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Abstract: Tyrosine kinases are proteins involved in physiological cell functions including prolifera-
tion, differentiation, and survival. However, the dysregulation of tyrosine kinase pathways occurs
in malignancy, including hematological leukemias such as chronic myeloid leukemia (CML) and
chronic lymphocytic leukemia (CLL). Particularly, the fusion oncoprotein BCR-ABL1 in CML and
the B-cell receptor (BCR) signaling pathway in CLL are critical for leukemogenesis. Therapeutic
management of these two hematological conditions was fundamentally changed in recent years,
making the role of conventional chemotherapy nearly obsolete. The first, second, and third gen-
eration inhibitors (imatinib, dasatinib, nilotinib, bosutinib, and ponatinib) of BCR-ABL1 and the
allosteric inhibitor asciminib showed deep genetic and molecular remission rates in CML, leading
to the evaluation of treatment discontinuation in prospective trials. The irreversible BTK inhibitors
(ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and spebrutinib) covalently bind to the C481
amino acid of BTK. The reversible BTK inhibitor pirtobrutinib has a different binding site, overcoming
resistance associated with mutations at C481. The PI3K inhibitors (idelalisib and duvelisib) are also
effective in CLL but are currently less used because of their toxicity profiles. These tyrosine kinase
inhibitors are well-tolerated, do have some associated in-class side effects that are manageable, and
have remarkably improved outcomes for patients with hematologic malignancies.

Keywords: chronic myeloid leukemia (CML); chronic lymphocytic leukemia (CLL); BCR-ABL1-
inhibitors; BTK-inhibitors; PI3K-inhibitors; targeted therapy; treatment discontinuation

1. Introduction

Tyrosine kinases (TKs) are a large family of surface and intracellular signaling proteins
largely conserved in multicellular organisms. Their function is in catalyzing the transfer of
a phosphate group from adenosine triphosphate (ATP) to the hydroxyl group of tyrosine
residues in specific substrate proteins, creating a strong covalent bond and resulting in
energy transfer and signal transduction. The phosphorylation of TKs modulates their
activity, promoting the recruitment of multiple downstream signal proteins. Some mem-
bers are capable of autophosphorylation. This kinase family may be subclassified into
transmembrane receptors and non-receptor intracellular signaling TKs [1].

Receptor TKs are transmembrane glycoproteins that physiologically interact with
extracellular ligands (often growth factors), transducing the signal from the extracellular
environment into the cytoplasm, promoting the dimerization of the receptor first and the
autophosphorylation of tyrosine residues [2]. Many cell receptors belong to the TK family
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and are named according to their ligands (epidermal growth factor receptor (EGFR), fibrob-
last growth factor receptor (FGFR), nerve growth factor receptor (NGFR)), platelet-derived
growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR).

Non-receptor TKs is a group of intracellular kinases that are structurally diverse
and include Src, Abl, Jak, Ras, and Raf proteins that have similar activities as receptor
TKs [1]. Activation of the non-receptor TKs involves aggregation and interactions among
intracellular proteins and is characterized by targeted transphosphorylation [3]. Several cell
functions commonly associated with cancer, such as proliferation, differentiation, survival,
and metabolic impulses are mediated by TK pathways [4].

Chronic myeloid leukemia (CML) [5] and chronic lymphocytic leukemia (CLL) [6], the
most common hematological malignancies in the U.S.A and Europe [7], are characterized by
a dependence on kinase pathways (see below) for leukemia cell growth and survival, and
as a result have been very successfully treated with TK inhibitors. Critical TKs include the
fusion chimera oncoprotein BCR-ABL1 in CML [8] and the B-cell receptor (BCR) signaling
pathway including Bruton Tyrosine Kinase (BTK) [9] and phosphatidylinositol 3-kinase
(PI3K) in CLL [10]. The inhibition of TKs represents the prototype of targeted therapy
and has proven to be a key and effective element in the treatment of these hematologic
malignancies over the last twenty years. Here, we analyze and describe the role of TKs in
the pathophysiology of CML and CLL, and the current tyrosine kinase inhibitor (TKi)-based
treatments, both in current practice and clinical trials.

2. Chronic Myeloid Leukemia
2.1. Kinase Pathways in CML

CML is a clonal myeloproliferative disorder characterized by the Philadelphia (PH)
chromosome, which is a genetic alteration resulting from a reciprocal translocation between
chromosomes 9 and 22 [t(9;22)] [11]. The incidence rate of CML ranges from 0.6 to two
cases per 100,000 individuals [6]. The PH chromosome produces the fusion oncoprotein,
BCR-ABL1, which is a constitutively activated kinase responsible for the pathogenesis of
CML. Three different isoforms of BCR-ABL1 (p210, p190, and p230) have been described in
hematologic malignancies, which are associated with different lengths of the BCR-ABL1
fusion gene. The most common isoform in CML is p210, which is expressed by about 95%
of CML patients; the p190 isoform occurs alone in 1–2% and is co-expressed with p210 in
5–7% of patients. The p230 transcript is rare [12,13].

Under physiological conditions, ABL1 is expressed during hematopoietic stem cell
development; when fused with BCR, the BCR-ABL1 gene produces a constitutively active
protein that loses the ability to migrate into the nucleus and is retained in the cytoplasm
where it interacts with several kinases involved in leukemogenesis [14]. The different
interactions of BCR-ABL1 with several pathways can be responsible for the process of
leukemogenesis. Janus kinase (JAK) and Signal Transducers and Activators of Transcription
(STAT) 1, 3, 5, and 6 proteins [15] have been associated with leukemogenesis in PH-positive
diseases, leading to the terminal overexpression of oncogene c-MYC, which is essential for
neoplastic transformation [16].

In addition, the PI3K–AKT–NF-kB–MM9 pathway is involved in CML pathogenesis.
It was shown that the upregulation of this pathway, triggered by the TGF–βinBCR–ABL1
positive hemangioblasts, leads to an enhanced secretion of soluble Kit ligand and ICAM1,
promoting the activation and proliferation of CML stem cells [17,18]. Furthermore, PI3K
is also responsible for the up-regulation of Skp2, which promotes the degradation of p27,
by ubiquitination, and the consequent alteration of cycle cell regulation in CML cells [19].
Interestingly, the inhibition of PI3K-associated pathways prevents BCR-ABL1 leukemo-
genesis in mice, demonstrating the important role for this kinase in oncogenesis [20]. In
addition, the Ras–Raf–MEK–ERK pathway, referred to as the Mitogen-Activated Protein
(MAP) kinase pathway, represents one of the most ubiquitous, important, and preserved
signaling pathways in multicellular organisms. After the interaction with BCR-ABL1, con-
stitutive Ras activation is triggered, inducing the sequential phosphorylation of multiple
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Raf–Erk–Mek kinases, whose role is the recruitment of several nuclear transcription factors
involved in proliferation [21]. A summary of the BCR-ABL1 pathway is shown in Figure 1.
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nase pathway.

2.2. TK Inhibition in CML

The typical CML clinical course consists of three different phases as described by the
World Health Organization (WHO) 2016 classification [22]: chronic, accelerated, and blastic
phases. Most patients are diagnosed in the chronic phase, which is characterized by <10%
blast cells, and no criteria of accelerated phase (at least one of persisting or increasing white
blood cell count or splenomegaly unresponsive to therapy, peripheral basophils > 20%, blast
cells: 10–19%, platelets count >1000 × 109/L uncontrolled by therapy or <100,000 × 109/L
unrelated to therapy, additional clonal chromosomal abnormalities). The blast phase is
defined by blast cells >20% or extramedullary involvement.

Historically, treatments for CML consisted of cytoreductive drugs, such as hydrox-
yurea [23] or busulfan [24]. This approach reduced and controlled peripheral white blood
cell count, splenomegaly, and disease-related symptoms but was ineffective in eradicating
PH+ clones. Therefore, the overall survival (OS) and risk for disease progression were not
improved. Interferon-alfa2a was shown to inhibit myeloid cell proliferation [25] and then
was compared to conventional cytotoxic chemotherapy (busulfan or hydroxyurea) in a clin-
ical trial. Interferon-alfa2a showed a higher rate of karyotypic responses (defined as >33%
of metaphases negative for PH chromosome; 30% vs. 5%), longer median progression-free
survival (PFS) (>72 vs. 45 months), and longer median OS (72 vs. 52 months) compared to
cytotoxic therapy [26].

Clinical responses and outcomes for patients with CML were remarkably improved
after the introduction of a small molecule TK inhibitor of BCR-ABL1, which effectively
blocks all the hyperactivated pathways and results in CML cell death [27,28]. The first
report of the small molecule inhibitor CGP57-148B was published in 1996; the prolifer-
ation rate of the granulocyte–macrophage colony-forming unit (GM-CFU) was potently
decreased after exposure to the drug [29]. However, clinical testing and the development of
TKi began when the compound CGP57-148B, renamed STI571 and imatinib, was evaluated
in a dose-escalating phase I/II trial, which established the maximum tolerated dose as the
primary end point and clinical efficacy as the secondary end point. Eighty-three patients
with chronic phase CML who failed treatment with interferon received STI571 therapy. In
the subgroup of patients treated with STI571 at a dose of 300 mg or higher, 53/54 (98%)
achieved complete hematological response and 29/54 (54%) achieved overall cytogenetic
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response, which was complete in 7/54 (13%) of treated patients (see below for response
definitions) [30,31].

Three levels of response were reported with TKi-based treatment: (1) hematologic,
which was defined as the normalization of peripheral blood counts, without circulating
immature elements and no-palpable spleen; (2) cytogenetic, which was defined as complete
with no PH+ detectable, partial with PH+ 1–35%, minor with PH+ 36–65%, minimal
with PH+ 66–95%, and no response with PH+ > 95%; and (3) molecular, which was
defined as complete molecular response (CMR) with no BCR-ABL1 transcript detectable,
deep molecular response (DMR) with BCR-ABL1 transcript <0.01% (where the molecular
response 4 (MR4) is ≤0.01% IS, MR4.5 ≤ 0.0032% IS, and MR5 < 0.001%), major with
molecular response (MMR) BCR-ABL1 transcript <0.1% [32].

The IRIS trial was an important randomized phase III trial that compared imatinib to
interferon plus cytarabine in a population of 1106 patients with newly diagnosed chronic
phase CML. The results at 12 months follow up were excellent in terms of complete
cytogenetic remission (CCyR) rate (68% vs. 7%) and BCR-ABL1 transcript levels evaluated
in the patients with cytogenetic remission, which represented at least a 1000-fold decrease in
57% vs. 24% patients treated with imatinib vs. interferon plus cytarabine, respectively [33].
After long-term treatment with imatinib, CML clones can become refractory [34]. The
5-year update of the IRIS study showed that among a total of 553 patients [35], 35 cases (6%)
progressed to accelerated phase or blast crisis, 14 patients (3%) had hematological relapse,
and 28 patients (5%) lost major cytogenetic response. This loss of response was probably
due to point mutations in the BCR-ABL1 ATP-binding site, activation loop, or catalytic
domain, which prevent imatinib from binding the oncogenic kinase. These mutations were
described for the first time in 2001 [36].

The second generation TKi, dasatinib, was designed with a 100-fold increased potency
in inhibiting BCR-ABL1 compared to imatinib [37]. In early phase I and II trials, dasatinib
showed tolerability and efficacy in previously imatinib-treated patients with CML [38,39].
Efficacy was confirmed in the randomized phase III DASISION study where first-line
treatment with dasatinib showed better results compared to imatinib after 12 (CCyR: 83%
vs. 72%; MMR: 46% vs. 28%) and 24 months treatment [40,41] (CCyR: 86% vs. 82%; MMR:
64% vs. 46%). Furthermore, the recent 5-year update of the DASASION trial confirmed the
long-term efficacy of dasatinib compared to imatinib (5-year-MMR and MR 4.5: 76% and
42% for dasatinib vs. 64% and 33% for imatinib, respectively; p = 0.0022 and p = 0.0251) [42].

Nilotinib is another second-generation TKi, which is effective against most of BCR-
ABL1 point mutations (T315I excluded) [43]. The clinical efficacy of nilotinib was demon-
strated in the randomized phase III ENESTnd trial in which different doses of nilotinib
were compared to a standard dose of imatinib in newly diagnosed chronic phase CML.
Outcomes for both nilotinib arms (300 mg or 400 mg twice daily) were significantly superior
to imatinib at 24 months in terms of MMR (71% vs. 67% vs. 44%), complete molecular
response (26% vs. 21% vs. 10%), and progression to accelerate or blastic phase [44].

In addition, the superior efficacy of nilotinib vs. imatinib was confirmed by the 5-year
(MR 4.5: 54% and 52% for nilotinib 300 mg and 400 mg twice daily vs. 31% for imatinib) [45]
and 10-year updates (MR 4.5: 61% for both nilotinib arms vs. 39.2% for imatinib arm) [46]
of ENESTnd trial.

The threonine at position 315 of the BCR-ABL1 is important for the interaction of most
TKi with BCR-ABL1. In the case of T315I mutation (threonine is replaced by isoleucine), a
conformational change in BCR-ABL1 occurs that prevents the hydrogen bond between the
TKi and oncogenic kinase required for the TKi to inhibit kinase activity [43]. The spectrum
of reported BCR-ABL1 mutations associated to TKi resistance is shown in Table 1 [47].
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Table 1. Spectrum of BCR-ABL1 mutations, their localization, and their relationship with TKi.

TKI Strong Resistance Mild–Moderate Resistance

Imatinib Y253–E255–T315
M244–L248–G250–Q252–
F317–M351–M355–F359–

H396
Dasatinib T315 V299–F317
Nilotinib T315 L248–Y253–E255–F359
Bosutinib T315–V299 L248–G250–E255–F317
Ponatinib T315–E255
Asciminib A337–W464–P465–V468–I502

P-loop mutations: M244, G250, Q252, Y253, and E255; gatekeeper residue (T315 and F317); SH2 contact and C-lobe
(M351, F359); activation loop (H396).

Ponatinib was the first third-generation TKi specifically designed to overcome re-
sistance from T315I mutation by its inhibitory action through the creation of an ethynyl
bond [48]. The clinical efficacy of ponatinib was evaluated in the single-arm phase II PACE
trial where 449 heavily pretreated patients with CML or PH+ acute lymphoblastic leukemia
(ALL) were enrolled after dasatinib/nilotinib failure or with theT315I mutation. Major
CCyR and MMR rates were 56%, 46%, and 34%, respectively with ponatinib treatment.
Interestingly, no mutations conferring resistance to ponatinib were detected. However,
serious arterial thrombotic events were observed in 9% of patients [49]. The multicenter
phase III randomized EPIC trial (ponatinib vs. imatinib in 307 treatment-naive CML)
showed significantly higher rates of MMR (41% vs. 18%) and MR4.5, which was defined as
BCR-ABL1 ≤ 0.0032% IS [50] (15% vs. 0) at any time for patients treated on the ponatinib
arm. However, 7% vs. 0.7% patients experienced severe arterial thrombotic events with
ponatinib versus imatinib, leading to the early discontinuation of the trial due to concern
for ponatinib toxicity [51].

Bosutinib is a potent (200 times imatinib) dual SRC/ABL kinase inhibitor that was
approved for patients with CML with resistance or intolerance to imatinib, following the
results of a phase I/II trial [52]. In the randomized phase III study BFORE, 536 patients with
newly diagnosed chronic phase CML were enrolled 1:1 to receive bosutinib or imatinib; at
12 months, CCyR (77.2% vs. 66.4%; p = 0.0075) and MMR (47.2% vs. 36.9%; p = 0.02) rates
were significantly higher for patients treated with bosutinib versus imatinib [53].

The ATP-binding site of BCR-ABL1 is the preferred target of kinase inhibitors, and
most resistance-associated mutations occur at this site. The Specifically Targeting the ABL
Myristoyl Pocket (STAMP) Asciminib (ABL001) was an innovative allosteric inhibitor
that targets the BCR-ABL1 myristoyl pocket and was specifically designed to overcome
all the mutations in the ATP-binding site [54]. However, rare mutations located in the
myristate pocket were described, suggesting that asciminib might lose its efficacy when
used in monotherapy; the association between the classic ATP-binding site inhibitors and
asciminib might promote simultaneous BCR-ABL1 inhibition with combined treatment,
reducing the risk of treatment resistance.

The first-in-human multicenter dose escalation phase I trial of asciminib enrolled
101 patients with CML after ≥2 prior TKi or with PH+ ALL after ≥1 prior TKi treatment,
and it identified a recommended dose of asciminib of 40 mg BID for CML patients. Fifty-
five patients treated >3 months with asciminib achieved a MMR of 23.6% (13 of 55), 43.2%
(16 of 37), and 57.1% (20 of 55) at 3, 6, and 12 months, respectively [55]. The phase II trial
ASC4MORE (NCT03578367) is currently ongoing to evaluate the efficacy of asciminib after
imatinib in patients with chronic phase CML without deep molecular response (DMR)
after ≥12 months of imatinib treatment. Eighty patients were randomized to asciminib
40 mg or 60 mg QD plus imatinib 400 mg QD, continued imatinib 400 mg QD, or switch to
nilotinib 300 mg BID. The results of this study are pending [56]. The multicenter phase III
ASCEMBL study compared single agent asciminib versus bosutinib in 233 patients with
chronic phase CML after failure ≥2 TKi. Treatment with asciminib was associated with
significantly improved response compared to bosutinib in terms of 24-week MMR rate
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(25.5% vs. 13.2%; p = 0.029) [57]. The main features of BCR-ABL inhibitors are resumed
in Table 2.

Table 2. Characteristics of first line BCR-ABL inhibitors.

N Clinical Trial Trial Phase CML Phase TKI Dosage Response Bcr-AblT315I

Imatinib vs.
interferon + low-dose

of cytarabine
1106 IRIS

(NCT00333840) III Chronic 400 mg/die MCR: 87%
CCR: 76% No

Imatinib vs. historic
experience 389 Retrospective [58] Accelerated 600 mg/die MCR: 49%

CCR: 43% no

Dasatinib vs.
imatinib 519 Dasision

(NCT00481247) III Chronic 100 mg/die CCR: 83%
MMR: 46% no

Dasatinib 174 START-A II R/R Accelerated 140 mg/die MCR: 39%
CCR: 32% no

Dasatinib 109
48 START-C II

R/R myeloid
blast

R/R lymphoid
blast

140 mg/die

MCR: 33%
CCR: 23%
MCR: 52%
CCR: 46%

no

Nilotinib vs. imatinib 846 ENESTnd
(NCT00471497) III Chronic 600mg/die

800 mg/die

CCR: 80%
MMR: 44%
CCR: 78%

MMR: 43%

no

Nilotinib 136 II [59] R/R Accelerated 800 mg/die MCR: 31%
CCR: 19% no

Bosutinib vs.
imatinib 536 BFORE

(NCT02130557) III Chronic 400 mg/die CCR: 77%
MMR: 47% no

Ponatinib
267
83
62

PACE
(NCT01207440) II

Chronic
Accelerated

Blastic
45 mg/die

MCR: 56%
CCR: 46%
MMR: 34%
MCR: 39%
MCR: 23%

yes

CCR, complete cytogenetic response; MCR, major cytogenetic response; MMR, major molecular response.

2.3. TKi Treatment Discontinuation in CML

Until recently, therapy of CML with TKi was not considered curative, and therefore,
patients were treated indefinitely until intolerance or disease progression. Many recent
trial results demonstrated that a proportion of patients can stop TKi treatment without
experiencing a disease relapse and can potentially be cured. Nowadays, TKi treatment
discontinuation is one of the most important goals for younger patients diagnosed with
CML [60].

The prospective, multicenter, Stop Imatinib (STIM) trial evaluated imatinib discon-
tinuation for 100 patients with CML >18 years old who achieved CMR (defined as >5-log
reduction in BCR–ABL and ABL levels and undetectable transcripts by quantitative RT-
PCR) for at least 2 years, after ≥3 years of TKi treatment. With a median follow up of
17 months, 61% of 69 patients (at least 12 months of follow up) experienced a molecular
relapse. However, all patients with molecular relapse responded to imatinib rechallenge
(26 achieved a sustained CMR and 16 achieved a decrease in BCR-ABL1 transcript lev-
els) [61]. Interestingly, the recent multicenter phase II trial DASFREE assessed treatment-
free remission (TFR) after dasatinib discontinuation in 84 patients with chronic phase CML.
After 24 months discontinuation, TFR was 46%, and 44/45 (98%) patients re-achieved
MMR (median 2 months; range 1–4) and 43/45 (96%) re-achieved DMR (median 3 months;
range 2–18) after dasatinib rechallenge. In multivariable analysis, the duration of dasatinib
treatment (>median; p = 0.005), line of therapy (first-line; p = 0.0138), and age (>65 years;
p = 0.0012) were associated with 2 year-TRF [62]. In the EURO-SKI trial, the logistic pro-
gression model showed that 6 month-TRF is significantly associated with the duration of
deep molecular response (DMR, defined as 10,000-fold reduction in BCR-ABL1 transcripts)
with TKi, as described in Table 3 [63].
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Table 3. Evaluation of the variables associated to 6-month major molecular response after TKI
discontinuation; data from EURO-SKI trial (N = 448).

Parameter Odds Ratio (95%CI) p Value

Age at stop of TKI (years) 1.9 (0.95–1.26) 0.21
Interferon pretreatment 2.50 (1.43–4.36) 0.0013

Duration of interferon pretreatment (years) 1.38 (1.12–1.69) 0.0022
Duration of TKI treatment (years) 1.16 (1.08–1.25) <0.0001

DMR duration while receiving TKI (years) 1.16 (1.08–1.25) 0.00011
Time of TKI treatment before DMR (years) 1.02 (0.93–1.13) 0.66

In summary, current guidelines recommend TKi discontinuation for patients who
have been in therapy with TKi for at least 3 years and who achieved a DMR of at least
2 years [64,65].

3. Chronic Lymphocytic Leukemia
3.1. Kinase Pathways in CLL

CLL is a clonal disorder of mature B lymphocytes characterized by the co-expression
of CD5, CD19, CD23, and CD20 that accumulate in blood, lymph nodes, spleen, and bone
marrow. The median age at diagnosis is 72 years, and most patients are initially observed
without treatment [6] The B-cell receptor (BCR) signaling pathway is constitutively ac-
tivated and fundamental to the pathophysiology of the leukemia cells in CLL [66]. The
BCR complex consists of a surface transmembrane immunoglobulin (Ig) receptor associ-
ated with Igα (CD79A) and Igβ (CD79B) chains and multiple downstream intracellular
signaling proteins [67]. The BCR signaling pathway is essential for B-cell survival and
proliferation; the loss of one of the key intracellular downstream signaling proteins, Bruton
tyrosine kinase (BTK) leads to Bruton’s X-linked agammaglobulinemia (known as X-linked
agammaglobulinemia (XLA)), which is a severe immunodeficiency characterized by the
developmental arrest of B-cell precursors and no immunoglobulin production [68,69].

Under physiological conditions, two different signals are propagated by the BCR
signaling complex: (1) a basal, constitutive survival signal, which is antigen independent
and mediated through PI3K; and (2) the signal triggered by interaction of surface Ig
with extracellular antigens that promotes the recruitment of downstream kinases such
as LYN kinase, spleen tyrosine kinase (SYK), BTK, and PI3K. In the later signaling, upon
binding of antigen and triggering of Ig signaling, LYN and SYK phosphorylate BTK,
activating phospholipase Cλ2 (PLCλ2), MAP kinases, AKT, and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-кB) [67]. BTK and PI3K were central to
B cell signaling and therefore considered as potential targets for blocking the survival
and proliferation of BCR signals with small molecule inhibitors [70,71]. However, CLL
cells have different BCR pathways compared to physiological B lymphocytes: ZAP-70
is a protein that, when overexpressed in CLL cells, enhances BCR signaling, acting as
an adapter protein rather than its kinase activity [72,73]. In addition, TOSO, named Fas
inhibitory molecule 3 (FAIM3), is an IgM Fc receptor (FcµR) that is over-expressed in CLL
clonal cells; the role of TOSO is not completely clear yet, but it might interact with SYK,
enhancing BCR pathways and promoting apoptosis arrest [74].

A summary of BCR pathways is shown in Figure 2.
Surface B-cell receptor and down-stream signaling proteins participate in pro-survival,

proliferation, migration, and apoptosis signals to the CLL cells.
Blue indicates the BTK-dependent pathway; red is the PI3K-dependent pathway; red

and blue indicate common proteins.
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3.2. TK Inhibition in CLL

Historically, first-line treatment for CLL was based on chemoimmunotherapy (CIT)
consisting of CD20 monoclonal antibody (mAb), rituximab [75], or obinutuzumab [76],
combined with different chemotherapeutic agents such as chlorambucil [77], bendamus-
tine [78], or fludarabine and cyclophosphamide [79]. However, based on multiple phase
III clinical trials, BTK-inhibitor-based treatment has proven superior to CIT in terms of
efficacy and safety. Two different families of TKi are currently approved: BTK inhibitors
(BTKi) [80] (in first-line and relapsed/refractory CLL) and PI3K inhibitors (PI3Ki) (in
relapsed/refractory CLL) [81].

The mechanism of BTK inhibition may be irreversible or reversible; the currently
available inhibitors are irreversible. Irreversible BTKi inactivate BTK by blocking the
binding of ATP by a very stable covalent bond with the sulfhydryl group of Cys481, which
is located in the BTK ATP-binding site. In contrast, reversible BTK inhibition is based on
the stronger non-covalent binding of BTK, which blocks ATP binding and does not require
Cys481 [82].

The family of irreversible BTKi consists of seven molecules (ibrutinib, acalabrutinib,
zanubrutinib, tirabrutinib, spebrutinib, remibrutinib, and evobrutinib). Ibrutinib was
approved by the FDA in 2014 for relapsed/refractory (R/R) CLL following the results of
a single-arm trial in which 48 R/R patients with CLL achieved a high overall response
rate (ORR; 58.3%) and response duration (DOR; 5.6–24.2 months) [83]. The indication was
expanded to include R/R del(17p) or mutated-TP53 CLL based on the RESONATE-17
trial [84,85], demonstrating a high ORR (64%) and 24-months PFS (63%) in 144 patients
with R/R del(17p) CLL. Interestingly, patients with del(17p) or complex karyotype R/R
CLL have shorter PFS also with ibrutinib treatment compared to patients without these
genetic abnormalities [86,87].

Ibrutinib was approved as a first-line treatment of CLL based on the phase III RESONATE-
2 trial [88], which demonstrated significantly improved PFS (median, not reached vs.
18.9 months; p < 0.001) and OS (24-month OS rate, 98% vs. 85%; p = 0.001) for ibruti-
nib compared to chlorambucil in 269 treatment-naïve (TN) patients with CLL more than
65 years old.

Other phase III trials in first-line treatment of CLL, including LLUMINATE and E1912,
evaluated ibrutinib with or without CD20 mAb versus CIT. Specifically, treatment with
ibrutinib plus obinutuzumab or ibrutinib plus rituximab resulted in significantly improved
median PFS compared to treatment with chlorambucil–obinutuzumab in iLLUMINATE or
fludarabine–cyclophosphamide–rituximab in the E1912 trial, respectively [89,90]. Addi-
tionally, the three-arm ALLIANCE trial evaluated ibrutinib with our without rituximab
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versus bendamustine plus rituximab in ≥65 years patients with treatment-naïve CLL. Both
the ibrutinib arms showed superior PFS with respect to bendamustine–rituximab [91].

The 6-year update of the phase III RESONATE trial showed significantly longer
median PFS (44.1 vs. 8.1 months; p < 0.001) for ibrutinib vs. ofatumumab treatment in
patients with R/R CLL [92]. Furthermore, treatment with combined ibrutinib, rituximab,
and bendamustine improved median PFS compared to bendamustine plus rituximab in
patients with R/R CLL in the randomized double-blind phase III HELIOS study [93] A
recent update of the HELIOS trial reported a median follow up of 34. 8 months and longer
median PFS (not reached for ibrutinib plus bendamustine–rituximab vs. 14.3 months for
bendamustine–rituximab) and higher 36-month PFS (68% vs. 13.9%, respectively) [94].
However, the value of bendamustine plus rituximab when combined with continuous
ibrutinib in this regimen is debated. Continuous and indefinite treatment with ibrutinib
is associated with side effects, usually mild (grade I–II), which need to be managed. For
example, skin manifestations are common (up to 27%) and consist of cutaneous rash,
ecchymosis, and petechiae [86]. An increased risk of bleeding due to ibrutinib-induced
platelet dysfunction is another long-term side effect [95]. In clinical trials, the rate of major
bleedings (grade ≥ 3), including subdural hematomas gastrointestinal and intracerebral
bleedings, is reported in up to 8–10% of patients; however, this risk might be influenced
by concomitant treatments with anticoagulant or antiplatelet agents [96,97]. Cardiac
side effects, including atrial fibrillation (AF), hypertension, and ventricular arrhythmias
are also reported during ibrutinib therapy. Notably, AF is the most frequent reason for
ibrutinib discontinuation [98]. The incidence of AF increases with longer treatment period
(3–7% < 18 months; 9–16% ≥ 18 months) [97].

Acalabrutinib is a second generation, more specific and selective irreversible BTKi
evaluated as single agent (n = 179) or combined with obinutuzumab (n = 179) versus chlo-
rambucil plus obinutuzumab (n = 177) in treatment-naïve patients CLL in the multicenter
randomized phase III ELEVATE-TN trial. This trial demonstrated significantly improved
PFS for both acalabrutinib-containing arms over chlorambucil plus obinutuzumab. Acal-
abrutinib was FDA approved in November 2019 as a first-line treatment for CLL [99]. The
multicenter randomized phase III ASCEND trial also demonstrated improved PFS for acal-
abrutinib over the investigator’s choice (idelalisib–rituximab or bendamustine–rituximab)
in patients with R/R CLL [100].

An ongoing randomized, multicenter phase III non-inferiority study to evaluate
ibrutinib vs. acalabrutinib for treatment of patients with high-risk cytogenetic R/R CLL
(ELEVATE-RR; NCT02477696) [del(17p) or del(11q)] reported improved tolerability and
toxicity for acalabrutinib with reduced incidence of all grade atrial fibrillation and non-
inferior efficacy for acalabrutinib versus ibrutinib and similar efficacy [101]. In addition, the
ALPINE trial (NCT03734016) is a multicenter phase III trial currently evaluating zanubru-
tinib (irreversible BTKi) versus ibrutinib also preliminarily reporting reduced risk for
all-grade atrial fibrillation for zanubrutinib over ibrutinib and with a trend for improved
PFS with zanubrutinib [102].

Tirabrutinib [103], spebrutinib (NCT01732861-NCT01975610), remibrutinib [104], and
evobrutinib (NCT02975349) are being evaluated in clinical trials in the setting of B-cell
malignancies, including CLL, and in autoimmune diseases.

Despite very good responses and highly durable disease control achieved with BTK
inhibition, some patients might develop refractory disease to irreversible BTKi and progress
during treatment. Notably, resistance to irreversible BTKi has been associated with substi-
tution of the cysteine in position 481 with a serine (C481S mutation) as the most frequent
mechanism of CLL cell resistance. The cysteine residue is essential for the creation of the
irreversible covalent bound between BTK and irreversible inhibitors [105]. Other muta-
tions involving C481 have been described but are less common, including C481F, C481G,
C481R, C481Y, and C481T [106,107]. Another mechanism of resistance to irreversible BTKi,
although less common and BTK mutation, is the acquisition of gain of function muta-
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tions in PLC γ2 protein (R665W and L845F), leading to autonomous BCR activity [108].
Subsequently, other mutations have been discovered and reported in Figure 3 [109].
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The reversible BTKi (pirtobrutinib, vecabrutinib, ARQ531, fenebrutinib), potentially
overcomes C481 mutations by very strong non-covalent interactions (hydrogen, ionic
bonds, and hydrophobic interactions) with BTK that block ATP binding and do not require
C481 [82]. These other reversible BTKi showed good inhibitory activity in vitro against
wild-type and mutated BTK. ARQ531 and fenebrutinib showed good results in early clinical
evaluations in B-cell malignancies, including CLL. In contrast, the clinical development of
vecabrutinib was discontinued because of no clinical activity in CLL [110–114]. Clinical
trials of reversible BTKi are in early stages. Pirtobrutinib [115] is a reversible inhibitor
being evaluated in a phase I/II study in patients with B-cell malignancies, including
CLL, showing 62% ORR in the R/R CLL subgroup (n = 121) at the recommended dose of
200 mg/day.

Idelalisib was the first PI3Kδ-inhibitor (PI3Kδi) developed for the treatment of pa-
tients with CLL. Early phase I and II clinical trials demonstrated efficacy in terms of ORR
and median PFS, showing durable responses [116,117]. However, treatment-related side
effects and toxicities have been challenging with idelalisib. A high rate of treatment-related
transaminitis was observed at a median of 28 days on treatment. Hepatic biopsies docu-
mented an autoimmune etiopathogenesis [118]. Lymphocytic infiltration was also seen
with colitis and pneumonitis reported as treatment-related toxicities associated with idelal-
isib and have made use of this agent potentially challenging. Two randomized phase III
trials confirmed idelalisib efficacy in CLL when combined with bendamustine–rituximab
or ofatumumab, but also in these trials, excessive infection (bacterial pneumonia, pneumo-
cystis Jirovecii pneumonia, CMV reactivation) and liver toxicity were observed [119,120].
Idelalisib is currently only approved for patients with R/R CLL, not in first-line treatment.

Duvelisib is a more recently developed PI3Kδi, which demonstrated strong antiprolif-
erative effects in CLL cells [121]. A phase I trial, in which patients affected by lymphopro-
liferative malignancies were enrolled, showed good results for duvelisib in terms of ORR.
The safety profile was similar to idelalisib [122]. In the multicenter, randomized phase III
DUO trial, patients with R/R CLL received duvelisib single-agent versus ofatumumab.
This trial demonstrated significantly increased ORR and longer median PFS with duvelisib
treatment, including in patients with high-risk cytogenetic CLL [123].

Other PI3Ki are in development. Parsaclisib is a next-generation, potent, and highly
selective PI3Kδi that has been recently evaluated alone or associated in R/R B-cell ma-
lignancies, including CLL, in a phase I/II trial. Parsaclisib showed promising antitumor
activity [124]. Umbralisib is an innovative PI3Kδ/CK1ε inhibitor that showed safety and
early efficacy in 51 R/R CLL patients in a phase II trial [125].

In contrast to BTKi, resistance mechanisms to PI3Kδi are still poorly understood. A
preclinical investigation reported increased or persistent activity of the ERK pathway,
which might be involved in PI3Kδi resistance [126]. Furthermore, in mantle cell lymphoma,
it was shown in vitro that a higher PIK3CA (encoding for p110α)/PIK3CD (encoding for
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p110δ) ratio of messenger RNA transcripts is associated to PI3Kδi resistance [127]. In
addition, MYC amplification was observed as a potential resistance mechanism to PI3Ki in
breast cancer models [128].

4. Discussion

The development and availability of targeted therapies based on tyrosine kinase inhi-
bition has fundamentally changed the management of CML and CLL. A greater selectivity
toward neoplastic cells, higher efficacy rates, oral administration, and safer toxicity profile
made this therapeutic approach preferable over conventional chemotherapy. Furthermore,
high cytogenetic risk diseases such as CLL with del(17p) are much more effectively treated
with tyrosine kinase inhibitors.

In recent years, especially in younger patients, achieving undetectable MRD (defined
as the persistence of a very low number of neoplastic cells after or during the treatment,
detectable by molecular or flow cytometry analysis) [129,130] has become a very important
and realistic goal with TKi-based treatment, considering the desire for treatment discon-
tinuation. Several trials in patients with CML have already shown that in predetermined
conditions (CMR for at least 2 years after ≥3 years of TKi treatment), the BCR-ABL1 in-
hibitor can be discontinued and rechallenged in case of molecular relapse. Conversely, TKi
discontinuation is not yet recommended in CLL, since the remissions are not deep with
TKi-based treatment (extremely rare MRD remissions), and a worse outcome was described
in patients who underwent ibrutinib interruption for adverse effects [131]. Further clinical
trials and follow up are recommended to identify the risk conditions for indefinite therapy
in patients with CLL.

In conclusion, we highlight CML and CLL as examples of hematological malignancies
in which the TKi-based approach was transformative and has remarkably improved out-
comes for patients with these diseases. The discovery of new intracellular kinase pathways
that may be inhibited and the approval of further tyrosine kinase inhibitors is anticipated
in the future because of the intrinsic genomic instability of hematological neoplastic cells,
which may develop resistance to available therapies.
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