). In an experimental manipulation, Kidd
et al. (2013) demonstrated that children presented with a reliable

Fig. 3 g–i. Relationship between valuation network and cognitive control network and AUC. The cortical regions involved in the connectivity between valuation
system and cognitive control system are represented by blue and red, respectively, on the brain. Pink trajectory represents AUC for an individual with 1 standard
deviation higher connectivity than the mean between the two regions. Purple trajectory represents predicted AUC for participants with the mean connectivity
strength between the two regions. Blue trajectory represents AUC for an individual with 1 standard deviation lower connectivity than the mean between the two
regions. Raw data are plotted in the background, with each individual measurement representing a circle, and lines connecting data collected from the same
individual across time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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environment demonstrated a significant increase in their delay time
compared to children presented with an unstable environment. It
should not be assumed that steeper discounting is always maladaptive.
Very low socio-economic status populations were under-represented in
the current study. Future investigations should assess how social en-
vironmental factors might impact the relationship between biological
measures and temporal discounting preference.

Previous studies have shown evidence for heterogeneity in func-
tional connectivity existing across individuals in typically developing as
well as in clinical samples (Costa Dias et al., 2015; Fair et al., 2012a;
Gates et al., 2014). For example, graph theory and community detec-
tion can be used to classify typically developing children into specific
neuropsychological subgroups (Gates et al., 2014), and functional
subgroups can be differentiated based on heterogeneity related to be-
havioral characteristics including impulsivity (Costa Dias et al., 2015).
This study did not account for these heterogeneity present in the group
and further investigation should be considerate of this phenomenon.
Further, the current study utilized a brain parcellation based on ana-
tomical boundaries (the Desikan-Killiany atlas; Desikan et al., 2006) in
order to test hypotheses generated from previous work. However, es-
tablishing the consistency of these findings with other parcellations
(Glasser et al., 2016; Gordon et al., 2016) will be an important next step
(Grayson and Fair, 2017; Hagmann et al., 2012).

4.4. Conclusion

On average, children start to prefer waiting for later, larger rewards
as they transition into adolescence. However, there is a substantial
amount of variability in temporal discounting preference between in-
dividuals across development. This study provides evidence that in-
dividual differences in functional brain connectivity within and be-
tween regions in cognitive control and valuation networks can account
for variance in temporal discounting preference above age. Specifically,
greater connectivity strength between cognitive control regions, as well
as between cognitive control and valuation regions, was related to a
preference for waiting for a larger reward. In contrast, greater con-
nectivity strength between valuation network regions was related to a
preference for taking an immediate, smaller, reward. Future studies
should examine the impact of social environmental factors on the re-
lationship between functional brain connectivity and temporal dis-
counting behavior across development.
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