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Abstract: Diseases of the kidney are difficult to diagnose and treat. This review summarises
the definition, cause, epidemiology and treatment of some of these diseases including chronic
kidney disease, diabetic nephropathy, acute kidney injury, kidney cancer, kidney transplantation and
polycystic kidney diseases. Numerous studies have adopted a metabolomics approach to uncover
new small molecule biomarkers of kidney diseases to improve specificity and sensitivity of diagnosis
and to uncover biochemical mechanisms that may elucidate the cause and progression of these
diseases. This work includes a description of mass spectrometry-based metabolomics approaches,
including some of the currently available tools, and emphasises findings from metabolomics studies
of kidney diseases. We have included a varied selection of studies (disease, model, sample number,
analytical platform) and focused on metabolites which were commonly reported as discriminating
features between kidney disease and a control. These metabolites are likely to be robust indicators of
kidney disease processes, and therefore potential biomarkers, warranting further investigation.

Keywords: acute kidney injury; chronic kidney disease; diabetic nephropathy; kidney cancer;
kidney disease; kidney transplantation; polycystic kidney disease; biomarker; chromatography;
mass spectrometry; metabolomics

1. Introduction

The roles of the kidney include excretion, hormone production, regulation of blood pressure,
and ionic, osmotic and pH balance [1,2], all of which make the kidney essential for physiological
homeostasis [3,4]. Due to its many roles, diseases of the kidney often have systemic consequences
making diagnosis and treatment extremely difficult and expensive. Kidney Health Australia,
for example, estimates that the Australian government will be spending 7–8 billion dollars on the
treatment of end-stage renal disease by 2020 [5]. Here we provide a description of some common
nephropathies and their current status in terms of definition/diagnosis, aetiology, epidemiology and
therapy/treatment. Also, the general workflow and available tools for conducting metabolomics
experiments is provided. The purpose of this review is to assess a range of metabolomics studies
since this approach can potentially determine metabolites of interest in kidney diseases, aiding the
development of new diagnostic approaches and therapeutic targets for treatment. After providing
a summary of kidney diseases and metabolomics, we examined a diverse selection of metabolomics
studies of kidney diseases with the aim of highlighting metabolites which are consistently reported
regardless of the disease model, study population size, sample type and/or analytical platforms used.
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Given that some overlap exists in the aetiology of some kidney diseases, these metabolites provide
some insight into the biochemical processes linking different kidney diseases.

2. Kidney Disease

There are many kidney diseases that are difficult to diagnose and treat despite a long history of
studying the kidney and associated diseases. In his review, ‘Kidney’, Smith [6] cited literature from
1935, however it is known that the diagnoses of kidney disease dates back to at least the 1500s [7,8].
Treatments for chronic kidney disease are often invasive and expensive, and there are no known cures
for chronic kidney diseases [5] or injuries [9]. Therefore, current research aims to develop targeted and
effective diagnosis and treatment. We have included here a description of acute kidney injury (AKI)
and chronic kidney disease (CKD) as they are often referred to as stand-alone conditions, and kidney
transplantation, even though it is a therapy. In fact, AKI can be a result of, for example, reperfusion after
transplantation, and conditions such as polyscystic kidney diseases (PKD), and diabetic nephropathy
may result in CKD and the need for transplantation. Furthermore, AKI may develop in patients with
CKD and vice versa [10]. These relationships are depicted in Figure 1.

Metabolites 2019, 9, x 2 of 21 

 

regardless of the disease model, study population size, sample type and/or analytical platforms 
used. Given that some overlap exists in the aetiology of some kidney diseases, these metabolites 
provide some insight into the biochemical processes linking different kidney diseases.  

2. Kidney Disease 

There are many kidney diseases that are difficult to diagnose and treat despite a long history of 
studying the kidney and associated diseases. In his review, ‘Kidney’, Smith [6] cited literature from 
1935, however it is known that the diagnoses of kidney disease dates back to at least the 1500s [7,8]. 
Treatments for chronic kidney disease are often invasive and expensive, and there are no known 
cures for chronic kidney diseases [5] or injuries [9]. Therefore, current research aims to develop 
targeted and effective diagnosis and treatment. We have included here a description of acute kidney 
injury (AKI) and chronic kidney disease (CKD) as they are often referred to as stand-alone 
conditions, and kidney transplantation, even though it is a therapy. In fact, AKI can be a result of, for 
example, reperfusion after transplantation, and conditions such as polyscystic kidney diseases 
(PKD), and diabetic nephropathy may result in CKD and the need for transplantation. Furthermore, 
AKI may develop in patients with CKD and vice versa [10]. These relationships are depicted in 
Figure 1. 

 

Figure 1. The overlapping relationships of the described kidney diseases. Chronic kidney disease 
and sub-entities: Polycystic kidney disease, diabetic nephropathy, kidney cancer and membranous 
nephropathy may progress to end-stage renal disease requiring transplantation. Reperfusion after 
transplantation may result in acute kidney injury. Acute kidney injury may also result from 
sub-entities of CKD. 

2.1. Chronic Kidney Disease 

CKD, the loss of kidney function over time (eGFR < 60 mL/min/1.73 m2 for three months or 
more [11]), affects 8–10% of individuals in Western Countries [12]. CKD has been classified into five 
stages according to glomerular filtration rate (GFR) or estimated GFR (eGFR; mL/min/1.73 m2). 
Creatinine-based estimations of GFR are most commonly used, however estimations based on 
cystatin C may also be used [13]. Table 1 lists the five stages of CKD [11] and further includes the 
classification of Stage 3 as 3a (45–59 mL/min/1.73 m2) or 3b (30–44 mL/min/1.73 m2). With no 
available cure for CKD, therapies centre on managing symptoms with renal replacement therapies 
such as dialysis and/or transplantation. 
  

Figure 1. The overlapping relationships of the described kidney diseases. Chronic kidney disease
and sub-entities: Polycystic kidney disease, diabetic nephropathy, kidney cancer and membranous
nephropathy may progress to end-stage renal disease requiring transplantation. Reperfusion after
transplantation may result in acute kidney injury. Acute kidney injury may also result from sub-entities
of CKD.

2.1. Chronic Kidney Disease

CKD, the loss of kidney function over time (eGFR < 60 mL/min/1.73 m2 for three months or
more [11]), affects 8–10% of individuals in Western Countries [12]. CKD has been classified into
five stages according to glomerular filtration rate (GFR) or estimated GFR (eGFR; mL/min/1.73 m2).
Creatinine-based estimations of GFR are most commonly used, however estimations based on cystatin
C may also be used [13]. Table 1 lists the five stages of CKD [11] and further includes the classification
of Stage 3 as 3a (45–59 mL/min/1.73 m2) or 3b (30–44 mL/min/1.73 m2). With no available cure
for CKD, therapies centre on managing symptoms with renal replacement therapies such as dialysis
and/or transplantation.
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Table 1. Stages of chronic kidney disease as defined by glomerular filtration rate (GFR) or estimated
glomerular filtration rate (eGFR).

Stage GFR or eGFR (mL/min/1.73 m2)

1 ≥ 90
2 60–89
3 30–59

3a 45–59
3b 30–44
4 15–29
5 <15

2.2. Diabetic Nephropathy

Diabetic nephropathy is the leading cause of chronic kidney disease, affecting approximately
30 to 40% of type 1 diabetes mellitus patients and 25 to 40% of type 2 diabetes patients [14–17].
Diabetic nephropathy is characterised by the combination of insulin- or non-insulin dependent diabetes
with persistent microalbuminuria [17]. There is a genetic predisposition to diabetic nephropathy,
however the most important risk factor is hyperglycaemia [17] and therefore management of diabetic
nephropathy includes glycaemic control and pancreas transplantation to treat diabetes. It has been
suggested that oxidative stress drives diabetic nephropathy through mitochondrial production of
reactive oxygen species in response to hyperglycaemia [18]. Other factors contributing to progression
include hyperlipidaemia, hypertension and proteinuria [17].

2.3. Acute Kidney Injury (AKI)

AKI is characterised by rapid loss of renal function [19] and may occur as a result of ischaemic
or toxic damage to the kidney, both of which can also be caused by inflammation. AKI is diagnosed
by increased serum creatinine and blood urea nitrogen (BUN; serum or plasma urea), estimation of
glomerular filtration rate and urine output [19]. There are five stages of AKI for which patients
are diagnosed based on the results: Risk, injury, failure, loss and end-stage renal disease (ESRD;
RIFLE) [19,20] with loss and ESRD being outcomes of AKI rather than stages [9]. AKI is typically
diagnosed after loss of renal function; therefore, risk factors have been identified and a number
of early biomarkers which precede kidney damage have been proposed. Patient risk factors
include sepsis, major surgery, bleeding and blood volume loss, and those with increased serum
neutrophil gelatinase-associated lipocalin (NGAL), cystatin C and/or increased urinary NGAL,
interleukin 18 (IL-18), kidney injury molecule 1 (KIM-1), glutathione S-transferase (GST) and liver-type
fatty acid-binding protein (LFABP). All of these factors have been linked to kidney injury or
disease [9,19,21–26] and have been recommended by Bellomo [19] as early biomarkers of AKI.

2.4. Kidney Cancer

The incidence of renal cell carcinoma (RCC), the most common kidney cancer, is increasing [27].
The known subtypes of RCC are, in order of prevalence, clear cell (ccRCC), papillary (pRCC),
chromophobe and collecting duct tumours [28]. In their review, Rini, Campbell and Escudier [29]
estimated that the incidence of RCC is 209,000 new cases per year worldwide, with 102,000 deaths per
year despite recent advances in drug therapies and surgical interventions. As well as genetic factors,
the risk factors for developing RCC are smoking, obesity and hypertension [30]. Patients may present
with local or systemic symptoms [29], however detection of RCC is usually early though incidental
due to the recent widespread use of abdominal imaging. Stages 1 and 2 RCC outlined by Cohen and
McGovern [30] are tumours less than (stage 1) or greater than (stage 2) 7 cm and limited only to the
kidney. The 5-year survival for stages 1 and 2 is 95% and 88% respectively. Five-year survival declines
to 59% and 20% for stages 3 and 4 respectively once tumours are beyond the kidney and lymph nodes
are involved [30].
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2.5. Kidney Transplantation

Kidney transplantation is a long-term treatment for chronic kidney diseases, however there
are known risk factors associated with transplant rejection including acute rejection episodes, age,
delayed graft function, diabetes, ethnicity and human leukocyte antigen (HLA) mismatching [31],
with HLA matching the most robust predictor for transplant success [32]. Lee et al. [33] found
that 100% of patients in their study developed human leukocyte antigen (HLA) antibodies prior to
chronic rejection, however HLA antibodies also developed in patients without chronic rejection (27%).
Detailed criteria for assessing histologic data from graft biopsy have been determined [34], as well
as less invasive assessments. For example, in their 11-year study of over 100,000 kidney transplants,
Hariharan et al. [31] found that serum creatinine (SCr) at 6 and 12 months post graft and delta SCr in
the first year post graft would predict survival long-term.

2.6. Polycystic Kidney Diseases

PKDs are characterised by cyst formation, tubular defects and kidney enlargement and resultant
dysfunction. There are at least two stages in the formation of cysts in PKD [35], the development and
encapsulation of the cysts, and cyst growth [35]. It has been postulated that primary cilia are involved
in PKD cystogenesis due to their role in the transport of cystoproteins (i.e., fibrocystin/polyductin) [36].
Renal cyst formation presents as a pathologic feature in Bardet-Beidl and Meckel-Gruber syndromes and
the nephronophthisis (NPHP) group of ciliopathies [37], to which over 20 genes have been linked [38].
The most common presentation however is autosomal dominant polycystic kidney disease (ADPKD).

ADPKD has an incidence of approximately 1:400–1000 worldwide [39,40], making up 10% of
adult patients with chronic renal failure requiring dialysis and/or transplantation [40]. ADPKD results
in ESRD in 50% of patients by the age of 60 years [39,40] with hypertension, vascular aneurisms,
cardiac valve defects and colonic diverticulae all associated with ADPKD due to the systemic nature of
the disease [40]. ADPKD is caused by mutations in the Pkd1 (16p13.3) or Pkd2 (4q21–23) genes [41,42],
however, there is evidence to suggest that a third locus exists [39,43]. Ariza et al. (1997) identified
a Spanish family which presented with a mild form of ADPKD and showed negative linkage to the
Pkd1 or Pkd2 loci. The phenotypes of the disease have been linked to the genotype, with the Pkd2 form
resulting in a much milder form and presenting later in life than the Pkd1 form [39]. Although this
pattern exists, variation within genotypes has been documented [40].

Autosomal recessive PKD (ARPKD) is less common, with an incidence of approximately
1 in 10,000–40,000, commonly evident in utero, with diagnosis by ultrasound at approximately
20 weeks [44–47] or at birth. Various clinical presentations have been observed in ARPKD [44],
with the disease presenting as early as prenatally up to adulthood [41]. Arbeiter et al. (2008)
postulated that, as with the ADPKD phenotypes, the severity of the ARPKD phenotype could not be
explained by the genetic mutations [39] and more likely depends on other genes, epigenetic factors,
environmental influences and potential modifier genes which have been identified in the described
mouse models of PKD [48].

ARPKD is caused by mutations in the Pkhd1 gene on chromosome 6p12 [46] and is characterised
by oligohydramnion, enlarged kidneys and lung hypoplasia [46]. The disease is also commonly
characterised by fusiform dilation of the collecting ducts and distal tubules, as well as dysgenesis
of the hepatic portal triad [46]. In up to 75% of severe cases, death is often caused by respiratory
insufficiency and displacement of the diaphragm soon after birth. Neonates who do not exhibit
pulmonary hyperplasia have a 50–80% survival rate. Of patients who survive the neonatal period,
approximately 30% progress to end-stage kidney disease, commonly with hypertension and multiple
organ failure [46].

In the past, depending upon the expressed phenotype of the disease, the management of ARPKD
has been documented as aggressive [46,49]. Unilateral or bilateral nephrectomy has been described in
four severe cases since 1993 [46,49]. It is of course likely that there are undocumented cases. In their
case report, Arbeiter et al. (2008) described the treatment steps taken to alleviate the symptoms
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of ARPKD in a newborn female. ARPKD diagnosis was achieved using ultrasound and chest
x-ray, and later confirmed histologically and genetically. Mechanical ventilation, administration
of furosemide, hydrochlorothiazide, amlodipine, other diuretics and ultimately unilateral nephrectomy
were included in the treatment strategy, however the patient died 27 days after birth. For presentations
of ARPKD which are less severe, such as slow progression and presentation in later childhood or
adulthood, treatment has still been described as invasive, i.e., renal replacement therapy.

There is currently no cure available for PKD [36], however with recent approaches in
understanding the molecular pathogenesis and cystogenesis of the disease, such as targeting mTOR
activity [50], EGFR axis [46], and cAMP-activated B-Raf/ERK [51,52] and (IRS) PI3K/Akt [53] signalling
pathways, new therapies and management strategies are emerging and advancing into clinical
trials [36]. In recent preclinical models of PKD, Bukanov et al. [54] and Natoli et al. [55] have shown
that inhibition of dysregulated cell cycle and apoptosis with the CDK inhibitor, roscovitine, leads to
arrest of PKD.

3. Metabolomics

Downstream of genomics, transcriptomics and proteomics, metabolomics is the comprehensive
study of metabolites in the cell, tissue and/or biofluids, collectively known as the metabolome, of an
organism [56]. A metabolite is typically defined as a small molecule intermediate or product of
metabolism of molecular weight less than 1500 Daltons [57]. Metabolism is a close representation of the
phenotype [58], and with its capacity to represent the function of an organism as a result of a disease
or environmental stress at a particular time [59], it is not surprising that metabolomic approaches have
been gaining popularity.

A comprehensive database of the human metabolome has been compiled (The Human
Metabolome Database; HMDB; [60–63]) including over 100,000 known, expected and predicted
metabolites with compound origin, biofluid/tissue location, spectra and reference ranges if available.
The HMDB classifies metabolites by super class, class and sub class with sub class including well
known metabolites classes such as amino acids, carbohydrates, and fatty acids.

Metabolomics aims to detect both endogenous and exogenous metabolites including small
molecules taken up from food, medicines and the environment. There are two key approaches in
metabolomic experiments, termed targeted and untargeted, although there are many terminologies for
these approaches in the literature [64,65]. Targeted experiments are conducted when pre-defined
metabolites are of interest and their concentrations (relative, semi-quantitative or absolute) are
subsequently measured. Untargeted approaches are conducted when there is no prior knowledge
of the metabolites being measured and the concentrations (relative or semi-quantitative) of as many
metabolites as possible are determined. In the context of this review, both approaches may determine
metabolites which differentiate between, for example, individuals with kidney disease and healthy
individuals, though novel markers are more likely to be uncovered using an untargeted approach.

The analytical platforms with which metabolomic experiments are conducted are predominantly
nuclear magnetic resonance (NMR) spectroscopy and chromatography-mass spectrometry (MS),
however other techniques have been described [66] and complementary platforms are desirable
for greater metabolome coverage [67]. NMR spectroscopy provides a quantitative, robust platform
that requires larger volumes of sample, but minimal sample preparation. MS provides sensitivity
which ultimately gives a greater metabolome coverage within a single injection, but is less robust and
requires detailed sample preparation, though smaller sample volumes may be used. We focus on mass
spectrometry approaches in further detail in the following sections however findings from NMR-based
studies are included in the final section.
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Table 2. Selection of metabolomic studies of kidney disease. n = minimum number of samples in a study group reported for any sample type.

Kidney Disease Reference Model n Sample Type Analytical Platform

Acute kidney injury Sun, 2012 [123] Human 17 Serum LC-MS

Chronic kidney disease

Shah, 2013 [124] Human 10 Plasma GC-MS, LC-MS

Zhao, 2013 [122] Rat 8 Kidney tissue LC-MS

Boelaert, 2014 [121] Human 20 Serum GC-MS, LC-MS

Luck, 2016 [125] Human 110 Urine NMR

Rhee, 2016 [126] Human 200 Plasma LC-MS

Sekula, 2016 [127] Human 991 Serum GC-MS, LC-MS

Kobayashi, 2015 [128] Human 69 Plasma LC-MS

Zhao, 2013 [129] Rat 12 Kidney tissue LC-MS

Atzori, 2011 [130] Human 13 Urine NMR

Nkuipou-Kenfack, 2014 [131] Human 10 Plasma, urine LC-MS

Mutsaers, 2013 [132] Human ≥4 Plasma NMR

Zhang, 2015 [133] Rat 8 Urine LC-MS

Qi, 2012 [134] Human 20 Serum NMR

Zhao, 2013 [135] Rat 8 Serum LC-MS

Goek, 2013 [136] Human 87 Serum LC-MS, FIA-MS

Diabetic nephropathy

Van der Kloet, 2012 [15] Human 26 Urine GC-MS, LC-MS

Stec, 2015 [137] Mouse 11 Urine NMR

Sharma, 2013 [138] Human 12 Plasma, urine GC-MS

Zhao, 2012 [139] Rat 12 Kidney tissue GC-MS, LC-MS

You, 2015 [140] Mouse 11 Urine GC-MS

Makinen, 2012 [141] Human 86 Serum NMR

Makinen, 2008 [142] Human 137 Serum NMR

Makinen, 2013 [143] Human 63 Serum NMR

Barrios, 2018 [144] Human 926 Serum NMR
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Table 2. Cont.

Kidney Disease Reference Model n Sample Type Analytical Platform

Kidney cancer Kind, 2007 [145] Human 6 Urine GC-MS, LC-MS

Kim, 2011 [146] Human 11 Urine LC-MS

Kidney transplantation
Serkova, 2005 [147] Rat 6 Kidney tissue, whole

blood NMR

Stenlund, 2009 [148] Human 19 Urine NMR

Suhre, 2016 [149] Human 241 Urine, kidney tissue GC-MS, LC-MS

Membranous
nephropathy Gao, 2012 [150] Human 14 Serum, urine GC-MS

Polycystic kidney disease

Taylor, 2010 [151] Mouse 9 Urine GC-MS

Toyohara, 2011 [152] Mouse 5 Plasma CE-MS

Abbiss, 2012 [120] Rat 6 Urine GC-MS

Gronwald, 2011 [153] Human 10 Urine NMR

Hwang, 2015 [154] Mouse, human 2 Cells, plasma, tissue,
urine GC-MS, LC-MS
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Table 3. Metabolites which have been reported as important for two or more kidney diseases from the list of studies in Table 2. Darker colour indicates metabolite
reported in greater number of kidney diseases. CKD: Chronic kidney disease; DN: Diabetic nephropathy; PKD: Polycystic kidney disease, AKI: Acute kidney injury; T:
Kidney transplantation; MN: Membranous nephropathy; KC: Kidney cancer. *sub class not available, #class provided, ¥super class provided, §not classified.

Metabolites Sub Class
Kidney Disease

CKD DN PKD AKI T MN KC

allantoin imidazoles [122,129] [139] [120,152] [147]

quinolinic acid pyridinecarboxylic acids &
derivatives [121] [149] [150] [146]

2-hydroxyglutarate short-chain hydroxy acids &
derivatives [15,139] [154] [150]

2-oxoglutaric acid gamma-keto acids & derivatives [137] [120,152] [146]

aconitic acid tricarboxylic acids & derivatives [138] [152] [150]

ADMA amino acids, peptides & analogues [131,136] [152] [123]

carnitine quaternary ammonium salts [124,125] [15] [152]

citrate tricarboxylic acids & derivatives [124,125] [138,139] [152–154]

creatinine amino acids, peptides & analogues [121,125,127,
132,133,135] [152] [123]

hippuric acid benzoic acids & derivatives [122,128,
132] [15,137,139] [120,152]

kynurenic acid quinoline carboxylic acids [121] [15] [149]

LysoPC (16:1) Glycerophosphocholines [135] [139] [123]

malic acid beta hydroxy acids & derivatives [124] [139] [154]

methionine amino acids, peptides & analogues [121,126] [139] [123]

myo-inositol alcohols & polyols [127,132,
134] [139] [152] [149]

threonic acid carbohydrates & conjugates [124] [139] [150]

trimethylamine oxide aminoxides [132] [152] [149]

tryptophan indolyl carboxylic acids &
derivatives

[121,133,
135] [15] [123]
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Table 3. Cont.

uric acid purines & purine derivatives [121,122,
126] [139] [120]

valine amino acids, peptides & analogues [130,135] [144] [149]

2-furoylglycine amino acids, peptides & analogues [121] [146]

3-indoxyl sulfate arylsulfates [137] [152]

3-methylhistidine amino acids, peptides & analogues [132,133] [152]

4-pyridoxic acid pyridinecarboxylic acids &
derivatives [121] [139]

4-hydroxymandelate 1-hydroxy-2-unsubstituted
benzenoids [126] [149]

acetylcarnitine fatty acid esters [152] [123]

alanine amino acids, peptides & analogues [121,134] [139,144]

arachidonic acid fatty acids & conjugates [122,124,
129] [139]

arginine amino acids, peptides & analogues [122,126] [123]

citrulline amino acids, peptides & analogues [124,131] [152]

cytosine pyrimidines & pyrimidine
derivatives [126] [150]

fructose carbohydrates & conjugates [139] [146]

fumaric acid dicarboxylic acids & derivatives [140] [154]

gentisate benzoic acids & derivatives [149] [146]

glucose carbohydrates & conjugates [134] [139]

glutamic acid amino acids, peptides & analogues [15] [154]

glutamine amino acids, peptides & analogues [121,130] [154]

glycine amino acids, peptides & analogues [125,130,
134] [152]

homocysteine amino acids, peptides & analogues [133] [123]

hypoxanthine purines & purine derivatives [122] [153]

indole acetic acid indolyl carboxylic acids &
derivatives [121] [15]

indoxyl sulfate arylsulfates [121,122,128,
129] [139]

lactic acid alpha hydroxy acids & derivatives [134] [139]

leucine amino acids, peptides & analogues [131] [149]
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Table 3. Cont.

lysine amino acids, peptides & analogues [121] [139]

Lyso PC (16:0) Glycerophosphocholines [135] [123]

Lyso PC (18:0) Glycerophosphocholines [135] [123]

Lyso PC (18:2) Glycerophosphocholines [135] [123]

Lyso PC (20:4) *§ [135] [139]

N,N-dimethylglycine amino acids, peptides & analogues [132] [152]

ornithine amino acids, peptides & analogues [124] [139]

pantothenic acid polyols [121] [152]

phenylacetylglycine amino acids, peptides & analogues [129] [137]

phenylalanine amino acids, peptides & analogues [126,133] [123]

phosphate non-metal phosphates [124] [139]

pipecolate amino acids, peptides & analogues [152] [149]

proline amino acids, peptides & analogues [121,131] [149]

pseudouridine nucleoside & nucleotide
analogues*#

[121,127,
132] [15]

pyroglutamic acid amino acids, peptides & analogues [139] [123]

taurine organosulfonic acids & derivatives [134] [139]

tetracosahexaenoate fatty acids & conjugates [122] [139]

threonine amino acids, peptides & analogues [126] [139]

trigonelline alkaloids & derivatives*¥ [125,132] [153]

urea ureas [121] [139]

xanthosine purine nucleosides*# [121] [149]

xylitol carbohydrates & conjugates [149] [150]
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3.1. Sample Collection, Preparation, Storage and Handling

The selection of an appropriate sample to study and the way in which it is collected, prepared,
stored and handled will, in combination with extraction, analytical platform, data analysis and
metabolite identification, be key to the interpretation of results. A review by Walsh et al. [68] identified
the challenges in metabolomic research regarding each stage of a metabolomic experiment, but with
a particular focus on sample collection, preparation storage and handling. [69] The impacts of such
pre-analytical procedures on plasma and serum metabolomes have recently been reviewed in detail by
Yin, Lehmann and Xu [70]. As an example, an endogenous metabolite was found in varying levels as
a contaminant in different plasma and serum vacutainer tubes [69] which highlights the importance
of keeping protocols consistent. There are still no agreed methods for the collection, preparation,
storage and handling of samples for a metabolomic experiment [71,72], however the Metabolomics
Standards Initiative (MSI) [73] have recommended reporting criteria for mammalian/in vivo biological
samples [74].

In addition to experimental samples for MS-based untargeted metabolomic experiments, it is
now widely accepted that pooled quality control samples providing technical replication throughout
an analytical sequence and batches of sequences should be used [75]. Similarly, reference samples
or test mixtures have been proposed to assess analytical performance [76,77]. For the subtraction of
artefacts introduced through sample collection, preparation, storage, handling, extraction and analysis,
‘method’ or ‘blank’ samples should also be processed throughout these stages.

3.2. Metabolite Extraction

The physicochemical properties of metabolites vary greatly and therefore cannot be extracted
with a single solvent, nor analysed on a single analytical platform [78]. Many studies report
adaptations of the Bligh and Dyer lipid extraction method [79] to utilise both polar and non-polar
fractions. Metabolite extraction methods include steps for protein precipitation, metabolite extraction
(usually a single step for both) and filtration or other form of sample clean-up such as solid
phase extraction (SPE) [65]. Commonly reported solvents for the precipitation of protein and
metabolite extraction are acetonitrile, methanol and water, though acidification and heating have also
been described.

3.3. Chromatographic Separation

Chromatographic separation of analytes prior to detection reduces the complexity of spectra for
sample matrices by reducing interference from neighbouring peaks and aids in the identification of
metabolites by providing retention time (and/or index) information for a compound. It is not always
possible however to resolve all peaks, particularly in untargeted analyses. Chromatography coupled
to MS has been used extensively in metabolomic research [80], the most common platforms being gas
chromatography (GC) and liquid chromatography (LC).

3.3.1. Gas Chromatography

Gas chromatography has been widely used in metabolomics-based research [81] and has
demonstrated good metabolome coverage (i.e., detection of a variety of metabolite physicochemical
properties), as well as detecting unique compounds in the human serum and urine metabolomes [82,83].
Gas chromatography is ideal for low molecular weight volatile compounds and in metabolomic
experiments, provides superior chromatographic resolution and retention time reproducibility when
compared to liquid chromatography. To give greater metabolome coverage, however, some metabolites
must first be derivatised. Derivatization reduces polarity, increases thermal stability and improves
resolution and peak shape/intensity [84,85]. Derivatisation can be cumbersome and artefacts and
multiple derivatisation products can be observed, however there has been good uniformity in GC-MS
based methods allowing the curation of extensive databases for the identification of metabolites
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analysed by GC-MS, such as the National Institute of Standards and Technology (NIST) Mass
Spectral Database. Examples of public libraries for the identification of GC-MS spectra include
Golm Metabolome Database [86] and FiehnLib mass spectral library [87].

3.3.2. Liquid Chromatography

Liquid chromatography approaches can capture a wider range of metabolite physicochemical
properties than GC-MS and have generally yielded more sensitive acquisitions and hence greater
numbers of metabolites. However, a wide range of column chemistries have been employed, as well
as a wide range of mobile phase solvent preparations, resulting in different retention times and adduct
formations, decreasing confidence in spectral matching with commercially and publicly available
spectral libraries.

3.4. Mass Spectrometry

3.4.1. Ionisation

For GC-MS platforms, ionisation is achieved most commonly by electron ionisation (EI) using
70 eV, however chemical ionisation using reagent gases such as methane and ammonia may be used.
EI is a hard ionisation technique causing considerable fragmentation of compounds. EI fragmentation
rarely allows detection of intact molecular masses, however the fragmentation patterns are highly
reproducible, allowing confident identification of features. Compounds with similar structures show
similar fragmentation patterns and are more difficult to identify without specialised chromatographic
methods preceding MS detection. Electrospray ionisation is most commonly used in LC-MS
applications and is a ‘soft’ ionisation technique, allowing the detection of intact compounds and
measurement of pseudo-molecular masses. ESI is less reproducible and depends heavily on the
specific mass analyser and manufacturer [65].

3.4.2. Mass Analysers

The most commonly employed mass analysers in metabolomics are quadrupole (Q), time-of-flight
(TOF) and ion trap (IT)/orbitrap, with tandem variations including triple quadrupole (QQQ), QTOF,
TOF/TOF, IT/TOF. Single and triple quadrupole systems generally provide unit mass resolution and,
in the case of the QQQ, high sensitivity. Time-of-flight instruments provide high resolution, accurate
mass data, as does the orbitrap. Kind et al. [88] have recently outlined common MS platforms and
their performance characteristics.

3.5. Data Processing and Analysis

Chromatography-mass spectrometry metabolomic data requires feature (mass-to-charge peak)
detection, deconvolution and retention time alignment. There are many software packages and
computational tools for this, both commercial and public, with one of the most commonly reported
peak picking and retention time alignment tools being XCMS [89] for LC-MS workflows. Deconvolution
is essentially the grouping of m/z ions of a single component and is essential for GC-EI-MS data [90].
Similar approaches are needed for LC-MS data where multiple adducts are present. We previously
mentioned quality control measures including pooled samples, reference samples and test mixtures.
At this point these should be utilised to determine the quality of data and remove features/samples
which are irreproducible including those which appear to be, for example, sample mismatches
or extreme values. Various forms of quality control measures for metabolomics studies have
recently been reviewed [91]. Statistical analyses are then conducted to prioritise identification and
interpretation of features from untargeted metabolomics experiments. Prior to statistical analyses,
centring, scaling or transformation of the data are carried out [92]. Tools such as PhenoMeNal [93],
Metabolomics Workbench [94] and MetaboAnalyst [95–100] offer data analysis solutions.



Metabolites 2019, 9, 34 13 of 22

3.6. Metabolite Identification and Interpretation of Findings

3.6.1. Identification

For targeted experiments, metabolite identification is considered in the early stages of the
chosen data analysis pipeline, but for untargeted approaches, it is usually the final stage of data
processing, occurring after metabolites of interest have been determined. For targeted experiments,
authentic reference standards are purchased and analysed ahead of the experiment. In untargeted
experiments, commercial and public spectral libraries are used, as well as online databases to match
and putatively identify MS, as well as MS/MS and MSn experimental spectra [88]. These identifications
may be supported by purchasing the authentic reference standard, or laboratories may have in-house
platform-specific spectral libraries for confirmation of metabolite identifications.

Reporting the confidence of metabolite identifications in metabolomic experiments has recently
been addressed in the literature [101,102]. Initially, levels of identification were proposed [80] where,
as described by Sumner et al. [80], a Level 1 identification is confirmed with an authentic standard
of the compound and Level 4 is an unidentified compound. Schymanski et al. [103] described five
identification levels for high resolution data where, similar to Sumner et al., [80], Level 1 is confirmed
with an authentic standard. Level 4 is unidentified, but has an unequivocal molecular formula and
Level 5 is a ‘mass of interest’. More recently, Sumner et al. [102] proposed alphanumeric scoring
metrics for metabolite identification in order to communicate the confidence in an identification.

3.6.2. Interpretation

The biological interpretation of data relies first on the identification of significant metabolites
and second on mapping those metabolites to biochemical pathways and validating these data with
other sources of data such as, for example, HMDB [60–63], GWAS Catalog [104], SNiPA [105],
PhenoScanner [106] and www.metabolomix.com. Examples of currently available resources
for mapping metabolites to biochemical pathways include the BioCyc database collection [107],
KEGG pathway database [108], MetaboAnalyst [95–100,109], the Small Molecule Pathway Database
(SMPDb; [110,111]) and Recon3D [112].

4. Findings from Metabolomic Studies of Kidney Disease

Metabolomics in the study of kidney disease has been reviewed over the past five
years [8,12,113–119], elegantly summarising the application of metabolomics to kidney disease and the
recent findings of such studies. A selection of recent metabolomic studies of kidney disease has been
included here (Table 2), providing the disease, model, lowest recorded n per sample group, sample type
and platform on which the metabolomic data was acquired. Metabolomic-based kidney disease studies
have been carried out using mouse and rat models, but the majority of studies listed here have used
human participants. Many of the studies presented in Table 2 reported relatively low sample numbers.
For studies using animal models where experimental conditions are highly controlled, this may be less
of an issue. For studies using human participants, however, especially for CKD where the cause of
kidney disease may be variable, this issue has started to be addressed with eight studies since 2015
reporting >50 subjects per group. Indeed, two of these studies reported sample numbers approaching
1000 per group. Whether urine, plasma, serum or kidney tissue were used, many of the same markers
have been found. For example, hippuric and uric acids have been shown to discriminate kidney
disease based on urine [120], serum [121] and kidney tissue [122]. Moreover, uric acid has been
detected using both GC- [120] and LC-MS [121]. Hippuric and uric acids have been found as markers
for both CKD [121] and PKD [120].

We have included a range of sample numbers, types, and analytical platforms to begin to assess
overlapping biochemical processes. Table 3 shows metabolites which have been reported as important
for two or more of the seven kidney diseases listed in Table 2. Although this list is only a snapshot of
the currently available literature, it provides biochemical insight into some of the common processes
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linking kidney diseases. With allantoin and quinolinic acid each found in four of seven kidney diseases
we propose that purine metabolism and tryptophan metabolism via the kynurenine pathway are
important for kidney diseases.

4.1. Purine Metabolism

Allantoin is a product of purine metabolism excreted in the urine of most mammals except
in humans, where uric acid is usually excreted [63], unless it is first oxidised to allantoin [155].
Allantoin was reported in studies of CKD, diabetic nephropathy, PKD and kidney transplantation
(Table 3) and uric acid in CKD, diabetic nephropathy and PKD. Xanthosine and hypoxanthine were
reported in CKD and transplantation, and CKD and PKD respectively, further supporting the role
of purine metabolism in kidney disease. In humans, allantoin has been proposed as a marker of
oxidative stress [155], however in this collection of studies, allantoin was only found in rat models
of disease [120,122,129,139,147,152]. Two studies of CKD using human participants reported uric
acid [121,126], the synthesis of which has been directly linked to oxidative stress [156] through the
conversion of xanthine dehydrogenase to xanthine oxidase, a known source of reactive species [156].
Uric acid as a uremic toxin/retention solute may also be a source of oxidative stress [156].

4.2. Tryptophan Metabolism

Quinolinic acid is synthesized from tryptophan via the kynurenine pathway [157]. This metabolite,
reported for CKD, transplant, membranous nephropathy and kidney cancer, as well as the metabolites
kynurenic acid, tryptophan and indoleacetic acid, suggests that tryptophan metabolism plays a role in
kidney diseases. The kynurenine pathway has previously been associated with oxidative stress and
inflammation in ESRD patients [158]. Furthermore, it has been demonstrated that the ratio between
plasma kynurenic acid and tryptophan is a robust indicator of kidney function [159] and that there may
be involvement of the tryptophan pathway in chronic kidney disease possibly via increased activity of
the enzymes kynurenine aminotransferase (KAT), indoleamine 2,3-dioxygenase (IDO) in the kidney
and/or tryptophan 2,3-dioxygenase (TDO) in the liver.

5. Conclusions

Metabolomics studies have provided many candidate small molecules which may be appropriate
as biomarkers for kidney disease and also for elucidating mechanisms in disease onset and progression.
Here we have determined that both purine metabolism and tryptophan metabolism are likely
to play key roles in kidney disease since allantoin and quinolinic acid have been consistently
reported, as have other metabolites of their respective biochemical pathways. These metabolites
and pathways have previously been linked with oxidative stress and inflammation which are known
complications of kidney disease and may contribute to the progression of chronic kidney disease to
ESRD. These interpretations are limited however to the mapping of identified metabolites to pathways,
while many important features remain unidentified. As databases grow, these data can be further
interrogated to understand kidney diseases.

Author Contributions: Original draft preparation, H.A.; review and editing, H.A., G.L.M., R.D.T.

Funding: H. Abbiss was supported by an Australian Postgraduate Award. NCRIS Metabolomics Australia is
a Bioplatforms Australia (BPA) funded initiative.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moyes, C.D.; Schulte, P.M. Principles of Animal Physiology, 2nd ed.; Benjamin Cummings: San Francisco, CA, USA, 2008.
2. Giebisch, G. Kidney, Water and Electrolyte Metabolism. Annu. Rev. Physiol. 1962, 24, 357–420. [CrossRef]

[PubMed]

http://dx.doi.org/10.1146/annurev.ph.24.030162.002041
http://www.ncbi.nlm.nih.gov/pubmed/13898454


Metabolites 2019, 9, 34 15 of 22

3. Blantz, R.C.; Deng, A.; Miracle, C.M.; Thomson, S.C. Regulation of kidney function and metabolism:
A question of supply and demand. Trans. Am. Clin. Climatol. Assoc. 2007, 118, 23–43. [PubMed]

4. Gerich, J.E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus:
Therapeutic implications. Diabet. Med. 2010, 27, 136–142. [CrossRef] [PubMed]

5. Cass, A.; Chadban, S.; Gallagher, M.; Howard, K.; Jones, A.; McDonald, S.; Snelling, P.;
White, S. The Economic Impact of End-Stage Kidney Disease in Australia Projections to 2020.
Available online: https://kidney.org.au/cms_uploads/docs/kha-economic-impact-of-eskd-in-australia-
projections-2020.pdf (accessed on 7 February 2019).

6. Smith, H.W. Kidney. Annu. Rev. Physiol. 1939, 1, 503–528. [CrossRef]
7. Nicholson, J.K.; Lindon, J.C. Metabonomics. Nature 2008, 455, 1054–1056. [CrossRef] [PubMed]
8. Weiss, R.H.; Kim, K. Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol. 2012, 8, 22–33.

[CrossRef]
9. Al-Ismaili, Z.; Palijan, A.; Zappitelli, M. Biomarkers of acute kidney injury in children: Discovery, evaluation,

and clinical application. Pediatr. Nephrol. 2011, 26, 29–40. [CrossRef]
10. Ferenbach, D.A.; Bonventre, J.V. Acute kidney injury and chronic kidney disease: From the laboratory to the

clinic. Nephrol. Ther. 2016, 12 (Suppl. S1), S41–S48. [CrossRef]
11. National Kidney Foundation. K/DOQI Clinical practice guidelines for chronic kidney disease: Evaluation,

classification and stratification. Am. J. Kidney Dis. 2002, 39 (Suppl. S1), S1–S266.
12. Zhao, Y.-Y. Metabolomics in chronic kidney disease. Clin. Chim. Acta 2013, 422, 59–69. [CrossRef]
13. Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.;

Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C.
N. Engl. J. Med. 2012, 367, 20–29. [CrossRef] [PubMed]

14. Gross, J.L.; de Azevedo, M.J.; Silveiro, S.P.; Canani, L.H.; Caramori, M.L.; Zelmanovitz, T.
Diabetic Nephropathy: Diagnosis, Prevention, and Treatment. Diabetes Care 2005, 28, 164. [CrossRef]

15. Van der Kloet, F.M.; Tempels, F.W.A.; Ismail, N.; van der Heijden, R.; Kasper, P.T.; Rojas-Cherto, M.;
van Doorn, R.; Spijksma, G.; Koek, M.; van der Greef, J.; et al. Discovery of early-stage biomarkers for
diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics 2012, 8, 109–119.
[CrossRef] [PubMed]

16. Parving, H.H.; Lehnert, H.; Brochner-Mortensen, J.; Gomis, R.; Andersen, S.; Arner, P. The effect of irbesartan on the
development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 2001, 345, 870–878. [CrossRef]
[PubMed]

17. Schena, F.P.; Gesualdo, L. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol.
2005, 16 (Suppl. S1), S30–S33. [CrossRef]

18. Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes.
Diabetes 2008, 57, 1446–1454. [CrossRef]

19. Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766. [CrossRef]
20. Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; ADQI. Acute renal failure—Definition,

outcome measures, animal models, fluid therapy and information technology needs: The Second
International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit. Care
2004, 8, R204–R212. [CrossRef]

21. Wheeler, D.S.; Devarajan, P.; Ma, Q.; Harmon, K.; Monaco, M.; Cvijanovich, N.; Wong, H.R. Serum neutrophil
gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with
septic shock. Crit. Care Med. 2008, 36, 1297–1303. [CrossRef]

22. Laterza, O.F.; Price, C.P.; Scott, M.G. Cystatin C: An improved estimator of glomerular filtration rate?
Clin. Chem. 2002, 48, 699–707.

23. Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1):
A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [CrossRef]
[PubMed]

24. Branten, A.J.; Mulder, T.P.; Peters, W.H.; Assmann, K.J.; Wetzels, J.F. Urinary excretions of glutathione S
transferases alpha and pi in patients with proteinuria: Reflection of the site of tubular injury. Nephron
2000, 85, 120–126. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/18528487
http://dx.doi.org/10.1111/j.1464-5491.2009.02894.x
http://www.ncbi.nlm.nih.gov/pubmed/20546255
https://kidney.org.au/cms_uploads/docs/kha-economic-impact-of-eskd-in-australia-projections-2020.pdf
https://kidney.org.au/cms_uploads/docs/kha-economic-impact-of-eskd-in-australia-projections-2020.pdf
http://dx.doi.org/10.1146/annurev.ph.01.030139.002443
http://dx.doi.org/10.1038/4551054a
http://www.ncbi.nlm.nih.gov/pubmed/18948945
http://dx.doi.org/10.1038/nrneph.2011.152
http://dx.doi.org/10.1007/s00467-010-1576-0
http://dx.doi.org/10.1016/j.nephro.2016.02.005
http://dx.doi.org/10.1016/j.cca.2013.03.033
http://dx.doi.org/10.1056/NEJMoa1114248
http://www.ncbi.nlm.nih.gov/pubmed/22762315
http://dx.doi.org/10.2337/diacare.28.1.164
http://dx.doi.org/10.1007/s11306-011-0291-6
http://www.ncbi.nlm.nih.gov/pubmed/22279428
http://dx.doi.org/10.1056/NEJMoa011489
http://www.ncbi.nlm.nih.gov/pubmed/11565519
http://dx.doi.org/10.1681/ASN.2004110970
http://dx.doi.org/10.2337/db08-0057
http://dx.doi.org/10.1016/S0140-6736(11)61454-2
http://dx.doi.org/10.1186/cc2872
http://dx.doi.org/10.1097/CCM.0b013e318169245a
http://dx.doi.org/10.1046/j.1523-1755.2002.00433.x
http://www.ncbi.nlm.nih.gov/pubmed/12081583
http://dx.doi.org/10.1159/000045644
http://www.ncbi.nlm.nih.gov/pubmed/10867517


Metabolites 2019, 9, 34 16 of 22

25. Kamijo, A.; Sugaya, T.; Hikawa, A.; Yamanouchi, M.; Hirata, Y.; Ishimitsu, T.; Numabe, A.; Takagi, M.;
Hayakawa, H.; Tabei, F.; et al. Urinary liver-type fatty acid binding protein as a useful biomarker in chronic
kidney disease. Mol. Cell. Biochem. 2006, 284, 175–182. [CrossRef] [PubMed]

26. Lin, X.; Yuan, J.; Zhao, Y.; Zha, Y. Urine interleukin-18 in prediction of acute kidney injury: A systematic
review and meta-analysis. J. Nephrol. 2015, 28, 7–16. [CrossRef] [PubMed]

27. Ganti, S.; Weiss, R.H. Urine Metabolomics for kidney cancer detection and biomarker discovery. Urol. Oncol.
2011, 29, 551–557. [CrossRef] [PubMed]

28. Monteiro, M.S.; Carvalho, M.; de Lourdes Bastos, M.; de Pinho, P.G. Biomarkers in renal cell carcinoma:
A metabolomics approach. Metabolomics 2014, 10, 1210–1222. [CrossRef]

29. Rini, B.I.; Campbell, S.C.; Escudier, B. Renal cell carcinoma. Lancet 2009, 373, 1119–1132. [CrossRef]
30. Cohen, H.T.M.D.; McGovern, F.J.M.D. Renal-cell carcinoma. N. Engl. J. Med. 2005, 353, 2477–2490. [CrossRef]
31. Hariharan, S.; McBride, M.A.; Cherikh, W.S.; Tolleris, C.B.; Bresnahan, B.A.; Johnson, C.P. Post-transplant

renal function in the first year predicts long-term kidney transplant survival. Kidney Int. 2002, 62, 311–318.
[CrossRef]

32. Petersdorf, E.W. HLA mismatching in transplantation. Blood 2015, 125, 1058–1059. [CrossRef]
33. Lee, P.-C.; Terasaki, P.I.; Takemoto, S.K.; Lee, P.-H.; Hung, C.-J.; Chen, Y.-L.; Tsai, A.; Lei, H.-Y. All chronic

rejection failures of kidney transplants were preceded by the development of HLA antibodies. Transplantation
2002, 74, 1192–1194. [CrossRef] [PubMed]

34. Solez, K.i.m.; Axelsen, R.A.; Benediktsson, H.; Burdick, J.F.; Cohen, A.H.; Colvin, R.B.; Croker, B.P.; Droz, D.;
Dunnill, M.S.; Halloran, P.F.; et al. International standardization of criteria for the histologic diagnosis of renal
allograft rejection: The Banff working classification of kidney transplant pathology. Kidney Int. 1993, 44, 411–422.
[CrossRef] [PubMed]

35. Schwiebert, E.M. Compelling ’metabolomic’ biomarkers may signal PKD pathogenesis. Am. J. Physiol.
Renal. Physiol. 2010, 298, F1103–F1104. [CrossRef] [PubMed]

36. Moreno, S.; Ibraghimov-Beskrovnaya, O.; Bukanov, N.O. Serum and urinary biomarker signatures for rapid
preclinical in vivo assessment of CDK inhibition as a therapeutic approach for PKD. Cell Cycle 2008, 7, 1856–1864.
[CrossRef] [PubMed]

37. Simms, R.J.; Haynes, A.M.; Eley, L.; Sayer, J. Nephronophthisis: A genetically diverse ciliopathy. Int. J. Nephrol.
2011, 2011, 1–10. [CrossRef] [PubMed]

38. Wolf, M.T. Nephronophthisis and related syndromes. Curr. Opin. Pediatr. 2015, 27, 201–211. [CrossRef]
[PubMed]

39. Ariza, M.; Alvarez, V.; Marin, R.; Aguado, S.; Lopez-Larrea, C.; Alvarez, J.; Menendez, M.J.; Coto, E. A family
with a milder form of adult dominant polycystic kidney disease not linked to the PKD1 (16p) or PKD2 (4q)
genes. J. Med. Genet. 1997, 34, 587–589. [CrossRef]

40. Arnaout, M.A. Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease.
Annu. Rev. Med. 2001, 52. [CrossRef]

41. Harris, P.C.; Torres, V.E. Polycystic kidney disease. Annu. Rev. Med. 2009, 60, 321–337. [CrossRef]
42. Torres, V.E.; Harris, P.C. Polycystic kidney disease: Genes, proteins, animal models, disease mechanisms and

therapeutic opportunities. J. Int. Med. 2007, 261, 17–31. [CrossRef]
43. Daoust, M.C.; Reynolds, D.M.; Bichet, D.G.; Somlo, S. Evidence for a third genetic locus for autosomal

dominant polycystic kidney disease. Genomics 1994, 25, 733–736. [CrossRef]
44. Gigarel, N.; Frydman, N.; Burlet, P.; Kerbrat, V.; Tachdjian, G.; Fanchin, R.; Antignac, C.; Frydman, R.;

Munnich, A.; Steffann, J. Preimplantation genetic diagnosis for autosomal recessive polycystic kidney
disease. Reprod. Biomed. Online 2008, 16, 152–158. [CrossRef]

45. Herman, T.E.; Siegel, M.J. Neonatal autosomal recessive polycystic kidney disease. J. Perinatol. 2008, 28, 584–585.
[CrossRef] [PubMed]

46. Arbeiter, A.; Buscher, R.; Bonzel, K.E.; Wingen, A.M.; Vester, U.; Wohlschlager, J.; Zerres, K.; Nurnberger, J.;
Bergmann, C.; Hoyer, P.F. Nephrectomy in an autosomal recessive polycystic kidney disease (ARPKD) patient
with rapid kidney enlargement and increased expression of EGFR. Nephrol. Dial. Transplant. 2008, 23, 3026–3029.
[CrossRef] [PubMed]

47. Lonergan, G.F.; Rice, R.R.; Suarez, E.S. Autosomal recessive polycystic kidney disease: Radiologic-pathologic
correlation. RadioGraphics 2000, 20, 837–855. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11010-005-9047-9
http://www.ncbi.nlm.nih.gov/pubmed/16532260
http://dx.doi.org/10.1007/s40620-014-0113-9
http://www.ncbi.nlm.nih.gov/pubmed/24899123
http://dx.doi.org/10.1016/j.urolonc.2011.05.013
http://www.ncbi.nlm.nih.gov/pubmed/21930086
http://dx.doi.org/10.1007/s11306-014-0659-5
http://dx.doi.org/10.1016/S0140-6736(09)60229-4
http://dx.doi.org/10.1056/NEJMra043172
http://dx.doi.org/10.1046/j.1523-1755.2002.00424.x
http://dx.doi.org/10.1182/blood-2014-12-619015
http://dx.doi.org/10.1097/00007890-200210270-00025
http://www.ncbi.nlm.nih.gov/pubmed/12438971
http://dx.doi.org/10.1038/ki.1993.259
http://www.ncbi.nlm.nih.gov/pubmed/8377384
http://dx.doi.org/10.1152/ajprenal.00095.2010
http://www.ncbi.nlm.nih.gov/pubmed/20200096
http://dx.doi.org/10.4161/cc.7.12.6055
http://www.ncbi.nlm.nih.gov/pubmed/18583937
http://dx.doi.org/10.4061/2011/527137
http://www.ncbi.nlm.nih.gov/pubmed/21660307
http://dx.doi.org/10.1097/MOP.0000000000000194
http://www.ncbi.nlm.nih.gov/pubmed/25635582
http://dx.doi.org/10.1136/jmg.34.7.587
http://dx.doi.org/10.1146/annurev.med.52.1.93
http://dx.doi.org/10.1146/annurev.med.60.101707.125712
http://dx.doi.org/10.1111/j.1365-2796.2006.01743.x
http://dx.doi.org/10.1016/0888-7543(95)80020-M
http://dx.doi.org/10.1016/S1472-6483(10)60569-X
http://dx.doi.org/10.1038/jp.2008.40
http://www.ncbi.nlm.nih.gov/pubmed/18668111
http://dx.doi.org/10.1093/ndt/gfn288
http://www.ncbi.nlm.nih.gov/pubmed/18503009
http://dx.doi.org/10.1148/radiographics.20.3.g00ma20837
http://www.ncbi.nlm.nih.gov/pubmed/10835131


Metabolites 2019, 9, 34 17 of 22

48. Guay-Woodford, L. Murine models of polycystic kidney disease: Molecular and therapeutic insights. Am. J.
Physiol. Renal. Physiol. 2003, 285, 1034–1049. [CrossRef] [PubMed]

49. Sumfest, J.M.; Burns, M.W.; Mitchell, M.E. Aggressive surgical and medical management of autosomal
recessive polycystic kidney disease. Pediatr. Urol. 1993, 42, 309–312. [CrossRef]

50. Fischer, D.C.; Jacoby, U.; Pape, L.; Ward, C.J.; Kuwertz-Broeking, E.; Renken, C.; Nizze, H.; Querfeld, U.;
Rudolph, B.; Mueller-Wiefel, D.E.; et al. Activation of the AKT/mTOR pathway in autosomal recessive
polycystic kidney disease (ARPKD). Nephrol. Dial. Transplant. 2009, 24, 1819–1827. [CrossRef]

51. Calvet, J.P. MEK inhibition holds promise for polycystic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 1498–1500.
[CrossRef]

52. Yamaguchi, T.; Hempson, S.J.; Reif, G.A.; Hedge, A.-M.; Wallace, D.P. Calcium restores a normal proliferation
phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol. 2006, 17, 178–187.
[CrossRef]

53. Bailey, J.L.; Zheng, B.; Hu, Z.; Price, S.R.; Mitch, W.E. Chronic kidney disease causes defects in signalling
through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: Implications for muscle
atrophy. J. Am. Soc. Nephrol. 2006, 17, 1388–1394. [CrossRef]

54. Bukanov, N.O.; Smith, L.A.; Klinger, K.W.; Ledbetter, S.R.; Ibraghimov-Beskrovnaya, O. Long-lasting arrest
of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 2006, 444, 949–952. [CrossRef]
[PubMed]

55. Natoli, T.A.; Gareski, T.C.; Dackowski, W.R.; Smith, L.; Bukanov, N.O.; Piepenhagen, P.;
Ibraghimov-Beskrovnaya, O. Pkd1 and Nek8 mutations affect cell-cell adhesion and cilia in cysts formed in
kidney organ cultures. Am. J. Physiol. Renal. Physiol. 2007, 294, F73–F83. [CrossRef] [PubMed]

56. Wishart, D.S. Metabolomics: The principles and potential applications to transplantation. Am. J. Transplant.
2005, 5, 2814–2820. [CrossRef] [PubMed]

57. Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based
metabolomics. Trends Analyt. Chem. 2012, 32, 1–14. [CrossRef] [PubMed]

58. German, J.B.; Hammock, B.D.; Watkins, S.M. Metabolomics: Building on a century of biochemistry to guide
human health. Metabolomics 2005, 1, 3–9. [CrossRef] [PubMed]

59. Xu, F.; Zou, L.; Ong, C.N. Experiment originated variations, and multi-peak and multi-origination
phenomena in derivatization-based GC-MS metabolomics. Trends Analyt. Chem. 2010, 29, 269–280. [CrossRef]

60. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.;
Sawhney, S.; et al. HMDB: The human metabolome database. Nucleic Acids Res. 2007, 35, D521–D526.
[CrossRef]

61. Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al.
HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [CrossRef]

62. Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.;
et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37, D603–D610. [CrossRef]

63. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.;
Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617.
[CrossRef] [PubMed]

64. Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian
metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev.
2011, 40. [CrossRef] [PubMed]

65. Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev.
2007, 26, 51–78. [CrossRef] [PubMed]

66. Dunn, W.B.; Bailey, N.J.C.; Johnson, H.E. Measuring the metabolome: Current analytical technologies.
Analyst 2005, 130, 606–625. [CrossRef] [PubMed]

67. Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis.
Analyst 2012, 137, 293–300. [CrossRef] [PubMed]

68. Walsh, M.C.; Nugent, A.; Brennan, L.; Gibney, M.J. Understanding the metabolome—Challenges for
metabolomics. Nutr. Bull. 2008, 33, 316–323. [CrossRef]

http://dx.doi.org/10.1152/ajprenal.00195.2003
http://www.ncbi.nlm.nih.gov/pubmed/14600027
http://dx.doi.org/10.1016/0090-4295(93)90621-G
http://dx.doi.org/10.1093/ndt/gfn744
http://dx.doi.org/10.1681/ASN.2006040353
http://dx.doi.org/10.1681/ASN.2005060645
http://dx.doi.org/10.1681/ASN.2004100842
http://dx.doi.org/10.1038/nature05348
http://www.ncbi.nlm.nih.gov/pubmed/17122773
http://dx.doi.org/10.1152/ajprenal.00362.2007
http://www.ncbi.nlm.nih.gov/pubmed/17928412
http://dx.doi.org/10.1111/j.1600-6143.2005.01119.x
http://www.ncbi.nlm.nih.gov/pubmed/16302993
http://dx.doi.org/10.1016/j.trac.2011.08.009
http://www.ncbi.nlm.nih.gov/pubmed/22345829
http://dx.doi.org/10.1007/s11306-005-1102-8
http://www.ncbi.nlm.nih.gov/pubmed/16680201
http://dx.doi.org/10.1016/j.trac.2009.12.007
http://dx.doi.org/10.1093/nar/gkl923
http://dx.doi.org/10.1093/nar/gks1065
http://dx.doi.org/10.1093/nar/gkn810
http://dx.doi.org/10.1093/nar/gkx1089
http://www.ncbi.nlm.nih.gov/pubmed/29140435
http://dx.doi.org/10.1039/B906712B
http://www.ncbi.nlm.nih.gov/pubmed/20717559
http://dx.doi.org/10.1002/mas.20108
http://www.ncbi.nlm.nih.gov/pubmed/16921475
http://dx.doi.org/10.1039/b418288j
http://www.ncbi.nlm.nih.gov/pubmed/15852128
http://dx.doi.org/10.1039/C1AN15605E
http://www.ncbi.nlm.nih.gov/pubmed/22102985
http://dx.doi.org/10.1111/j.1467-3010.2008.00732.x


Metabolites 2019, 9, 34 18 of 22

69. Chobanyan, K.; Mitschke, A.; Gutzki, F.M.; Stichtenoth, D.O.; Tsikas, D. Accurate quantification of
dimethylamine (DMA) in human plasma and serum by GC-MS and GC-tandem MS as pentafluorobenzamide
derivative in the positive-ion chemical ionization mode. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
2007, 851, 240–249. [CrossRef] [PubMed]

70. Yin, P.; Lehmann, R.; Xu, G. Effects of pre-analytical processes on blood samples used in metabolomics
studies. Anal. Bioanal. Chem. 2015, 407, 4879–4892. [CrossRef] [PubMed]

71. Alvarez-Sanchez, B.; Priego-Capote, F.; Luque de Castro, M.D. Metabolomics analysis I. Selection of biological
samples and practical aspects preceding sample preparation. Trends Analyt. Chem. 2010, 29, 111–119.
[CrossRef]

72. Alvarez-Sanchez, B.; Priego-Capote, F.; Luque de Castro, M.D. Metabolomics analysis II. Preparation of
biological samples prior to detection. Trends Analyt. Chem. 2010, 29, 120–127. [CrossRef]

73. Fiehn, O.; Robertson, D.; Griffin, J.; van der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L.W.; Goodacre, R.;
Hardy, N.W.; Taylor, C.; et al. The metabolomics standards initiative (MSI). Metabolomics 2007, 3, 175–178.
[CrossRef]

74. Griffin, J.L.; Nicholls, A.W.; Daykin, C.A.; Heald, S.; Keun, H.C.; Schuppe-Koistinen, I.; Griffiths, J.R.;
Cheng, L.L.; Rocca-Serra, P.; Rubtsov, D.V.; et al. Standard reporting requirements for biological samples in
metabolomics experiments: Mammalian/in vivo experiments. Metabolomics 2007, 3, 179–188. [CrossRef]

75. Sangster, T.; Major, H.; Plumb, R.; Wilson, A.J.; Wilson, I.D. A pragmatic and readily implemented quality
control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 2006, 131, 1075–1078.
[CrossRef] [PubMed]

76. Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.;
Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc.
2013, 8, 17–32. [CrossRef] [PubMed]

77. Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.;
Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and
plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc.
2011, 6, 1060–1083. [CrossRef] [PubMed]

78. Yanes, O.; Tautenhahn, R.; Patti, G.J.; Siuzdak, G. Expanding Coverage of the Metabolome for Global
Metabolite Profiling. Anal. Chem. 2011, 83, 2152–2161. [CrossRef] [PubMed]

79. Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol.
1959, 37, 911–917. [CrossRef]

80. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.;
Griffin, J.L. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221.
[CrossRef]

81. Koek, M.M.; Jellema, R.H.; van der Greef, J.; Tas, A.C.; Hankemeier, T. Quantitative metabolomics based on
gas chromatography mass spectrometry: Status and perspectives. Metabolomics 2011, 7, 307–328. [CrossRef]

82. Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.;
Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [CrossRef]

83. Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.;
Saleem, F.; Liu, P.; et al. The Human Urine Metabolome. PLoS ONE 2013, 8, e73076. [CrossRef]

84. Fancy, S.-A.; Rumpel, K. GC-MS-based metabolomics. Methods Pharmacol. Toxicol. 2008, 317–340.
85. Halket, J.M.; Waterman, D.; Przyborowska, A.M.; Patel, R.K.P.; Fraser, P.D.; Bramley, P.M. Chemical

derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot.
2004, 56, 219–243. [CrossRef] [PubMed]

86. Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmüller, E.; Dörmann, P.; Weckwerth, W.;
Gibon, Y.; Stitt, M.; et al. GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics 2005, 21, 1635–1638.
[CrossRef] [PubMed]

87. Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and
retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass
spectrometry. Anal. Chem. 2009, 81, 10038–10048. [CrossRef] [PubMed]

88. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S.S.; Wohlgemuth, G.; Barupal, D.K.; Showalter, M.R.;
Arita, M.; et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2017.
[CrossRef]

http://dx.doi.org/10.1016/j.jchromb.2007.03.006
http://www.ncbi.nlm.nih.gov/pubmed/17400039
http://dx.doi.org/10.1007/s00216-015-8565-x
http://www.ncbi.nlm.nih.gov/pubmed/25736245
http://dx.doi.org/10.1016/j.trac.2009.12.003
http://dx.doi.org/10.1016/j.trac.2009.12.004
http://dx.doi.org/10.1007/s11306-007-0070-6
http://dx.doi.org/10.1007/s11306-007-0077-z
http://dx.doi.org/10.1039/b604498k
http://www.ncbi.nlm.nih.gov/pubmed/17003852
http://dx.doi.org/10.1038/nprot.2012.135
http://www.ncbi.nlm.nih.gov/pubmed/23222455
http://dx.doi.org/10.1038/nprot.2011.335
http://www.ncbi.nlm.nih.gov/pubmed/21720319
http://dx.doi.org/10.1021/ac102981k
http://www.ncbi.nlm.nih.gov/pubmed/21329365
http://dx.doi.org/10.1139/y59-099
http://dx.doi.org/10.1007/s11306-007-0082-2
http://dx.doi.org/10.1007/s11306-010-0254-3
http://dx.doi.org/10.1371/journal.pone.0016957
http://dx.doi.org/10.1371/journal.pone.0073076
http://dx.doi.org/10.1093/jxb/eri069
http://www.ncbi.nlm.nih.gov/pubmed/15618298
http://dx.doi.org/10.1093/bioinformatics/bti236
http://www.ncbi.nlm.nih.gov/pubmed/15613389
http://dx.doi.org/10.1021/ac9019522
http://www.ncbi.nlm.nih.gov/pubmed/19928838
http://dx.doi.org/10.1002/mas.21535


Metabolites 2019, 9, 34 19 of 22

89. Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process
untargeted metabolomic data. Anal. Chem. 2012. In Press. [CrossRef]

90. DeHaven, C.D.; Evans, A.M.; Dai, H.; Lawton, K.A. Organization of GC/MS and LC/MS metabolomics data
into chemical libraries. J. Cheminform. 2010, 2, 9. [CrossRef]

91. Broadhurst, D.; Goodacre, R.; Reinke, S.N.; Kuligowski, J.; Wilson, I.D.; Lewis, M.R.; Dunn, W.B.
Guidelines and considerations for the use of system suitability and quality control samples in mass
spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 2018, 14, 72. [CrossRef]

92. van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling,
and transformations: Improving the biological information content of metabolomics data. BMC Genomics
2006, 7, 142. [CrossRef]

93. Peters, K.; Bradbury, J.; Bergmann, S.; Capuccini, M.; Cascante, M.; de Atauri, P.; Ebbels, T.; Foguet, C.;
Glen, R.; Gonzalez-Beltran, A.; et al. PhenoMeNal: Processing and analysis of Metabolomics data in the
Cloud. bioRxiv 2008. [CrossRef] [PubMed]

94. Sud, M.; Fahy, E.; Cotter, D.; Azam, K.; Vadivelu, I.; Burant, C.; Edison, A.; Fiehn, O.; Higashi, R.;
Nair, K.S.; et al. Metabolomics Workbench: An international repository for metabolomics data and metadata,
metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016, 44,
D463–D470. [CrossRef] [PubMed]

95. Xia, J.; Mandal, R.; Sinelnikov, I.V.; Broadhurst, D.; Wishart, D.S. MetaboAnalyst 2.0—A comprehensive
server for metabolomic data analysis. Nucleic Acids Res. 2012, 40, W127–W133. [CrossRef] [PubMed]

96. Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis
and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [CrossRef] [PubMed]

97. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful.
Nucleic Acids Res. 2015, 43, W251–W257. [CrossRef] [PubMed]

98. Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. In Current
Protocols in Bioinformatics; John Wiley & Sons: Hoboken, NJ, USA, 2002. [CrossRef]

99. Xia, J.; Wishart, D.S. Web-based inference of biological patterns, functions and pathways from metabolomic
data using MetaboAnalyst. Nat. Protoc. 2011, 6, 743–760. [CrossRef] [PubMed]

100. Xia, J.; Wishart, D.S. Metabolomic Data Processing, Analysis, and Interpretation Using MetaboAnalyst.
In Current Protocols in Bioinformatics; John Wiley & Sons: Hoboken, NJ, USA, 2002.

101. Creek, D.J.; Dunn, W.B.; Fiehn, O.; Griffin, J.L.; Hall, R.D.; Lei, Z.; Mistrik, R.; Neumann, S.; Schymanski, E.L.;
Sumner, L.W.; et al. Metabolite identification: Are you sure? And how do your peers gauge your confidence?
Metabolomics 2014, 10, 350–353. [CrossRef]

102. Sumner, L.W.; Lei, Z.; Nikolau, B.J.; Saito, K.; Roessner, U.; Trengove, R. Proposed quantitative and
alphanumeric metabolite identification metrics. Metabolomics 2014, 10, 1047–1049. [CrossRef]

103. Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Indentifying small molecules via
high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [CrossRef]

104. MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.;
Milano, A.; Morales, J.; et al. The new NHGRI-EBI Catalog of published genome-wide association studies
(GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901. [CrossRef]

105. Arnold, M.; Raffler, J.; Pfeufer, A.; Suhre, K.; Kastenmuller, G. SNiPA: An interactive, genetic variant-centered
annotation browser. Bioinformatics 2015, 31, 1334–1336. [CrossRef] [PubMed]

106. Staley, J.R.; Blackshaw, J.; Kamat, M.A.; Ellis, S.; Surendran, P.; Sun, B.B.; Paul, D.S.; Freitag, D.; Burgess, S.;
Danesh, J.; et al. PhenoScanner: A database of human genotype-phenotype associations. Bioinformatics
2016, 32, 3207–3209. [CrossRef] [PubMed]

107. Caspi, R.; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.;
Latendresse, M.; Mueller, L.A.; et al. The MetaCyc database of metabolic pathways and enzymes and
the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016, 44, D471–D480. [CrossRef]
[PubMed]

108. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30.
[CrossRef]

109. Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational biomarker discovery in clinical metabolomics:
An introductory tutorial. Metabolomics 2013, 9, 280–299. [CrossRef]

http://dx.doi.org/10.1021/ac300698c
http://dx.doi.org/10.1186/1758-2946-2-9
http://dx.doi.org/10.1007/s11306-018-1367-3
http://dx.doi.org/10.1186/1471-2164-7-142
http://dx.doi.org/10.1093/gigascience/giy149
http://www.ncbi.nlm.nih.gov/pubmed/30535405
http://dx.doi.org/10.1093/nar/gkv1042
http://www.ncbi.nlm.nih.gov/pubmed/26467476
http://dx.doi.org/10.1093/nar/gks374
http://www.ncbi.nlm.nih.gov/pubmed/22553367
http://dx.doi.org/10.1093/nar/gkp356
http://www.ncbi.nlm.nih.gov/pubmed/19429898
http://dx.doi.org/10.1093/nar/gkv380
http://www.ncbi.nlm.nih.gov/pubmed/25897128
http://dx.doi.org/10.1002/cpbi.11
http://dx.doi.org/10.1038/nprot.2011.319
http://www.ncbi.nlm.nih.gov/pubmed/21637195
http://dx.doi.org/10.1007/s11306-014-0656-8
http://dx.doi.org/10.1007/s11306-014-0739-6
http://dx.doi.org/10.1021/es5002105
http://dx.doi.org/10.1093/nar/gkw1133
http://dx.doi.org/10.1093/bioinformatics/btu779
http://www.ncbi.nlm.nih.gov/pubmed/25431330
http://dx.doi.org/10.1093/bioinformatics/btw373
http://www.ncbi.nlm.nih.gov/pubmed/27318201
http://dx.doi.org/10.1093/nar/gkv1164
http://www.ncbi.nlm.nih.gov/pubmed/26527732
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1007/s11306-012-0482-9


Metabolites 2019, 9, 34 20 of 22

110. Frolkis, A.; Knox, C.; Lim, E.; Jewison, T.; Law, V.; Hau, D.D.; Liu, P.; Gautam, B.; Ly, S.; Guo, A.C.; et al.
SMPDB: The Small Molecule Pathway Database. Nucleic Acids Res. 2010, 38, D480–D487. [CrossRef]

111. Jewison, T.; Su, Y.; Disfany, F.M.; Liang, Y.; Knox, C.; Maciejewski, A.; Poelzer, J.; Huynh, J.; Zhou, Y.;
Arndt, D.; et al. SMPDB 2.0: Big Improvements to the Small Molecule Pathway Database. Nucleic Acids Res.
2014, 42, D478–D484. [CrossRef]

112. Brunk, E.; Sahoo, S.; Zielinski, D.C.; Altunkaya, A.; Dräger, A.; Mih, N.; Gatto, F.; Nilsson, A.;
Preciat Gonzalez, G.A.; Aurich, M.K.; et al. Recon3D enables a three-dimensional view of gene variation in
human metabolism. Nat. Biotechnol. 2018, 36, 272. [CrossRef]

113. Menezes, L.F.; Germino, G.G. Systems biology of polycystic kidney disease: A critical review. WIREs Syst.
Biol. Med. 2015, 7, 39–52. [CrossRef]

114. Zhang, A.; Sun, H.; Qiu, S.; Wang, X. Metabolomics insights into pathophysiological mechanisms of
nephrology. Int. Urol. Nephrol. 2014, 46, 1025–1030. [CrossRef]

115. Rhee, E.P. Metabolomics and Renal Disease. Curr. Opin. Nephrol. Hypertens. 2015, 24, 371–379. [CrossRef]
[PubMed]

116. Kalim, S.; Rhee, E.P. An overview of renal metabolomics. Kidney Int. 2017, 91, 61–69. [CrossRef] [PubMed]
117. Hocher, B.; Adamski, J. Metabolomics for clinical use and research in chronic kidney disease. Nat. Rev. Nephrol.

2017, 13, 269–284. [CrossRef] [PubMed]
118. Breit, M.; Weinberger, K.M. Metabolic biomarkers for chronic kidney disease. Arch. Biochem. Biophys.

2016, 589, 62–80. [CrossRef] [PubMed]
119. Kim, K.; Aronov, P.; Zakharkin, S.O.; Anderson, D.; Perroud, B.; Thompson, I.M.; Weiss, R.H. Urine metabolomics

analysis for kidney cancer detection and biomarker discovery. Mol. Cell. Proteomics 2008, 8, 558–570. [CrossRef]
[PubMed]

120. Abbiss, H.; Maker, G.; Gummer, J.; Sharman, M.J.; Phillips, J.K.; Boyce, M.; Trengove, R.D. The development
of a non-targeted metabolomics method to investigate urine in a rat model of polycystic kidney disease.
Nephrology 2012, 17, 104–110. [CrossRef] [PubMed]

121. Boelaert, J.; t’Kindt, R.; Schepers, E.; Jorge, L.; Glorieux, G.; Neirynck, N.; Lynen, F.; Sandra, P.; Vanholder, R.;
Sandra, K. State-of-the-art non-targeted metabolomics in the study of chronic kidney disease. Metabolomics
2014, 10, 425–442. [CrossRef]

122. Zhao, Y.-Y.; Lei, P.; Chen, D.-Q.; Feng, Y.-L.; Bai, X. Renal metabolic profiling of early renal injury and
renoprotective effects of Poria cocos epidermis using UPLC Q-TOF/HSMS/MSE. J. Pharm. Biomed. Anal.
2013, 81, 202–209. [CrossRef]

123. Sun, J.; Shannon, M.; Ando, Y.; Schnackenberg, L.K.; Khan, N.A.; Portilla, D.; Beger, R.D. Serum metabolomic
profiles from patients with acute kidney injury: A pilot study. J. Chromatogr. B 2012, 893, 107–113. [CrossRef]

124. Shah, V.O.; Townsend, R.R.; Feldman, H.I.; Pappan, K.L.; Kensicki, E.; Vander Jagt, D.L. Plasma Metabolomic
Profiles in Different Stages of CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 363–370. [CrossRef]

125. Luck, M.; Bertho, G.; Bateson, M.; Karras, A.; Yartseva, A.; Thervet, E.; Damon, C.; Pallet, N. Rule-Mining for
the Early Prediction of Chronic Kidney Disease Based on Metabolomics and Multi-Source Data. PLoS ONE
2016, 11, e0166905. [CrossRef] [PubMed]

126. Rhee, E.P.; Clish, C.B.; Wenger, J.; Roy, J.; Elmariah, S.; Pierce, K.A.; Bullock, K.; Anderson, A.H.;
Gerszten, R.E.; Feldman, H.I. Metabolomics of Chronic Kidney Disease Progression: A Case-Control Analysis
in the Chronic Renal Insufficiency Cohort Study. Am. J. Nephrol. 2016, 43, 366–374. [CrossRef] [PubMed]

127. Sekula, P.; Goek, O.-N.; Quaye, L.; Barrios, C.; Levey, A.S.; Römisch-Margl, W.; Menni, C.; Yet, I.; Gieger, C.;
Inker, L.A.; et al. A Metabolome-Wide Association Study of Kidney Function and Disease in the General
Population. J. Am. Soc. Nephrol. 2016, 27, 1175–1188. [CrossRef] [PubMed]

128. Kobayashi, T. Metabolomics and Stages of Chronic Kidney Disease. In Biomarkers in Kidney Disease;
Patel, V.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–14. [CrossRef]

129. Zhao, Y.-Y.; Cheng, X.-L.; Wei, F.; Bai, X.; Tan, X.-J.; Lin, R.-C.; Mei, Q. Intrarenal Metabolomic
Investigation of Chronic Kidney Disease and its TGF-β1 Mechanism in Induced-adenine Rats using UPLC
Q-TOF/HSMS/MSE. J. Proteome Res. 2013, 12, 692–703. [CrossRef] [PubMed]

130. Atzori, L.; Mussap, M.; Noto, A.; Barberini, L.; Puddu, M.; Coni, E.; Murgia, F.; Lussu, M.; Fanos, V.
Clinical metabolomics and urinary NGAL for the early prediction of chronic kidney disease in healthy adults
born ELBW. J. Matern.-Fetal Neonatal Med. 2011, 24, 40–43. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/nar/gkp1002
http://dx.doi.org/10.1093/nar/gkt1067
http://dx.doi.org/10.1038/nbt.4072
http://dx.doi.org/10.1002/wsbm.1289
http://dx.doi.org/10.1007/s11255-013-0600-2
http://dx.doi.org/10.1097/MNH.0000000000000136
http://www.ncbi.nlm.nih.gov/pubmed/26050125
http://dx.doi.org/10.1016/j.kint.2016.08.021
http://www.ncbi.nlm.nih.gov/pubmed/27692817
http://dx.doi.org/10.1038/nrneph.2017.30
http://www.ncbi.nlm.nih.gov/pubmed/28262773
http://dx.doi.org/10.1016/j.abb.2015.07.018
http://www.ncbi.nlm.nih.gov/pubmed/26235490
http://dx.doi.org/10.1074/mcp.M800165-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/19008263
http://dx.doi.org/10.1111/j.1440-1797.2011.01532.x
http://www.ncbi.nlm.nih.gov/pubmed/22017187
http://dx.doi.org/10.1007/s11306-013-0592-z
http://dx.doi.org/10.1016/j.jpba.2013.03.028
http://dx.doi.org/10.1016/j.jchromb.2012.02.042
http://dx.doi.org/10.2215/CJN.05540512
http://dx.doi.org/10.1371/journal.pone.0166905
http://www.ncbi.nlm.nih.gov/pubmed/27861591
http://dx.doi.org/10.1159/000446484
http://www.ncbi.nlm.nih.gov/pubmed/27172772
http://dx.doi.org/10.1681/ASN.2014111099
http://www.ncbi.nlm.nih.gov/pubmed/26449609
http://dx.doi.org/10.1007/978-94-007-7743-9_41-1
http://dx.doi.org/10.1021/pr3007792
http://www.ncbi.nlm.nih.gov/pubmed/23227912
http://dx.doi.org/10.3109/14767058.2011.606678
http://www.ncbi.nlm.nih.gov/pubmed/21781002


Metabolites 2019, 9, 34 21 of 22

131. Nkuipou-Kenfack, E.; Duranton, F.; Gayrard, N.; Argilés, À.; Lundin, U.; Weinberger, K.M.; Dakna, M.;
Delles, C.; Mullen, W.; Husi, H.; et al. Assessment of Metabolomic and Proteomic Biomarkers in Detection
and Prognosis of Progression of Renal Function in Chronic Kidney Disease. PLoS ONE 2014, 9, e96955.
[CrossRef]

132. Mutsaers, H.A.M.; Engelke, U.F.H.; Wilmer, M.J.G.; Wetzels, J.F.M.; Wevers, R.A.; van den Heuvel, L.P.;
Hoenderop, J.G.; Masereeuw, R. Optimized Metabolomic Approach to Identify Uremic Solutes in Plasma of
Stage 3–4 Chronic Kidney Disease Patients. PLoS ONE 2013, 8, e71199. [CrossRef]

133. Zhang, Z.-H.; Wei, F.; Vaziri, N.D.; Cheng, X.-L.; Bai, X.; Lin, R.-C.; Zhao, Y.-Y. Metabolomics insights into chronic
kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci. Rep. 2015, 5, 14472. [CrossRef]

134. Qi, S.; Ouyang, X.; Wang, L.; Peng, W.; Wen, J.; Dai, Y. A Pilot Metabolic Profiling Study in Serum of Patients
with Chronic Kidney Disease Based on 1H-NMR-Spectroscopy. Clin. Transl. Sci. 2012, 5, 379–385. [CrossRef]

135. Zhao, Y.-Y.; Feng, Y.-L.; Bai, X.; Tan, X.-J.; Lin, R.-C.; Mei, Q. Ultra Performance Liquid
Chromatography-Based Metabonomic Study of Therapeutic Effect of the Surface Layer of Poria cocos on
Adenine-Induced Chronic Kidney Disease Provides New Insight into Anti-Fibrosis Mechanism. PLoS ONE
2013, 8, e59617. [CrossRef]

136. Goek, O.-N.; Prehn, C.; Sekula, P.; Römisch-Margl, W.; Döring, A.; Gieger, C.; Heier, M.; Koenig, W.;
Wang-Sattler, R.; Illig, T.; et al. Metabolites associate with kidney function decline and incident chronic
kidney disease in the general population. Nephrol. Dial. Transplant. 2013, 28, 2131–2138. [CrossRef] [PubMed]

137. Stec, D.F.; Wang, S.; Stothers, C.; Avance, J.; Denson, D.; Harris, R.; Voziyan, P. Alterations of urinary
metabolite profile in model diabetic nephropathy. Biochem. Biophys. Res. Commun. 2015, 456, 610–614.
[CrossRef] [PubMed]

138. Sharma, K.; Karl, B.; Mathew, A.V.; Gangoiti, J.A.; Wassel, C.L.; Saito, R.; Pu, M.; Sharma, S.; You, Y.-H.;
Wang, L.; et al. Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease.
J. Am. Soc. Nephrol. 2013, 24, 1901–1912. [CrossRef] [PubMed]

139. Zhao, T.; Zhang, H.; Zhao, T.; Zhang, X.; Lu, J.; Yin, T.; Liang, Q.; Wang, Y.; Luo, G.; Lan, H.; et al.
Intrarenal metabolomics reveals the association of local organic toxins with the progression of diabetic
kidney disease. J. Pharm. Biomed. Anal. 2012, 60, 32–43. [CrossRef]

140. You, Y.-H.; Quach, T.; Saito, R.; Pham, J.; Sharma, K. Metabolomics Reveals a Key Role for Fumarate in
Mediating the Effects of NADPH Oxidase 4 in Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2015. [CrossRef]
[PubMed]

141. Mäkinen, V.-P.; Tynkkynen, T.; Soininen, P.; Forsblom, C.; Peltola, T.; Kangas, A.J.; Groop, P.-H.;
Ala-Korpela, M. Sphingomyelin is associated with kidney disease in type 1 diabetes (The FinnDiane Study).
Metabolomics 2012, 8, 369–375. [CrossRef] [PubMed]

142. Mäkinen, V.-P.; Soininen, P.; Forsblom, C.; Parkkonen, M.; Ingman, P.; Kaski, K.; Groop, P.-H.; FinnDiane
Study, G.; Ala-Korpela, M. 1H NMR metabonomics approach to the disease continuum of diabetic
complications and premature death. Mol. Syst. Biol. 2008, 4, 167. [CrossRef]

143. Makinen, V.P.; Soininen, P.; Kangas, A.J.; Forsblom, C.; Tolonen, N.; Thorn, L.M.; Viikari, J.; Raitakari, O.T.;
Savolainen, M.; Groop, P.H.; et al. Triglyceride-cholesterol imbalance across lipoprotein subclasses predicts diabetic
kidney disease and mortality in type 1 diabetes: The FinnDiane Study. J. Intern. Med. 2013, 273, 383–395. [CrossRef]

144. Barrios, C.; Zierer, J.; Würtz, P.; Haller, T.; Metspalu, A.; Gieger, C.; Thorand, B.; Meisinger, C.;
Waldenberger, M.; Raitakari, O.; et al. Circulating metabolic biomarkers of renal function in diabetic
and non-diabetic populations. Sci. Rep. 2018, 8, 15249. [CrossRef]

145. Kind, T.; Tolstikov, V.; Fiehn, O.; Weiss, R.H. A comprehensive urinary metabolomic approach for identifying
kidney cancer. Anal. Biochem. 2007, 363, 185–195. [CrossRef]

146. Kim, K.; Taylor, S.L.; Ganti, S.; Guo, L.; Osier, M.V.; Weiss, R.H. Urine metabolomic analysis identifies
potential biomarkers and pathogenic pathways in kidney cancer. Omics 2011, 15, 293–303. [CrossRef]
[PubMed]

147. Serkova, N.; Florian Fuller, T.; Klawitter, J.; Freise, C.E.; Niemann, C.U. 1H-NMR–based metabolic signatures
of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int. 2005, 67, 1142–1151.
[CrossRef] [PubMed]

148. Stenlund, H.; Madsen, R.; Vivi, A.; Calderisi, M.; Lundstedt, T.; Tassini, M.; Carmellini, M.; Trygg, J.
Monitoring kidney-transplant patients using metabolomics and dynamic modeling. Chemom. Intell. Lab. Syst.
2009, 98, 45–50. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0096955
http://dx.doi.org/10.1371/journal.pone.0071199
http://dx.doi.org/10.1038/srep14472
http://dx.doi.org/10.1111/j.1752-8062.2012.00437.x
http://dx.doi.org/10.1371/journal.pone.0059617
http://dx.doi.org/10.1093/ndt/gft217
http://www.ncbi.nlm.nih.gov/pubmed/23739151
http://dx.doi.org/10.1016/j.bbrc.2014.12.003
http://www.ncbi.nlm.nih.gov/pubmed/25499815
http://dx.doi.org/10.1681/ASN.2013020126
http://www.ncbi.nlm.nih.gov/pubmed/23949796
http://dx.doi.org/10.1016/j.jpba.2011.11.010
http://dx.doi.org/10.1681/ASN.2015030302
http://www.ncbi.nlm.nih.gov/pubmed/26203118
http://dx.doi.org/10.1007/s11306-011-0343-y
http://www.ncbi.nlm.nih.gov/pubmed/22661917
http://dx.doi.org/10.1038/msb4100205
http://dx.doi.org/10.1111/joim.12026
http://dx.doi.org/10.1038/s41598-018-33507-7
http://dx.doi.org/10.1016/j.ab.2007.01.028
http://dx.doi.org/10.1089/omi.2010.0094
http://www.ncbi.nlm.nih.gov/pubmed/21348635
http://dx.doi.org/10.1111/j.1523-1755.2005.00181.x
http://www.ncbi.nlm.nih.gov/pubmed/15698456
http://dx.doi.org/10.1016/j.chemolab.2009.04.013


Metabolites 2019, 9, 34 22 of 22

149. Suhre, K.; Schwartz, J.E.; Sharma, V.K.; Chen, Q.; Lee, J.R.; Muthukumar, T.; Dadhania, D.M.; Ding, R.;
Ikle, D.N.; Bridges, N.D.; et al. Urine Metabolite Profiles Predictive of Human Kidney Allograft Status. J. Am.
Soc. Nephrol. 2016, 27, 626–636. [CrossRef] [PubMed]

150. Gao, X.; Chen, W.; Li, R.; Wang, M.; Chen, C.; Zeng, R.; Deng, Y. Systematic variations associated with renal
disease uncovered by parallel metabolomics of urine and serum. BMC Syst. Biol. 2012, 6, S14. [CrossRef]
[PubMed]

151. Taylor, S.L.; Ganti, S.; Bukanov, N.O.; Chapman, A.; Fiehn, O.; Osier, M.; Kim, K.; Weiss, R.H. A metabolomics
approach using juvenile cystic mice to identify urinary biomarkers and altered pathways in polycystic kidney
disease. Am. J. Physiol. Renal. Physiol. 2010, 298, 909–922. [CrossRef] [PubMed]

152. Toyohara, T.; Suzuki, T.; Akiyama, Y.; Yoshihara, D.; Takeuchi, Y.; Mishima, E.; Kikuchi, K.; Suzuki, C.;
Tanemoto, M.; Ito, S.; et al. Metabolomic profiling of the autosomal dominant polycystic kidney disease rat
model. Clin. Exp. Nephrol. 2011, 15, 676–687. [CrossRef] [PubMed]

153. Gronwald, W.; Klein, M.S.; Zeltner, R.; Schulze, B.D.; Reinhold, S.W.; Deutschmann, M.; Immervoll, A.K.;
Boger, C.A.; Banas, B.; Eckardt, K.U.; et al. Detection of autosomal dominant polycystic kidney disease by
NMR spectroscopic fingerprinting of urine. Kidney Int. 2011, 79, 1244–1253. [CrossRef]

154. Hwang, V.J.; Kim, J.; Rand, A.; Yang, C.; Sturdivant, S.; Hammock, B.; Bell, P.D.; Guay-Woodford, L.M.;
Weiss, R.H. The cpk model of recessive PKD shows glutamine dependence associated with the production of
the oncometabolite 2-hydroxyglutarate. Am. J. Physiol. Renal. Physiol. 2015, 309, F492. [CrossRef]

155. Tolun, A.A.; Zhang, H.; Il’yasova, D.; Sztáray, J.; Young, S.P.; Millington, D.S. Allantoin in human urine
quantified by ultra-performance liquid chromatography–tandem mass spectrometry. Anal. Biochem.
2010, 402, 191–193. [CrossRef]

156. Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies
and chronic kidney disease. Nephrology 2012, 17, 311–321. [CrossRef] [PubMed]

157. Heyes, M.P.; Saito, K.; Crowley, J.S.; Davis, L.E.; Demitrack, M.A.; Der, M.; Dilling, L.A.; Elia, J.;
Kruesi, M.J.; Lackner, A.; et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory
and non-inflammatory neurological disease. Brain 1992, 115 Pt 5, 1249–1273. [CrossRef] [PubMed]

158. Pawlak, K.; Domaniewski, T.; Mysliwiec, M.; Pawlak, D. The kynurenines are associated with oxidative
stress, inflammation and the prevalence of cardiovascular disease in patients with end-stage renal disease.
Atherosclerosis 2009, 204, 309–314. [CrossRef] [PubMed]

159. Zhao, J. Plasma kynurenic acid/tryptophan ratio: A sensitive and reliable biomarker for the assessment of
renal function. Renal Failure 2013, 35, 648–653. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1681/ASN.2015010107
http://www.ncbi.nlm.nih.gov/pubmed/26047788
http://dx.doi.org/10.1186/1752-0509-6-S1-S14
http://www.ncbi.nlm.nih.gov/pubmed/23046838
http://dx.doi.org/10.1152/ajprenal.00722.2009
http://www.ncbi.nlm.nih.gov/pubmed/20130118
http://dx.doi.org/10.1007/s10157-011-0467-4
http://www.ncbi.nlm.nih.gov/pubmed/21695416
http://dx.doi.org/10.1038/ki.2011.30
http://dx.doi.org/10.1152/ajprenal.00238.2015
http://dx.doi.org/10.1016/j.ab.2010.03.033
http://dx.doi.org/10.1111/j.1440-1797.2012.01572.x
http://www.ncbi.nlm.nih.gov/pubmed/22288610
http://dx.doi.org/10.1093/brain/115.5.1249
http://www.ncbi.nlm.nih.gov/pubmed/1422788
http://dx.doi.org/10.1016/j.atherosclerosis.2008.08.014
http://www.ncbi.nlm.nih.gov/pubmed/18823890
http://dx.doi.org/10.3109/0886022X.2013.790301
http://www.ncbi.nlm.nih.gov/pubmed/23650931
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Kidney Disease 
	Chronic Kidney Disease 
	Diabetic Nephropathy 
	Acute Kidney Injury (AKI) 
	Kidney Cancer 
	Kidney Transplantation 
	Polycystic Kidney Diseases 

	Metabolomics 
	Sample Collection, Preparation, Storage and Handling 
	Metabolite Extraction 
	Chromatographic Separation 
	Gas Chromatography 
	Liquid Chromatography 

	Mass Spectrometry 
	Ionisation 
	Mass Analysers 

	Data Processing and Analysis 
	Metabolite Identification and Interpretation of Findings 
	Identification 
	Interpretation 


	Findings from Metabolomic Studies of Kidney Disease 
	Purine Metabolism 
	Tryptophan Metabolism 

	Conclusions 
	References

