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Abstract

Heterozygous mutations in glucocerebrosidase 1 (GBA1) are a major genetic risk factor for Parkinson’s disease and
Dementia with Lewy bodies. Mutations in GBA1 leads to GBA1 enzyme deficiency, and GBA1-associated parkinsonism
has an earlier age of onset and more progressive parkinsonism. To investigate a potential influence of GBA1 deficiency
caused by mutations in GBA1 on the disease progression of PD, GBA1 mice carrying D409H knock-in mutation were
crossbred with the human A53T (hA53T) α-synuclein transgenic mice. Here, we show that GBA1 enzyme activity plays a
significant role in the hA53T α-synuclein induced α-synucleinopathy. The expression of D409H GBA1 markedly shortens
the lifespan of hA53T α-synuclein transgenic mice. Moreover, D409H GBA1 expression exacerbates the formation of
insoluble aggregates of α-synuclein, glial activation, neuronal degeneration, and motor abnormalities in the
hA53T α-synuclein transgenic mice. Interestingly, the expression of D409H GBA1 results in the loss of dopaminergic
neurons in the substantia nigra pars compacta of hA53T transgenic mice. Taken together, these results indicate that
GBA1 deficiency due to D409H mutation affects the disease onset and course in hA53T α-synuclein transgenic mice.
Therefore, strategies aimed to maintain GBA1 enzyme activity could be employed to develop an effective novel
therapy for GBA1 linked-PD and related α-synucleinopathies.
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Introduction
Parkinson’s Disease (PD) is a neurodegenerative disorder
that affects approximately 1-2% of the elderly population
[33]. Common characteristics of PD include the selective
loss of dopaminergic neurons and the formation of Lewy
bodies (LBs) and Lewy neurites (LNs) in surviving neu-
rons in the substantia nigra pars compacta (SNpc) and
locus coeruleus (LC), which eventually result in motor
impairment [39]. Many pathologically sequestered pro-
tein aggregates are found in LBs in which α-synuclein is
a dominating component [43]. Despite the remaining
mystery of its exact function of α-synuclein, it has been
known to foster neurodegeneration in several diseases

such as PD, Dementia with Lewy Bodies (DLBs) and
multiple system atrophy (MSA) [13].
Lysosomal glucocerebrosidase 1 (GBA1) enzyme cata-

lyzes the breakdown of glycosylceramide into ceramide
and glucose [18]. Homozygous mutations in GBA1 cause
a lysosomal storage disorder, Gaucher disease, whereas
heterozygous mutations in GBA1 are implicated in PD
and DLB [9, 12, 42]. Mutations in GBA1 lead to GBA1
enzyme deficiency and result in α-synuclein accumula-
tion [27, 41]. Clinical pathology of PD, in which GBA1
mutations are present, displayed the presence of a
greater number of LBs and LNs [4, 25]. Recent studies
have revealed that GBA1 enzyme activity and the steady-
state level of wild type GBA1 protein are both reduced
in the postmortem of PD patients with and without
GBA1 mutations [1, 2, 11, 31, 36], indicating the pivotal
role of GBA1 on the development of sporadic PD.
To date, the relationship between Gaucher disease and

α-synucleinopathies such as PD, DLBs, and MSA has
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been unraveled to some extent such that PD and LBDs
patients with GBA1 mutations typically show an earlier
onset of the diseases and more severe symptoms than
control group [32]. In addition, the early-onset PD was
identified in the patients with low GBA1 enzyme activity
through an imaging study [21]. Several studies attempted
to define the effect of GBA1 deficiency on α-synuclein
accumulation, turn over and its consequent pathology in
vivo [8, 10, 30, 37, 44]. Although the studies have par-
tially relationship among GBA1, α-synuclein, and PD,
the animal models fail to represent GBA1-associated
Parkinsonism, lacking an earlier age of PD onset and
dopaminergic neurodegeneration. To investigate the
linkage between GBA1 deficiency and PD, we crossbred
GBA1 mice harboring D409H knock-in mutation with
human A53T α-synuclein transgenic (Tg) mice. These
mice have exhibited severe motor impairments and
neuropathology accompanying typical alpha-synuclein
pathology including serine 129 phosphorylation, the
formation of alpha-synuclein fibrils and truncated alpha-
synuclein, as well as biochemical defects including mito-
chondrial defects and endoplasmic reticulum stress, but
there are no obvious neuropathological changes in the
SNpc region [5, 6, 19, 24]. Using these mice, we assessed
the effects of D409H GBA1 mutation on the major phe-
notypes such as neurodegeneration, accumulation of α-
synuclein aggregates, endoplasmic reticulum (ER) stress,
and neuroinflammation as well as shortened lifespan
were all observed in the A53T α-synuclein Tg mice with
the disease onset. Notably, the expression of D409H
GBA1 mutation in the A53T α-synuclein Tg mice accel-
erated the PD progression.

Materials and methods
Animals
All experimental procedures were followed according to
the guidelines of Laboratory Animal Manual of the
National Institute of Health Guide to the Care and Use
of Animals, which were approved by the Johns Hopkins
Medical Institute Animal Care and Use Committee.
GBA1 D409H knock-in (KI) mice were kindly provided
by Dr. Gregory A. Grabowski [45] and human alpha-Syn
(A53T) transgenic mice were purchased at the Jackson
Lab (Stock#: 006823). The mice were back-crossed with
C57BL/6 mice (Jackson Lab), and human A53T α-
synuclein Tg mice with D409H GBA1 knock-in mice
were generated for the present study.

Stereological assessment
For stereological assessment [47], mice were perfused
with PBS followed by 4% paraformaldehyde. After post-
fixed with 4% paraformaldehyde for 12 h, the tissue
samples were cryoprotected with 30% sucrose, and
processed for immunohistochemistry. 50 μm coronal

sections were cut throughout the brain including sub-
stantia nigra and every 4th section was used for ana-
lysis. The rabbit polyclonal anti-TH (1:1000; Novus)
was incubated in blocking solution. The signals were
visualized using DAB kit (Vector Laboratories) followed
by incubation with biotinylated secondary antibodies
and streptavidin-conjugated horseradish peroxidase
(HRP) (Vectastain ABC kit, Vector Laboratories). The
stained tissue sections were mounted onto slides and
counterstained with thionin for Nissl substance. The
total number of TH-, and Nissl-positive neurons in the
SNpc was counted using Optical Fractionator probe of
Stereo Investigator software (MicroBrightfield).

Immunostaining
α-synuclein pathology in the brainstem and the SNpc re-
gion were visualized by staining with anti-pS129 antibody
(1:1000; Abcam). The semi-quantitative grading of p-α-
Syn pathology of the SNpc was quantified as previously
described [16] with minor modification. The samples
were graded using a 0-3 semi-quantitative density scale.
Microglia and astrocyte were stained with anti-Iba-1

(1:1000; Wako) or anti-GFAP (1:2000; Dako), antibodies
followed by incubation with biotin-conjugated anti-
rabbit antibody and ABC reagents (Vector Laboratories).
Then, sections were developed using SigmaFast DAB
Peroxidase Substrate (Sigma-Aldrich, St. Louis, MO,
USA). The number of microglia and densities of astro-
cyte in the SNpc region were measured using ImageJ
software. The GlcCer-positive signals were stained with
anti-GlcCer antibody (1:500, Glycobiotech), followed by
incubation with CY3-conjugated anti-donkey secondary
antibody. The fluorescent images were acquired through
a Zeiss confocal microscope (LSM 710, Zeiss Confocal).

Western blotting
The ventral midbrain tissues were dissected and pre-
pared in lysis buffer that consist of 10 mM Tris-HCL,
150 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40,
10 mM Na-β-glycerophosphate, Phosphate inhibitor
mixture I and II (Sigma-Aldrich, St. Louis, MO, USA),
and complete protease inhibitor mixture (Roche) at
pH 7.4. Then the tissues were homogenized using a
Diax 900 homogenizer (Sigma-Aldrich, St. Louis, MO,
USA). After homogenization, samples were centri-
fuged at 12000 × g for 20 min, supernatants were col-
lected, and protein levels of each supernatant were
quantified. Electrophoresis on 8-16% gradient SDS-
PAGE was performed in order to resolve the 20 μg of
proteins from the ventral midbrain tissues. The pro-
teins were then transferred to nitrocellulose mem-
branes. The membranes were blocked with blocking
solution (Tris-buffered saline containing 5% non-fat
dry milk and 0.1% Tween-20) for 1 h and incubated at
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4 °C overnight with anti-α-synuclein (1:1000; Sigma
S5566), anti-α-synuclein (1:1000; BD Biosciences), or
anti-grp78 (1:500; Santa Cruz; sc-1050) antibodies,
followed by HRP-conjugated secondary antibody (1:5000;
GE Healthcare) for 1 h at RT. Finally, the membranes
were re-probed with HRP-conjugated β-actin antibody
(1:50,000; Sigma-Aldrich, St. Louis, MO, USA) after the
blots were stripped.

GBA1 enzyme (GCase) activity assay
The GCase activity assay has been performed as previ-
ously described [3, 27]. Mouse ventral midbrain tissues
were homogenized in the buffer containing 0.25 M
sucrose, 10 mM HEPES (pH 7.4) and 0.1 M EDTA,
centrifuged at 6800 × g, 4 °C, for 5 min, and the super-
natant was collected. The supernatant was centrifuged
at 17,000 × g for 10 min, and the pellet enriched with
lysosomes was collected in 50 μl of activity assay buffer
0.25% Triton X-100 (Sigma-Aldrich), 0.25% Taurocholic
acid (Sigma-Aldrich), 1 mM EDTA, in citrate/phos-
phate buffer, pH 5.4. The GCase activity was measured
by adding 50 μl of 1% BSA, adding 1 mM 4-
Methylumbelliferyl β-glucophyranoside (4-MU; M3633,
Sigma-Aldrich) and/or 10 mM conduritol B epoxide
(CBE, Sigma-Aldrich). The samples were incubated for
40 min at 37 °C, followed by the addition of 50 μl
(equi-volume) of 1 M glycine at pH of 12.5 to terminate
the reaction. Sample volume of 100 μL per well was
prepared on 96 well plate (Nunc, # 136101). The
fluorescence was measured via a Perkin Elmer plate
reader (ex = 355 nm, em = 460 nm, 0.1 s). GCase1 ac-
tivity was obtained by subtracting the GCase activity
in presence of CBE from the total GCase activity of
each sample. 95-97% of GCase activity was reduced
by CBE treatment.

Dot-blot assay
Samples were loaded onto the pre-wetted nitrocellulose
membrane using Bio-Dot microfiltration apparatus
(Bio-rad). After washing each sample with tris-buffered
saline, samples were blocked with 5% non-fat dry milk
in tris-buffered saline containing 0.1% tween-20. Mem-
branes were incubated with anti-α-synuclein filament
antibody (1:1000; Abcam) or GlcCer antibody (1:500,
Glycobiotech) at 4 °C overnight, followed by HRP-
conjugated rabbit secondary antibody (GE Healthcare)
for 1 h at RT.

Behavioral test
For the pole test [47], the mice were trained for two
consecutive days before the actual test. Each training
session consisted of three test trials. Animals were
placed on the top of the pole (75 cm of metal rod at
diameter of 9 mm) facing the head up direction. The

time taken to turn and total time taken to reach the base
of the pole were recorded. The maximum cutoff time to
stop was 120 s. For the rotarod test [23], the mice were
trained for three consecutive days (four 5-min trials,
5-min apart) to acclimate them to the rotarod apparatus.
During the test period, mice were placed on the rotarod
with increasing speed, from 4 rpm to 40 rpm in 300 s.
The latency to fall off was recorded under blind condi-
tion to different groups.

Statistical analysis
Data were presented as mean ± SEM with at least 3 inde-
pendent experiments. Representative morphological im-
ages were taken out of at least 3 experiments with
parallel results. An unpaired two-tailed Student’s test or
an ANOVA test followed by Bonferroni post hoc analysis
was conducted to assess the statistical significance. As-
sessments with p < 0.05 were considered significant.

Results
GBA1 enzyme deficiency caused by GBA1 D409H
mutation increases the levels of α-synuclein
To test our hypothesis that decreased GBA1 enzyme activ-
ity due to mutation in GBA1 affects neurodegeneration in
the hA53T α-synuclein transgenic (Tg) mouse model of
PD, the GBA1D409H/D409H mutant mice [45] were crossbred
with the hA53T α-synuclein (α-Syn) Tg mice (Fig. 1).
GBA1 expression level was reduced to 70% in the ventral
midbrain tissues of the GBA1+/D409H mice and to 55% in
the ventral midbrain tissues of the GBA1D409H/D409H mice
when compared to the wild type mice. GBA1 expression
was further reduced to 48% in the hA53T α-Syn;
GBA1+/D409H and to 42% in the hA53T α-Syn;
GBA1D409H/D409H mice (Fig. 2a and b). GBA1 enzyme
activity was reduced to 71% in the brain tissues of the
GBA1+/D409H mice and to 39% in the ventral midbrain
tissues of the GBA1D409H/D409H mice when compared to
the wild type mice. GBA1 enzyme activity was further
reduced to 54% in the hA53T α-Syn;GBA1+/D409H and to
25% in the hA53T α-Syn;GBA1D409H/D409H mice (Fig. 2c).
Glucosylceramide (GlcCer), a substrate of GBA1, was
accumulated by 3.4 folds and 6.9 folds in the hA53T α-
Syn;GBA1+/D409H and the hA53T α-Syn;GBA1D409H/D409H

mice, respectively (Fig. 2d and e). Similar result was
observed in the SN tissues as assessed by GlcCer
immunofluorescence staining (Fig. 2f). The levels of
overexpressed hA53T α-synuclein were increased by 1.8
folds in the hA53T α-Syn;GBA1+/D409H and by 2.5 folds in
the hA53T α-Syn;GBA1D409H/D409H mice at 6 months of
age (Fig. 2g and h). The levels of total α-synuclein expres-
sion (endogenous mouse α-synuclein and overexpressed
hA53T α-synuclein) were increased by 6.6 folds in the
hA53T α-Syn;GBA1+/D409H and by 8.3 folds in the hA53T
α-Syn;GBA1D409H/D409H mice at 6 months of age compared
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with non-Tg mice. Additionally, we found that the levels of
endogenous mouse α-synuclein are increased in the
dependent manner of GBA1 enzyme activity in GBA1
mutant mice (Fig. 2i). Thus, the steady-state levels of both
endogenous α-synuclein and hA53T α-synuclein are
dependent on the enzyme activity of GBA1 resulting from
D409H mutation.

D409H GBA1 expression shortens lifespan and leads to
dopaminergic degeneration in hA53T α-synuclein Tg mice
The hA53T mutant α-synuclein Tg mice develop adult-
onset phenotypes with rapidly progressive motor impair-
ment that eventually leads to death [19]. To examine
whether D409H GBA1 expression bearing decreased en-
zyme activity affects the lifespan of hA53T α-synuclein
Tg mice, littermates with the following genotypes were
separated and aged: hA53T α-Syn, hA53T α-Syn;
GBA1+/D409H, hA53T α-Syn;GBA1D409H/D409H, and their
survival was monitored (Fig. 3a). The hA53T α-synuclein
Tg mice lived an average of 10.8 months, as previously
described [7]. The hA53T α-Syn;GBA1+/D409H lived an
average of 9.7 months and the hA53T α-Syn;
GBA1D409H/D409H lived an average of 8.6 months,
indicating that the hA53T α-Syn;GBA1D409H/D409H

significantly shortens lifespan of the hA53T α-synuclein
Tg mice by 2.2 months. Therefore, decreased enzyme
activity due to D409H GBA1 expression has a boosting
impact that expedites the onset and progression of the
lethal phenotype induced by α-synuclein pathologies in
the hA53T α-synuclein Tg mice.
To determine whether the reduced GBA1 enzyme

activity induces the loss of dopaminergic neurons in
the hA53T α-synuclein mice, the number of TH

positive neurons in the SNpc was counted via an
unbiased stereological analysis of the genotypes at
6 months of age (Fig. 3b and c). As previously de-
scribed, at 6 months of age when the mice are
asymptomatic, there was no obvious dopaminergic
neurodegeneration in the hA53T α-synuclein Tg mice.
In contrast, there was an approximately 24% loss of dopa-
minergic neurons in the SNpc of the hA53T α-Syn;
GBA1+/D409H. Furthermore, there was 43% neuronal loss
in the SNpc of the hA53T α-Syn;GBA1D409H/D409H

mutant mice.

D409H GBA1 expression leads to reduction of the
dopaminergic fiber density and alters behavioral deficits
in the A53T α-synuclein Tg mouse models
Since D409H GBA1 expression leads to dopaminergic
neurodegeneration in the SNpc, next, tyrosine hydrox-
ylase (TH)-immunopositive fiber density in the stri-
atum was assessed (Fig. 4a). At 6 months of age when
the mice were asymptomatic, there was no obvious
dopaminergic terminal loss in the hA53T α-synuclein
mice. However, there was approximately 32% TH
fibers were lost in the striatum of the hA53T α-syn;
GBA1+/D409H and 58% in the striatum of the hA53T α-
Syn;GBA1D409H/D409H compared to the control group
(Fig. 4b).
To determine whether D409H GBA1 expression

leading to decreased GBA1 enzyme activity leads to
the abnormal behavior in the A53T α-synuclein, we
performed a pole test, and rotarod analysis using a co-
hort of 6 months of age of different genotypes (Fig. 4c
and d). At 6 months of age, when the hA53T α-synu-
clein mice were asymptomatic, there was no

Fig. 1 Breeding strategy. To test our hypothesis that decreased GBA1 enzyme activity affects neurodegeneration in human A53T α-synuclein mouse
model of PD, the GBA1D409H/D409H knock-in mice were crossbred with the hA53T α-synuclein mice
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significant behavioral impairment on the rotarod test.
Average latency to fall in the accelerating rotarod was
reduced in the hA53T α-Syn;GBA1+/D409H. The
reduction in latency times was greater in the hA53T
α-Syn;GBA1D409H/D409H mice at the 6 months of age
(Fig. 4c). We also conducted the pole test since it is a
useful method for evaluating the mouse movement
disorder caused by striatal dopamine depletion [26].
The pole test revealed that there was a moderate
increase in the time to reach to the base of the pole in
the hA53T α-Syn;GBA1+/D409H and a significantly
greater increase in the hA53T α-Syn;GBA1D409H/D409H

at 6 months of age (Fig. 4d). At 6 months of age,
however, there was no significant difference in body
weight (Fig. 4e).

D409H GBA1 expression accelerates the accumulation of
insoluble α-synuclein species in the brainstem and SNpc
of A53T α-synuclein Tg mice
As the accumulation of insoluble high molecular weight
species of α-synuclein is a prominent indicator of pathology
in the A53T α-synuclein mice [19], it was assessed via vari-
ous techniques such as immunohistochemistry, dot blot,
and immunoblot analysis (Fig. 5). Immunohistochemistry
was conducted at 6 months of age when the mice were
asymptomatic. At this time point, there was no obvious
accumulation of α-synuclein phosphorylated at serine 129,
which is closely associated with α-synuclein aggregation, in
the SNpc and brainstem of the hA53T α-Syn mice. In con-
trast, immunohistochemistry revealed that some accumula-
tion of α-synuclein phosphorylated at serine 129 in the

Fig. 2 The levels of α-synuclein are dependent on GBA1 enzyme activity. a and b, The expression levels of GBA1 were quantified in the ventral midbrain of
the indicated genotypes at 6 months of age. c, GBA1 enzyme activity assay was conducted in the ventral midbrain of the indicated genotypes at 6 months
of age. d, Dot blot shows relative GlcCer levels in the ventral midbrain of the indicated genotypes at 6 months of age. e, The relative levels of GlcCer were
quantified. f, Representative images of GlcCer by immunostaining in the SN of the indicated genoypes at 6 months of age. The scale bar is 200 μm. g,
Steady-state levels of human and mouse α-synuclein were monitored in the ventral midbrain of the indicated genotypes via Western blot analysis at 6 months
of age. h and i, The expression levels of human and mouse α-synuclein were quantified. DATA are expressed as mean± SEM (n= 6 for the each group)
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brainstem and SNpc of the hA53T α-Syn;GBA1+/D409H and
significant accumulation in the brainstem and SNpc of the
hA53T α-Syn;GBA1D409H/D409H at 6 months of age (Fig. 5a,
b, and c). None of the aggregates was detected in the
brainstem and SNpc of non-Tg mice. Dot blot (Fig. 5d,
and e) and immunoblot analysis (Fig. 5f and g) also
demonstrated that the detergent-insoluble high mo-
lecular weight species of α-synuclein accumulated in
the ventral midbrain of the hA53T α-Syn;GBA1+/D409H

and the accumulation was significantly increased in the
ventral midbrain of the hA53T α-Syn;GBA1D409H/D409H

at 6 months of age (Fig. 5d, e, f, and g).

D409H GBA1 expression shows early neuroinflammation
in the A53T α-synuclein Tg mice
At 6 months of age there was no significant accumula-
tion of Iba-1 and GFAP in the SNpc of A53T α-
synuclein mice. For microglia activation, characterized
by the increased expression of Iba-1, serves as an indir-
ect indicator of neuronal abnormality in the A53T α-
synuclein Tg mice. Thus, the enhanced expression of
Iba1 was determined by immunohistochemistry. There
was an increased Iba-1 immunoreactivity in the SNpc of
hA53T α-Syn;GBA1+/D409H. The immunoreactivity was
dramatically increased in the SNpc of the hA53T α-Syn;
GBA1D409H/D409H at 6 months of age (Fig. 6a and b). As
the accumulation of glial fibrillary acidic protein (GFAP)
is a prominent pathological indicator in the A53T α-
synuclein Tg mice, its accumulation was also assessed
via immunohistochemistry. There was an increased
GFAP immunoreactivity in the SNpc of hA53T α-Syn;
GBA1+/D409H. The accumulation was further increased
in the SNpc of the hA53T α-Syn;GBA1D409H/D409H at
6 months of age (Fig. 6c and d).

D409H GBA1 expression triggers ER stress early in the
A53T α-synuclein Tg mice
In symptomatic A53T α-synuclein Tg mice there was an
accumulation of indicators of ER stress in a number of
brain regions, including the brainstem and spinal cord [5].
78 kDa glucose-regulated protein (grp78/BiP), an indica-
tor of ER stress, was analyzed via immunohistochemisty
and Immunoblot analysis using grp78 antibody (Fig. 7).
Strikingly, immunohistochemistry demonstrated that
there was a moderate increase of grp78 protein level in
the SNpc tissues of the hA53T α-Syn;GBA1+/D409H and
the upregulation of grp78 was significantly increased in
the SNpc tissues of the hA53T α-Syn;GBA1D409H/D409H at
6 months of age (Fig. 7a and c). Immunoblot analysis also
demonstrated that the grp78 protein accumulated in the
ventral midbrain of the hA53T α-Syn;GBA1+/D409H and
the accumulation was further promoted in the ventral
midbrain of the hA53T α-Syn;GBA1D409H/D409H at
6 months of age (Fig. 7c and d).

Discussion
The hypothesis that GBA1 could affect α-synuclein deg-
radation and pathology has been tested in several animal
models [8, 10, 30, 37, 44]. These models have allowed us
to elucidate the relationship among GBA1, α-synuclein,
and PD. However, these animal models do not fully
represent the clinical observations seen in the GBA1-
associated Parkinsonism such as earlier PD onset and
DA neuronal loss. To gain further insights into the
mechanisms by which GBA1 mutations increase the risk
for PD and lead to the development of GBA1-assiciated
parkinsonism, we crossbred GBA1 mice carrying D409H

Fig. 3 D409H GBA1 expression shortens lifespan and leads to
dopaminergic degeneration in the hA53T α-synuclein transgenic
mice. a, Survival was monitored from littermates with the following
genotypes: hA53Ta-Syn/GBA1+/+ (n = 15), hA53T α-Syn/GBA1+/D409H(n
= 16), hA53T α-Syn/GBA1D409H/D409H (n= 18) mice. GBA1 mutation
induces the lethal phenotype and TH-positive neuronal loss in the SNpc
of A53T mutant α-synuclein transgenic mice. b and c, The number of
TH-positive neurons in the SNpc was counted using stereological analysis
with the indicated genotypes at 6 months of age. The scale bar is 200
μm. DATA are expressed as mean ± SEM (n= 6 for the each group)
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knock-in mutation with human A53T α-synuclein Tg
mice exhibiting neurological abnormalities, accumula-
tion of α-synuclein aggregates, increased ER stress, neu-
roinflammation, and shortened lifespan [5, 19]. Using
this mouse model, we assessed the impact of D409H
GBA1 mutation on the major phenotypes of the A53T
α-synuclein Tg mice with disease onset and further
examined the cardinal features seen in the GBA1-
associated Parkinsonism through biochemical and im-
munohistochemical analyses. Importantly, our findings
reveal that the expression of D409H GBA1 mutation
resulted in the loss of DA neurons, accelerates disease
onset, exacerbates neuroinflammation and ER stress
more extensively than the degree seen in the hA53T α-
synuclein Tg mice.
It has been reported that mutations in GBA1 result in

the production of misfolded GBA1, increased GBA1
ubiquitination, and premature degradation leading to
quantitative loss in the protein levels [22, 46]. We found
the reduction of GBA1 protein expression and GBA1
enzyme activity in the brains of GBA1+/D409H and
GBA1D409H/D409H, which is similar to previous findings
that GBA1 deficiency due to expression of L444P
mutation or heterozygous GBA1-null mutations results
in GBA1 enzyme activity deficiency [30]. Importantly,
there was even lower GBA1 enzyme activity in the

brains of hA53T α-Syn;GBA1+/D409H and hA53T α-Syn;
GBA1D409H/D409H, which differs from the earlier finding
that heterozygous GBA1-null mutations in the A53T
α-synuclein Tg mice does not lead to GBA1 enzyme
deficiency [44]. Although the reason for this discrepancy
is unclear, it is conceivable that the GBA1 enzyme
deficiency due to D409H mutation may affects the
disease onset in A53T α-synuclein Tg mice differently
from heterozygous GBA1-null mutations. For instance,
the buildup of the misfolded GBA1 D409H mutant pro-
tein [29] and α-synuclein aggregates trigger ER stress
[5], which would form a positive feedback loop to fur-
ther impair GBA1 enzyme activity and consequently
contribute to α-synuclein pathology and loss of DA neu-
rons in the model. Since it is known that GBA1 enzyme
activity was lowest in the SN of PD patients [1, 2, 11,
31], a further investigation will be required to determine
GBA1 enzyme activity in different brain regions in this
mouse model. In addition, it is possible that GBA1
D409H mutation may affect the lysosomal dysfunction in
hA53T α-synuclein Tg, thereby hampering the autophagy/
lysosomal degradation of pathological α-synuclein [34].
Future study will be required to test this possibility in
our animal model.
In our model, the relationship between GBA1 enzyme

activity and α-synuclein accumulation revealed that

Fig. 4 D409H GBA1 expression promotes reduction of dopaminergic fiber densities and motor deficit in the striatum of hA53T α-synuclein transgenic
mice. a, The striatal TH-immunopositive fiber density was assessed in the striatum of the indicated genotypes at 6 months of age (n= 6 per each group).
The scale bar is 250 μm. b, The optical densities of TH positive signals were quantified. c and d, Rotarod and Pole test were assessed at 6 months of age
with the indicated genotypes (n= 7 per each group). e, the body weight of mice were measured with the indicated genotypes (n= 15 per each group).
DATA are expressed as mean ± SEM
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GBA1 deficiency due to D409H mutation was associated
with the increased levels of human and mouse α-
synulcein proteins as well as the enhanced levels of high
molecular weight α-synuclein aggregates in the ventral
midbrain regions. Consistent with previous findings,
our observations confirm that decreased GBA1 en-
zyme activity due to GBA1 mutations or null leads to
increased α-synuclein levels in other models [8, 10,

30] and PD postmortem brains [11, 31]. Since the
levels of α-synuclein are greater in the brain of hA53T
α-Syn;GBA1D409H/D409H compared to hA53T α-Syn;
GBA1+/D409H, the accumulation of α-synuclein is
dependent on the levels of GBA1 enzyme activity. On
the other hand, our study revealed that phosphoserine
129 (pSer) α-synuclein immunoreactivity and high
molecular weight α-synuclein species were detected in

Fig. 5 D409H GBA1 expression leads to the accumulation of pathologic α-synuclein aggregates in the brainstem and SNpc of A53T α-synuclein
transgenic mice. a, Representative images of p-α-Syn positive signals in the brainstem . Immunohistochemistry with phosphor-S129 α-synuclein
(p-α-Syn) antibody was conducted in the lateral vestibular nucleus of the brainstem of the indicated genotypes at 6 months of age. The scale bar
represents 50 μm. b, Representative images of p-α-Syn signals in the SNpc of the indicated genotypes at 6 months of age at low-magnification
and high-magnification. The scale bar is 200 μm. c, Semi-quantitative grading of p-α-Syn pathology in the indicated genotypes. d and e, Dot-blot
analysis of brainstem (BS) and ventral midbrain (VMB) of bigenic mice (n = 3) with α-synuclein filament antibody was performed and quantified. f
and g, Accumulation of high molecular weight species of α-synuclein in the ventral midbrain was assessed in the VMB. The ventral midbrain lysates
were immunoblotted with α-Syn antibody. The high molecular weight species were quantified
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the ventral midbrain of hA53T α-Syn;GBA1+/D409H

and hA53T α-Syn;GBA1D409H/D409H mice at 6 months
of age. Moreover, intensities of both pSer α-synuclein
immunoreactivity and high molecular weight α-synuclein
species were correlated with the enzyme activity levels of
GBA1 in the hA53T α-Syn;GBA1+/D409H and hA53T

α-Syn;GBA1D409H/D409H mice. However, the pSer
immunoreactivity and high molecular weight α-
synuclein species were not present in the ventral mid-
brain of the hA53T α-Syn Tg mice at 6 months of age.
Although the underlying mechanism of how D409H
expression results in increased pathologic α-synuclein
aggregates at the early time point is not clear, it is
likely that additional α-synuclein accumulation trig-
gered by GBA1 deficiency due to D409H expression
pushes forward the levels of α-synuclein protein to
reach quickly the threshold required for pathologic α-
synuclein aggregates in the model at 6 months of age,
eliciting overt DA neurodegeneration loss in the SNpc
and PD related motor deficits in the same model.
Based on our current observations, the hA53T α-Syn
Tg mouse model may provide a valuable resource to
uncover mechanisms of how PD-associated gene mu-
tations can impact PD pathogenesis.
Importantly, we found the loss of nigrostriatal DA neu-

rons in the SNpc of the hA53T α-Syn;GBA1+/D409H and
hA53T α-Syn;GBA1D409H/D409H, which were not detected
in the A53T α-synuclein Tg mice, GBA1+/D409H, and
GBA1D409H/D409H at 6 months of age. This result has not
been reported in the previous studies [10, 37, 44]. One
possible explanation for this is due to the accumulation of
pathologic α-synuclein aggregates, which may be sufficient
to lead to the loss of nigrostriatal DA neurons in the SNpc
at the time point. Another explanation might be behind
neuroinflammation that contributes to neurodegeneration
in neurodegenerative disorders including PD [20, 35, 38].
Neuroinflammation was present in the SNpc of hA53T α-
Syn;GBA1+/D409H and hA53T α-Syn;GBA1D409H/D409H, but
not observed in A53T α-synuclein Tg mice, GBA1+/D409H,
and GBA1D409H/D409H at 6 months of age. The last
explanation for this might be ER stress that contributes
to neurodegeneration in neurodegenerative disorders
including PD [14, 15, 28]. We also observed significantly
changed levels of ER stress in the SNpc of hA53T α-Syn;
GBA1+/D409H and hA53T α-Syn;GBA1D409H/D409H at
6 month of age, which were not detected in A53T
α-synuclein Tg mice, GBA1+/D409H, and GBA1D409H/D409H

at the time point.
Although the penetrance of D409H GBA1 mutation is

relatively lower than other mutations such as N370S and
L444P GBA1 mutations [40], our current findings sug-
gest that GBA1 deficiency due to D409H GBA1 muta-
tion alone is not sufficient to cause PD but additional
factors, such as environmental factors or increased levels
of α-synuclein could increase the penetrance through
rendering the levels of α-synuclein accumulation close
to the threshold required for α-synuclein aggregation.
Our previous finding that GBA1 deficiency due to
L444P GBA1 heterozygous mutation renders DA neu-
rons more susceptible to MPTP intoxication [47] further

Fig. 6 D409H GBA1 expression shows the activation of pathology-
associated microglia and astrocyte activation in the SNpc of A53T
α-synuclein transgenic mice. a, Iba-1 immunoreactive microglia were
observed in the SNpc region of the indicated genotypes at 6 months
of age. The scale bar is 50 μm. b, The number of microglia was
counted. c, GFAP immunoreactive astrocytes were observed in the
SNpc region of the indicated genotypes at 6 months of age. The
scale bar is 50 μm. d, The signals were measured using ImageJ
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supports this hypothesis. Our study does not provide a
detailed explanation on how D409H GBA1mutation
contributes to severe neurodegeneration with the loss of
DA neurons in the A53T α-synuclein Tg mice. Further
studies need to be undertaken to account for the DA
neurodegeneration. Also, it would be interesting to study
how the regulation of formation of α-synuclein tetra-
mers and other related multimers as well as the changes
in the status of glycosphingolipids (GSLs) in the model
is regulated [17].

Conclusions
In conclusion, our results indicate that GBA1 defi-
ciency due to D409H GBA1 mutation that contributes
to α-synuclein accumulation exacerbates neuronal vul-
nerability in neurodegenerative processes triggered by
A53T α-synuclein expression in vivo. The model that

recapitulates the cardinal PD phenotypes including
loss of DA neurons, LB pathology, and motor deficits
can be a useful tool to study in depth the possible
mechanisms underlying neurodegeneration due to
GBA1 mutations and to test the efficacy of potential
treatment against GBA1-associated PD and Dementia
with Lewy bodies (DLB).
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