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Registration is essential for the volume reconstruction of biological tissues

using serial section electron microscope (ssEM) images. However, due to

environmental disturbance in section preparation, damage in long serial

sections is inevitable. It is difficult to register the damaged sections with the

common serial section registration method, creating significant challenges

in subsequent neuron tracking and reconstruction. This paper proposes a

general registration method that can be used to register damaged sections.

This method first extracts the key points and descriptors of the sections to

be registered and matches them via a mutual nearest neighbor matcher.

K-means and Random Sample Consensus (RANSAC) are used to cluster the

key points and approximate the local affine matrices of those clusters. Then,

K-nearest neighbor (KNN) is used to estimate the probability density of each

cluster and calculate the expected affine matrix for each coordinate point.

In clustering and probability density calculations, instead of the Euclidean

distance, the path distance is used to measure the correlation between

sampling points. The experimental results on real test images show that this

method solves the problem of registering damaged sections and contributes

to the 3D reconstruction of electronic microscopic images of biological

tissues. The code of this paper is available at https://github.com/TongXin-

CASIA/Excepted_Affine.
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Introduction

In connectomics studies, volume reconstruction
reconstructs the neurite circuit from electron microscope
images. The commonly used methods for obtaining electron
microscope images of biological tissue include serial section
electron microscopy (ssEM), focused ion beam scanning
electron microscopy (FIB-SEM), and serial block-face
scanning electron microscopy (SBEM). Among them, FIB-
SEM alternately uses scanning electron imaging and focused
ion beam milling of the top of the tissue block (Briggman and
Bock, 2012). As a result, FIB-SEM can obtain in-situ images
with a higher axial resolution to avoid complicated serial
image registration and image defects. However, it has several
drawbacks, including high cost, slow imaging speed, and sample
destruction. As another methodology, ssEM has been used in
many large-volume reconstruction projects (Hildebrand et al.,
2017; Zheng et al., 2018; Macrina et al., 2021; Shapson-Coe
et al., 2021) in recent years. ssEM is a suitable technique for
large-volume reconstruction because it can image sections
in parallel and has a large field of view. It cuts tissue into
ultrathin serial sections and images them (Briggman and Bock,
2012) via electron microscopy. Then, those ssEM images are
registered and overlaid to form a three-dimensional image stack
for the following analysis. Nevertheless, ssEM contains many
weaknesses, including section damage, misalignment, and poor
axial resolution.

Section damage is caused by numerous factors during
section preparation. The drying and dehydration of the section
and the fixation of the tissue at different temperatures will
cause section shrinkage (Fox et al., 1985; DurgunYucel et al.,
1996; Gardella et al., 2003). In addition, the knife blade cuts
through the tissue block, which causes the compression of the
tissue along the z-axis (Gardella et al., 2003). Besides, due
to ultra-thin section thickness, the cutting process may lead
to shear deformation, tearing, and even loss of the sections
(Dauguet et al., 2007; Agarwal et al., 2018). Moreover, staining
and mounting can also cause severe tissue damage, such as
cracking or folding (Choe et al., 2011), which cannot be avoided
even if these sections are prepared by a section specialist
(Popovych et al., 2020).

Section damage in ssEM images has a negative influence on
the subsequent segmentation. Severe section damage, such as
cracks and folds, will lead to information loss and significant
deformation. Common types of section damage are shown in
Figure 1. Figure 1A shows the ssEM image with continuous
deformation. Under the influence of internal and external forces
during the sectioning process, the section generates global
and local continuous deformation. In contrast to continuous
deformation, discontinuous deformation is caused by cracks
or folds. The continuity of these two kinds of deformation
is broken at the crack or fold location. The tissue on both
sides of the fold moves toward the fold (Figures 1C–F), while

tissue on both sides of a crack moves away from the crack,
as shown in Figure 1B. As shown in Figure 1, the crack or
fold present great individual differences in appearance. The
crack is relatively simple and causes less information loss
and deformation (Figure 1B), while the fold is much more
complex. Figure 1C is a deep fold with large deformation
and information loss. Compared to the deep fold, shallow
folding, as shown in Figures 1D–F, has smaller deformation and
information loss, but the direction and degree of deformation
may continue to change across the section. To make matters
worse, these different types of cracks and folds can exist
simultaneously on the same section, which results in the section
with this damage not being easily repaired even by humans.
Thus, it is necessary to develop an algorithm to address
these severe damages.

Many works have been proposed to address the broken
sections. Berlanga et al. (2011) proposed that thicker sections
can avoid tissue tears. However, increasing the section thickness
decreases the longitudinal resolution of the reconstructed
volume. As a simple disposal method, some works (Yushkevich
et al., 2006; Lein et al., 2007) removed the damaged sections
to alleviate the complexity of the subsequent serial section
registration. While section thickness is usually set to 30 nm in
connectomics studies and the axon can be less than 100 nm in
diameter (Popovych et al., 2020), too many removed sections
may result in the difficulty of neurite tracing across sections. As
a result, the registration of the damaged section is a worthwhile
study for restoring the underlying neuronal structure as much
as possible, especially in large connectomics projects.

The registration of the damaged section is not referred
specifically to in commonly used serial section registration
methods (Saalfeld et al., 2012; Yoo et al., 2017; Kajihara
et al., 2019). These methods mainly focus on how to
model the continuous nonlinear deformation of the unbroken
section, such as the elastic model (Saalfeld et al., 2012), the
convolutional neural network (CNN) model in ssEMnet (Yoo
et al., 2017), and the blending of several rigid transformations
(Kajihara et al., 2019). To improve the robustness of
the registration results, the smoothness constraint of the
deformation field is often appended, which has achieved good
results on unbroken sections. However, it is helpless against
the discontinuous deformation in the broken sections shown
in Figures 1B–F.

To solve the registration problem of discontinuous
deformation caused by cracks or folds, Pitiot et al. (2006)
clustered a deformation vector to divide the damaged section
into subregions and registered the subregion separately.
Caesar (Popovych et al., 2020) used a CNN to segment the
damaged section. SEAMLeSS (Mitchell et al., 2019; Macrina
et al., 2021) broke the smoothness constraint at cracks
or folds to simulate discontinuous deformation. Huang
et al. (2020) focused on sections with folds, which were
divided into two parts, and a CNN was used to generate
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FIGURE 1

Some typical section damage images imaged by scanning electron microscope. (A) Continuous deformation. The entire section has been
registered to the reference section, but there is still some local deformation. This picture shows the superposition of the red channel of the
previous section and the blue and green channels of the next section. The presence of ghosting means that the previous and next sections are
not registered perfectly. (B–F) Different types of broken sections.

the deformation field and restore the intermediate layer
content. These methods divided the sections into completely
separated areas and cannot address the shallow fold well in
Figures 1D,E.

This paper proposes a method to register the damaged
section. It calculates the expected affine of each coordinate point
of the section. Unlike (Kajihara et al., 2019), the generated
deformation field can model the discontinuous deformation
caused by cracks, folds and nonlinear continuous deformations.
Unlike other registration methods for specific types of damaged
sections, this method is suitable for the registration of most
damaged sections.

The key contributions of this paper are as follows:

• It proposes a registration method for damaged sections,
which contributes to improving the accuracy of
the reconstructed volume of biological tissues in
connectomics studies.
• A new strategy is proposed for image matching. It uses

a local model to select matching pairs from images to
be matched, overcoming the disadvantage of the global
model, which cannot identify matching pairs in areas with
large deformation.

• The path distance is used to model the relationship
between points on the section, so the generated
deformation field can approximate not only continuous
deformation but also discontinuous deformation.

Materials and methods

Registering damaged sections presents numerous challenges
that are difficult to overcome with common serial section
registration methods. Here, we propose a novel method for
registering damaged sections. The main step of the proposed
method is depicted in Figure 2A. A CNN approach is utilized
to extract corresponding points in adjacent sections (Section
“Feature extraction and matching”). Then, a novel matching
strategy is proposed to determine the complicated deformation
within damaged sections, which is described as multiple
local transformations (Section “Local transform estimation”).
Finally, to generate the final deformation field, the expected
transformation at each position is calculated with these local
transformations (Section “Expected affine calculation”), and
to combine continuous and discontinuous deformations, path
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FIGURE 2

(A) Appearance damaged section and the overall excepted affine pipeline. (B) The match between the reference section and the folded section.
Different colors represent different clusters. (C) Correlation measures between points on different sides of the fold.

distance is used to model the relationships between points on
the section (Section “Probability density estimation”).

Feature extraction and matching

Registering damaged sections requires a sufficient number
of uniformly distributed matching pairs to characterize the
correspondence between sections. CNNs have made great
achievements in feature extraction. Therefore, the pretrained
CNN model named SuperPoint (DeTone et al., 2018) is used
to extract key points and descriptors. The SuperPoint model
consists of an encoder and two decoders. The model input a
W × H grayscale image and output a W × H heatmap and
a W × H × 256 descriptor tensor. Then the key points are
converted from the heatmap, and the descriptors are generated
by interpolating the tensor. The pretrained model was trained
in MS-COCO 2014 (Lin et al., 2014). It has good generalization
performance. Therefore, this method is used without fine-tune.
The corresponding descriptors are matched via the nearest

neighbor matcher, and the match pairs are selected by the
method descripted in Section “Local transform estimation.”

Local transform estimation

A single global transformation cannot model the
deformation of the registration of damaged sections. As
shown in Figure 2B, these are two consecutive sections in the
serial, and the section on the right is folded. The transformations
on both sides of the fold can be approximated by two different
affine matrices. Moreover, the affine matrices should be
smoothly transitioned to ensure registration result continuity.

This paper uses K-means to automatically divide the
matching pairs obtained in the previous step into different
clusters and estimate the affine matrix in each cluster. Key
point coordinate kpmoving of the moving image Imoving is used
as the feature vector Vf for clustering. K-means is used to
cluster matching pairs into k̂ clusters in the feature space of
Vf . In clustering, the cracks or folds are labeled [in this paper,
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we labeled those cracks or folds manually, but they can also
be labeled by a CNN (Macrina et al., 2021)], and the path
distance bypassing the cracks or folds is used to measure the
similarity between clusters. The key points with similar spatial
positions are clustered into the same cluster. In contrast, the
key points on different sides of the fold are clustered into
different clusters. Therefore, the affine matrix can describe
the local transformation more accurately. Random Sample
Consensus (RANSAC) (Fischler and Bolles, 1981) is used for
each cluster ci to reject the incorrect matching pairs and estimate
the affine matrix Ai for each cluster. Clusters with too few
inliers are discarded. After that, r clusters c1, c2, ..., cr and their
corresponding key point sets and affine matrix sets are obtained.

Expected affine calculation

In the previous step, the affine matrix of local key points
was obtained. To complete the registration, it is necessary
to know the transformation matrix of each coordinate point.
Considering key points as sampling points in image space, the
probability density of each cluster of ci is calculated by KNN
(Hart et al., 2000) as

pn (x, ci) =
ki/n
Vx

(1)

where x is the coordinate of each pixel, n is the total number
of sample points, and Vx is the volume including the ki−th
nearest sample point in ci. Then, the posterior probability of
each coordinate point x belonging to ci is

Pn (ci | x) =
pn (x, ci)∑r

j = 1 pn
(
x, cj

) (2)

Finally, the expected affine matrix of each coordinate point can
be calculated as follows:

En (Ax) = Pn (ci | x) Ai (3)

Probability density estimation

The accuracy of the estimated probability density
pn (x, ci) =

ki/n
Vx

affects the accuracy of the final expected
affine matrices En (Ax). In most cases, Vx = d2, d is the
Euclidean distance between x and the ki−th nearest sampling
point. However, as can be seen in the left half of Figure 2C, in
our case, the correlation between two red points can be broken
by cracks or folds. Therefore, using Euclidean distance d to
calculate probability density is not reasonable.

Sometimes the crack or fold does not go completely across
the entire section, so the two points are not completely
uncorrelated. Therefore, we use the path distance bypassing the
crack or fold as shown in the right half of Figure 2C to measure
the correlation between two points. To estimate the probability

density, the distance from all pixels to the sampling point
should be calculated. Compared with the popular path planning
algorithms (Floyd, 1962; Hart et al., 1968), which obtain the path
distance between two points, the wavefront expansion algorithm
(Barraquand et al., 1992) can obtain the path distance between
all pixels and the sampling point at one time without saving
the path, so it has lower time complexity. Thus, the wavefront
expansion algorithm is used to calculate the path distance.

The path distance is used to model the d in Vx. Then, the
probability density can be computed by Eq. 1. As a result, the
generated deformation field can simulate not only continuous
deformation but also discontinuous deformation.

Implementation details

In the SuperPoint, the key points are detected above the
confidence threshold at 0.015. In serial section registration,
the distribution of the extracted key points on the section is
generally not uniform. To obtain evenly distributed key points,
we divide sections into patches to extract the key points. In this
paper, the section is divided into 10 × 10 patches. Each patch
extracts up to 50 key points according to the heatmap value
to force the key points to be evenly distributed. In K-means
clustering, k = 20. In calculating the probability density
using KNN, K = 3.

Results

We evaluate three aspects of expected affine (EA):

• The matching result between EA and RANSAC.
• The performance of registering typical damaged sections.
• The 3D reconstruction result with/without EA.

We evaluated the results of our method on several
representative damage sections. These sections include all the
damage types mentioned in Figure 1. Due to time and resource
consumption considerations, we scaled the sections down. In
the experiment, the cracks and folds were labeled manually.

The sections used in the experiment are available at
https://github.com/TongXin-CASIA/Damaged_Section.
Before the experiment, we performed histogram equalization
on all sections.

Matching performance

Matching key points is an essential part of the registration
algorithm. The performance of the corresponding relationship
directly affects the accuracy of the registration algorithm.

The purpose of matching in the EA algorithm is to obtain
more evenly distributed matching pairs in damaged sections,
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which is a characteristic that has not been considered in most
matching methods. In this experiment, EA is compared with
RANSAC, which also has the ability of selecting matching pairs.
The matching effect is evaluated on real damaged sections.

Figure 3 shows the result of feature matching. When the
distance between a matching pair is less than three pixels, it
is considered to be a correct match. The input of EA and
RANSAC is the same.

The number and rate of inliers shown in Table 1 represent
the efficiency of utilizing matched pairs, and more matching
pairs indicate better matching quality, which results in better

registration accuracy. It can be seen that our method has
more matched pairs and fewer outliers than RANSAC. In
addition, as illustrated in Figure 3, our method produces
more evenly distributed matching pairs than RANSAC, and
this advantage can also be demonstrated by the Area% index
in Table 1. Area% represents the proportion of the matching
area on the section. We used a circle centered on each match
point with a radius of 35 pixels to define the matching area
(the shorter side of each image is scaled to 1,000 pixels).
The area of all matching areas divided by the area of the
section image is regarded as Area%. A larger value of Area%

FIGURE 3

The match results. Left: The matched points in the sections. For each pair, the left is the reference section, and the right is the damaged section
to be registered. Right: Area covered by correspondences on different sections (the shorter side of each section is scaled to 1,000 pixels, and
the red-colored area represents the area covered by correspondences).
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TABLE 1 Quantitative analysis of matching results.

Sections Method Time (s) Match num Inliers num Inliers% Area%

Crack sample RANSAC 0.467 2147 170 7.9 17.4

EA 139.836 783 36.5 68.4

Multiple folds sample RANSAC 0.346 2207 587 26.6 32.2

EA 50.789 1448 65.6 75.4

Deep fold sample RANSAC 0.389 2020 211 10.4 31.4

EA 9.988 589 29.2 62.6

Dendritic fold sample RANSAC 0.350 2654 1179 44.4 51.5

EA 58.254 1906 71.8 75.9

Continuous deformation sample RANSAC 0.479 2389 759 31.8 46.5

EA 337.637 1332 55.8 73.9

The best results are highlighted in bold.

indicates that the matching algorithm can consider a more
global transformation of the damaged section. The right part
of Figure 3 shows that the correspondences obtained by our
method cover a larger area.

In conclusion, our method is significantly better than the
RANSAC algorithm in terms of the number of matching pairs,
the proportion of inliers, and the universality of the distribution
of matching pairs. Furthermore, from the comparison of the
experimental results, it is clear that our method produces better
results when there are large cracks or folds in the sections.

Registration performance

In the last section, we compared the matching effects of
RANSAC and our method in damaged sections. Experimental
results show that the effect of our method is much better
than RANSAC. In this section, we demonstrate the registration
performance of our method quantitatively and qualitatively.

Expected affine, RANSAC, Elastic (Saalfeld et al., 2012),
bUnwarpJ (Arganda-Carreras et al., 2006), and SEAMLeSS
(Mitchell et al., 2019; Macrina et al., 2021) are used to estimate
the transformation of damaged sections. Because SEAMLeSS
is a fine registration method, we use an affine transformation
to perform coarse registration on the sections beforehand. In
addition, SEAMLeSS and EA use the same cracks or folds
labels obtained manually, while the other methods do not
require the cracks or folds label. According to the calculated
transformation, the damaged section is warped and repaired.
The qualitative results, depicted in Figure 4, are obtained
by overlaying the reference and the registered results of
damaged sections. Due to space limitations, we show only the
registration results for the Crack Sample here. The complete
results are available in the supplementary materials. We
also analyze the registration results quantitatively. Due to the
nonlinear deformation of the damaged section, we examine
the registration result locally through the whole section. As a

result, we divide the registered images into 64 × 64 patches
and evaluate the registration accuracy of each patch using
normalized cross-correlation (NCC). As plotted in the up part of
Figure 5, our method has good results in all sections. Although
it is difficult to distinguish SEAMLeSS and our method in
terms of the mean value of the NCC of local patches, our
method has a much smaller standard deviation. Furthermore,
we illustrate the heatmaps of the NCC for SEAMLeSS and
the proposed method in the bottom part of Figure 5. This
figure can show the registration accuracy of our method in
different locations.

Results of continuous deformation
The Continuous Deformation Sample is an entire section

with large continuous deformation. The bottom part of Figure 5
shows that the red (higher-precision) covers a larger area in the
proposed method results. This result means that the proposed
method can deal with continuous deformation well.

Results of discontinuous deformation
All other samples contain discontinuous deformation. As

shown in Figure 4, ghosting is clearly visible for all the
methods except for EA for Crack Sample. The heatmaps
also show that for those samples containing discontinuous
deformation, the SEAMLeSS, which achieves the best result of
other methods, can only obtain a good result on one side of
the crack or fold. Except for EA, other methods are inadequate
for dealing with large discontinuous deformations caused by
cracks or folds.

The results of continuous deformation and discontinuous
deformation indicate that our method can be used to address
both continuous and discontinuous deformation.

3D reconstruction

The volume assembly of ssEM is to register the ssEM images
sequentially and then stack these images in the longitudinal
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FIGURE 4

The registration results of Crack Sample, which were generated by superimposing damaged sections and reference sections. A location with
noticeable ghosting indicates that it is not registered well. The complete registration results can be obtained from the Supplementary Materials.

direction. Damaged sections, especially broken sections, are
a tremendous challenge for the 3D reconstruction of ssEM
volume. Here, we compare the 3D reconstructed structure with
and without the proposed method.

The dataset used in this experiment was acquired from
the optic lobe of Drosophila and imaged using SEM with a
voxel resolution size of 3 nm × 3 nm × 50 nm. The dataset

size is 10,000 × 10,000 × 64. The sections were scaled to
1,000 × 1,000 for the experiment. The 32nd layer in this
dataset is a folded section where the fold goes across the
whole sections shown in Figure 1A. The proposed method
is used to register the damaged section to the reference
section. After that, these sections are registered sequentially
and stacked into a 3D volume. Two neurites are labeled
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FIGURE 5

The local patch normalized cross-correlation (NCC) of registration results. Up: Box plot of the mean of the local patch NCC distribution.
Bottom: Heatmap of the NCC. The red indicates a high degree of similarity between the registered section and the reference section at the
current position, whereas the blue indicates the inverse.

in the volume. Figures 6A,C,E illustrates the registration
result of original serial sections that are not repaired, and
Figures 6B,D,F illustrates the registration results for serial
sections repaired with EA.

As shown in Figures 6A,B, the continuity of the
transformation between the previous and the next sections
of the folded section is preserved with EA. To further evaluate
the influence of the proposed method, we label two neurites
with different colors. Figures 6C,D shows that without EA,
the continuity of the serial section stack along the longitudinal
direction is very poor, and the continuity is much improved with
EA. The 3D view of the reconstructed neurites in Figures 6E,F
also confirms the results.

Discussion

Section damage is unavoidable during sample preparation
in ssEM. Registering the damaged sections to the reference
sections for repair is a suitable method. However, along with

the more common continuous deformations, discontinuous
deformations caused by cracks or folds may exist on the
sections. It is difficult to register the damaged sections with
common registration methods. To solve this challenge, we
modeled these two deformations using the path distance
bypassing the damaged area. The proposed method can
resolve both continuous and discontinuous deformation in the
section simultaneously.

The previous section of the damaged section is commonly
used as the reference section. However, sometimes there will
be discontinuous deformation in multiple consecutive sections.
These sections are not suitable to be regarded as reference
sections. Therefore, in practical application, the entire section
closest to the damaged section in the serial section is used as the
reference section for repair.

However, due to the high time complexity of path planning,
the proposed method is significantly slow. To deal with this
shortcoming, the damaged section can be scaled down properly,
and the estimated deformation field is enlarged to warp the
full-size section.
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FIGURE 6

Registration result of serial sections. (A) The registration result of the folded section with its previous and subsequent sections without the
expected affine. The blue part of the folded section represents the area corresponding to the section of the previous layer, and the red part
represents the area corresponding to the section of the next layer. (B) The registration result of the folded section with its previous and
subsequent sections with expected affine. The green area of the folded section corresponds to the previous and next sections. (C,D)
Longitudinal view of the registration result. (E,F) 3D model reconstructed from the registration result.

In this paper, the label of the cracks or folds is obtained
manually, which is also time-consuming work for complex
damaged sections. Automatically detecting and labeling folds
and cracks are the direction of upcoming research. Furthermore,
the recovery of the lost information in crack and fold areas is also
worthy of investigation.
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