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Triple-negative breast cancer (TNBC) presented as high hetero-
geneous immunogenicity that lacks useful clinical signatures to
risk-stratify immune-benefit subtypes. We hypothesized that
molecular-based phenotypic characterization of TNBC tumors
and their immunity may overcome these challenges. We
enrolled 1,145 patients with TNBC for analysis. Through
combining algorithm integration analysis and TNBC datasets,
a tumor immune risk score (TIRS) panel consisting of 8 poten-
tial biomarkers was identified. The TIRS panel represented
excellent effectiveness as an independent predictor. High- and
low risk stratification of patients was further achieved by
TIRS, and significant survival and immune-infiltration pattern
differenceswere found in each cohort, both at the transcriptome
andprotein levels. Non-negativematrix factorization clustering
further identified four different tumor immune microenviron-
ment types (TIMTs), amongwhichTIMT-IIwas associatedwith
the best prognosis and immune status, whereas TIMT-IV had
the opposite effect, TIMT-III was associated with highly unsta-
ble genomes, and TIMT-I displayed stem-cell-related character-
istics along with high stromal scores and may have extensive
enrichment of tumor-associated fibroblasts and vascular cells.
In conclusion, our TIRS panel could serve as a robust prog-
nostic signature and provide therapeutic benefits for immuno-
therapy. Additionally, coordinating four TIMTsmay be helpful
for clinical decision-making in TNBC patients.
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INTRODUCTION
Triple-negative breast cancer (TNBC) is the most aggressive type of
breast cancer, with higher rates of distant recurrence and poorer
prognosis than other subtypes.1,2 Owing to the lack of expression of
the estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2), therapeutic targeting is
difficult. The TNBC subgroup is traditionally considered a single en-
tity based on immunohistochemistry (IHC), which demonstrates that
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TNBC has an unexpected level of heterogeneity but encompasses the
characteristics of histopathological and molecular profiling, and an
immune state with significant differences.3 Nonetheless, chemo-
therapy has been the standard treatment of choice for TNBC, but
successful TNBC management remains an elusive subject in medi-
cine. Individualized strategies are urgently needed to improve this
situation.

The heterogeneous immunogenicity of TNBC has attracted the atten-
tion of clinicians and scientists. Compared with other breast cancer
subtypes, TNBC has higher PD-L1 and tumor mutational burden
(TMB) expression levels and tumor-infiltrating lymphocyte (TIL)
density, which has the potential to change the chemotherapy-domi-
nated treatment model of TNBC for half a century. IMPASSION
130, a phase III randomized controlled trial, identified the immune
checkpoint inhibitor atezolizumab combined with nanoparticle albu-
min-bound (nab) paclitaxel as the standard first-line therapy for PD-
L1-positive peritumoral immune-infiltrate patients with metastatic
TNBC, which opened up possibilities for TNBC clinical immuno-
therapy.4 We have witnessed a rapid increase in the number of trials
investigating immunotherapy in recent years3,5; however, low benefits
of single immunotherapy have also been reported. Although the treat-
ment population is already screened for PD-L1 and TMB expression
levels, only a subset of patients with TNBC have benefited from
immunotherapy in clinical practice.6 This is largely because of the
poor sensitivity and specificity of these methodologies (limiting the
beneficiary population by PD-L1 or TMB). The performance of cur-
rent clinicopathological variables and prognostic factors is limited;
uthor(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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none are sufficiently robust to guide therapy, although some should
be considered as stratification factors for future trials.7 An imperative
need exists to identify a new signature to stratify TNBC and immune
characteristics and personalized survival risk of patients through a
better understanding of the immune environment and molecular
characteristics of TNBC.

The tumor immune microenvironment is a complex system that has
been characterized at the cellular level for a long time. The development
and application of high-throughput data has facilitated the identifica-
tion of previously unrecognized molecular biomarkers, and technolog-
ical advances in biological computing algorithms and bioinformatics
have enabled innovative analysis of complexmolecular profiling inma-
lignancies and are strongly warranted to pave the way for individual-
ized anti-cancer treatment.8 In particular, technologies based on
DNA microarray and next-generation sequencing have led to the
development of big data in molecular biology, on the basis of which
many genetic features have emerged to predict clinical outcome as
well as molecular subclassification.9 For example, the classic 50-gene
subtype predictor (PAM50) has been widely used as a basis for breast
cancer classification.10 Omics technology is of great significance to
characterize the heterogeneity of tumor immune status and to predict
responses to drugs and the clinical course of the disease. However, it
should be noted that although a large number of genomic studies allow
us to understand the input codes (genes) of cancer, their output codes
(proteins) are needed to fully capture the state of the tumor and provide
a complete and accurate map to understand and treat potential molec-
ular pathology. This is because proteins and their post-translational
modifications are important biological features and processes, which
cannot be analyzed using genomics and are involved in most therapeu-
tic interventions.11 Further verification at the protein level is essential to
narrow the gap between cancer genotypes and cancer phenotypes.

In this study, we systematically identified highly reliable immune
markers of TNBC, established a tumor immune risk score (TIRS)
multi-molecular panel, and analyzed its potency at the immune,
risk-benefit, and patient-prognosis levels. Furthermore, a non-nega-
tive matrix factorization (NMF) clustering based on immune genes
was performed, and four subtypes with distinct molecular signatures,
clinical characteristics, and immune infiltration were identified.
Multi-dimensional cohort data at both gene and protein levels were
used for independent verification and further showed that TIRS sub-
types were superior to clinicopathological variables in terms of im-
mune status and survival benefits in patients with TNBC.

RESULTS
Analytic pipeline

A total of 1,096 breast cancer samples were collected from The Cancer
Genome Atlas (TCGA) cohort, and 156 TNBC breast cancer samples
were screened based on the inclusion criteria. The survival and
expression data of the samples were called training sets to construct
the TIRS models. Clinicopathological parameters, including age, tu-
mor node metastasis (TNM) stage, and grade, are presented in
Table S1. A total of 27 transcriptome data series with survival infor-
mation for patients with TNBC were sorted out in the Gene Expres-
sion Omnibus (GEO) database (Table S2). Duplicated samples from
different datasets were removed, and 659 TNBC sample data were ob-
tained. After further screening of their survival information, patients
with the following three outcome states were distinguished: overall
survival (OS; n = 431), disease-free survival (DFS; n = 206), and recur-
rence-free survival (RFS; n = 132). The de-batching effect across mul-
tiple platforms was harmonized and eliminated using SangerBox. In
the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) database, after excluding patients without complete in-
formation, 235 samples were obtained finally and used together with
the GEO data as the verification cohort to verify the robustness of the
model. Basic common clinical information of patients with TNBC is
presented in Table S3, while detailed patient information obtained
from each database is summarized in Table S1.

In the Affiliated Hospital of Qingdao University (AHQU) cohort, all
samples were obtained before patients underwent therapy, and 95 pa-
tients were available for analysis after omitting samples that failed
quality checks. All patients underwent surgery at the AHQU. The
age of patients ranged from 23 to 80 years (median: 52 years), while
the duration of follow up ranged from 160 to 2,801 days (mean:
1,146 days; median: 1,065 days), with recurrence and death occurring
in 9 and 11 of these patients, respectively. Clinicopathological param-
eters, including patient age, tumor size, grade, lymphovascular inva-
sion, and axillary lymph node status, are presented in Table S1.

TIRS signature construction based on a stable 8-gene panel

The immune gene sets from three databases (GSEA, Immport, and
InnateDB) were included and integrated with the collated gene
expression of patients with TNBC to obtain specific immune-related
genes of TNBC (Figure 1A). A set of 1,471 targets was finally obtained
and was further used to integrate the expression matrix and match
clinical information. Based on this, a stable 8-gene (ARTN, GBP1,
DLL4, PDK1, BCL2A1,MAP2K6, TOR2A, EIF4EBP1) panel was iden-
tified and printed as a TIRS signature (Figures 1B and 1C) using least
absolute shrinkage and selection operator (LASSO) Cox regression
analysis. The risk score was calculated according to the genetic coef-
ficient, and the TIRS formula was obtained after allocating weights as
follows: TIRS = 0.0274 � ARTN - 0.1770 � GBP1 + 0.0918� DLL4 -
0.1025 � PDK1 - 0.0580 � BCL2A1 - 0.2023 � MAP2K6 +
0.4355 � TOR2A + 0.0920 � EIF4EBP1. We calculated the risk score
for each training cohort of patients with TNBC using the TIRS for-
mula and stratified them into high- (n = 45) and low-risk (n = 111)
TIRS subtypes according to the optimal cutoff generated by X-tile.

The resulting model was subjected to Kaplan-Meier analysis in the
training cohort to evaluate the relationship between the risk score
and survival, as shown in Figure 1D. The OS of patients in the
high-risk group was significantly shorter than that in the low-risk
group (p < 0.0001). Meanwhile, receiver operating characteristic
(ROC) curve results (Figure 1E) showed that TIRS had the highest
prognostic performance for risk and survival status compared with
other clinical models (area under the curve [AUC] = 0.932).
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Figure 1. Construction and validation of the TIRS

(A) Venn diagram of TNBC-associated immune genes.

(B) Partial likelihood deviance revealed by the LASSO regression model. The red dots represent the partial likelihood values, the gray lines represent the standard error (SE),

and the vertical dotted lines are drawn at the optimal values by 1-SE criteria.

(C) LASSO coefficient profiles.

(D) Survival differences between high- (red) and low- (blue) risk groups.

(E) ROC curve analysis of the TIRS model, age, stage, and TNM stage.

(F) Time-dependent ROC curves of TIRS prediction on the 1-, 3-, and 5-year survival rates.

(G–J) Between high- (red) and low- (blue) risk groups, OS (G), RFS (H), and DFS (I) in the GEO database and OS (J) in the METABRIC database were included in the analysis

and displayed as a Kaplan-Meier plot. Statistical significance was set at p < 0.05.
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Furthermore, the classification efficiency of prognosis prediction at 1,
3, and 5 years was analyzed and is shown in Figure 1F. It can be seen
that the TIRS model has a high AUC offline region and is stable above
0.9. Subsequently, the Cox proportional hazards were calculated, and
the training set displayed a good outcome, with a hazard ratio of 19.49
(95% confidence interval [CI]: 7.77–48.88), p < 0.001 in univariate
Cox regression, and 16.06 (95% CI: 5.03–51.31), p < 0.001 in multi-
variate Cox regression.

Validation of TIRS model

The net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) were used to further qualify
672 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
the improvement in TIRS.12 Specifically, the Akaike information
criterion (AIC), which measures the goodness of fit in statistical
models, was used as a quantitative criterion. A lower AIC value
represents a better model prediction capability. The results of
NRI showed that compared with stage (AIC = 121.36), the TIRS
(AIC = 98.31) versus stage was 0.78 (95% CI: 0.37–0.92,
p < 0.01), while the result of IDI was 0.53 (95% CI: 0.21–0.74,
p < 0.01). We then calculated the NRI and IDI of the TIRS model
versus TIRS combined with the stage model (AIC = 95.22) and
found them to be 0.19 (95% CI: �0.34–0.58, p = 0.40) and -0.01
(95% CI: �0.05–0.10, p = 0.85), respectively. Obviously, the prog-
nostic effect of the TIRS model was better than that of the stage



Figure 2. Correlation between TIRS and clinic characteristics

(A–C) Corresponding distribution of risk score and survival status of patients in different groups in the training cohort (A), as well as in the GEO OS (B) and METABRIC

(C) cohorts. Top: patient risk score for each sample (green, low risk; red, high risk). Bottom: patient outcomes for each sample (green, survival; red, death) plotted with vertical

jitter along the sample’s model prediction (x axis).

(D–G) Analysis of patient survival status after further stratification of clinical status. Kaplan-Meier analysis was used for two TIRS groups in no lymph node metastasis

(N0)(D) and non-N0 (E) patients, as well as stages I–II (F) and stages III–IV (G) patients.

(H) Difference display of risk score in different stage, tumor, and node through violin plots.

(I) The specific difference distribution of characteristics between two TIRS groups in the TCGA cohort.

www.moleculartherapy.org
standard, and this advantage was not strengthened by the combi-
nation of factors such as tumor stage, which reflects the indepen-
dent-risk prognostic value of TIRS.

To further verify the robustness of TIRS, the effectiveness of TIRS
in predicting the risk of survival recurrence and progression was
confirmed in the validation cohort. After the batch effect was
removed, patients were divided into high/low TIRS subtypes using
the same procedures as in the training cohort. Consistent with the
results of the training cohort, survival analysis varied substantially
across the low- and high-risk groups (Figures 1G–1J).
Clinical characteristics of TIRS subtypes

To further describe and understand the biological and clinical differ-
ences between the two TIRS subtypes, we performed a stratified anal-
ysis of patients with TNBC. The expression level of the risk score for
each sample in the training cohort was calculated, and the risk-score
distribution was plotted (Figure 2A). A higher number of deaths in
the high-risk group was displayed, and the same results were observed
in the GEO and METABRIC cohorts (Figures 2B and 2C).

As mentioned above, the low- and high-risk subtypes displayed
significant survival differences with good prediction accuracy.
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Figure 3. Construction analysis of clinical nomogram

(A–C) The nomogramwas constructed in the training cohort, with the TIRS, age, and stage incorporated. Calibration plot of the nomogram in terms of agreement between the

predicted and observed (B) 3- and (C) 5-year outcomes. The 95% confidence intervals are represented by the close-ended vertical lines. The ideal performance of a nomo-

gram is represented by the dashed lines along the 45-degree line.

(D) Decision curve analysis of the nomogram for different predicting model.
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Further in-depth analysis revealed that this difference was signif-
icant regardless of lymph node status and stage (Figures 2D–
2G). In addition, it was found that the risk score was closely
related to stage (Figure 2H), especially tumor and lymph node
status. The stack diagram shows this feature (Figure 2I). Specif-
ically, low-risk groups tended to be staged earlier, and most of
them did not have lymph node metastasis, with the age distribu-
tion concentrated in the vicinity of 45–59 (peri-menopausal
period).

To provide better clinical assistance, we constructed a nomo-
gram based on risk score, age, staging, and other factors
(Figures 3A–3C) to intuitively understand the 3- and 5-year sur-
vival probabilities of patients. A good degree of fit between the
calibration curve and the ideal curve was observed in each
cohort (Figure S1). In addition, decision curve analysis (DCA)
was plotted to assess clinical benefits. Compared with other
models, the TIRS model had a higher net benefit in predicting
immune benefits (Figure 3D).
674 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
Immune cells and molecules differences

Further research found that immune subtypes could be distinguished
by TIRS and are closely related to specific immune states. We quan-
tified the differences in the distributions of 22 immune cell types be-
tween the high- and low-TIRS groups using CIBERSORT and found
that the infiltration of immune-associated cells with high and low risk
presented two completely different states. Significant differences were
observed in the enrichment of a series of immune cells, such as naive
B cells, plasma cells, CD4 memory T cells, CD4 memory activated
T cells, follicular helper T cells, regulatory T cells (Tregs), and M1-
type macrophages (Figure 4A). In short, the expression of immune-
activated cells (such as M1-type macrophages and CD4 memory
resting cells) was significantly reduced in high-risk subtypes, while
the expression of immune-suppressive cells (such as Tregs) was
increased.

The ESTIMATE analysis corroborated this result. Based on the sin-
gle-sample gene set enrichment analysis (ssGSEA) algorithm, the
stroma and immune cell score were estimated using transcriptome



Figure 4. Immune landscape of TIRS subtypes

(A and B) Difference of immune cell infiltration and immune-target expression between two TIRS groups through CIBERSORT (A) and ESTIMATE (B). Wilcoxon test was used

for statistical analysis, with ***p < 0.001, **p < 0.01, and *p < 0.05.

(C and D) Gene mutation analysis in high- (C) and low-risk (D) groups.

(E) GSEA showing significant differences in biological processes between high- and low-risk groups, which were the T cell receptor signaling pathway, the JAK/STAT

signaling pathway, and natural-killer-cell-mediated cytotoxicity. Statistical significance was set at p < 0.05. NES, normalized enrichment score.

(F and G) GO and KEGG analysis of the differentially expressed genes.
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expression data (Figure S2A). The low-risk group showed good im-
mune activity, which was characterized by a higher immune score
and more obvious expression of immune cells compared with the
high-risk group (Figure 4B).

The key immune target genes are closely related to the immune status
and treatment of TNBC, and their correlation with TIRS characteris-
tics needs to be further studied. First, as endogenous peptides are
delivered to T lymphocytes via the major histocompatibility complex
(MHC) class I pathway, we evaluated the RNA expression of HLA
class I genes (Figure S2B) in high- and low-TIRS subtypes. Notably,
the HLA family genes were highly expressed and statistically signifi-
cant in the low-risk group. A more diverse library of HLA-I classes
will lead to a wider array of antigens, increasing the odds of presenting
more immunogenic antigens and increasing the likelihood of
benefiting from immune checkpoint inhibitor (ICI) therapy.13

In addition, the correlation between subtypes and key immune check-
point molecules (PD-L1, CTLA4) was studied (Figure 4B). As protec-
tive effector molecules of the human immune system, immune
checkpoint molecules may be overexpressed in the tumor microenvi-
ronment and inhibit the immune response of the host, resulting in
immune escape. ICIs can block the transmission of immunosuppres-
sive signals, restore the killing activity of T cells, and reverse the
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 675
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Figure 5. Protein-level verification of TIRS based on the AHQU cohort

(A) Workflow for training value matrix. A pathologist reviewed the slides and marked any regions with tumor, lymphocytes, and normal tissues. The tumor regions were then

separated from the IHC images to create patches, which were input into computer vision and pattern recognition for training values. The top 3 probability sets were obtained.

(B) Kaplan-Meier survival analysis of patients with TNBC grouped by TIRS.

(legend continued on next page)
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immunosuppressive tumor microenvironment.14 Higher expression
of immune checkpoint molecules could mean more benefits for
immunotherapy and a longer tumor control period, which is signifi-
cant in the low-risk group.

Furthermore, chemokines, as regulators of directed chemotaxis of
immune cells, were enriched in the low-risk group, which was also re-
flected in chemokine receptors (Figure S2C). Finally, several immune-
process targets, as well as oncogene families that are closely related to
the development of breast cancer, were also included in the analysis,
and the differences between TIRS subgroups were described
(Figure S2D).

The mutation status was calculated and characterized based on so-
matic mutation sites in the MAF file. Specifically, both groups had
high mutations in the TP53, PIK3CA, andMUC families, but the mu-
tation frequency was higher in the high-risk group (Figure 4C) than in
the low-risk group (Figure 4D). There were 259 genes with a mutation
frequency of more than 5% in the high-risk group and 43 in the low-
risk group. Higher frequency mutations lead to more genetic
instability, which may be associated with poor clinical outcomes in
patients in the high-risk group.

Immune processes

To better understand the biological basis of immune score and TNBC
survival, the potential mechanisms of the molecules and pathways
were further explored. First, we analyzed the differentially expressed
genes from the TCGA cohort. The low-risk group had elevated
expression of genes related to immune infiltration and a high
apoptosis rate. GSEA was performed to clarify which signals were en-
riched in the tumor microenvironment (Figure 4E). The chemokine
signaling pathway (p = 0.02, normalized enrichment score [NES] =
1.56), the JAK/STAT signaling pathway (p = 0.02, NES = 1.40), nat-
ural killer (NK)-cell-mediated cytotoxicity (p = 0.04, NES = 1.58), and
the T cell receptor signaling pathway (p = 0.01, NES = 1.72) were acti-
vated in low-risk patients.

The results of KEGG and GO pathway enrichment analyses were
consistent with the above description (Figures 4F and 4G). Cytokine
receptor interactions, chemokine signaling pathways, and NK-cell-
mediated cytotoxicity pathways were significantly enriched in
KEGG. Meanwhile, GO analysis suggested that in the low-risk group,
the molecular function was mainly reflected in immune response,
signal transduction, inflammatory response, cell-surface-receptor
signaling pathway, and innate and adaptive immune response, while
biological processes were mainly concentrated for chemokines, trans-
membrane signal receptors, and cytokines. These results suggest that
(C) ROC curves showing the prognostic prediction efficiency for the TIRS, age, ki67, N

(D) Time-dependent ROC curve of TIRS prediction on the 1- and 5-year survival rates.

(E) Linear correlation between TIRS and neutrophil to lymphocyte ratio.

(F) Group-based distribution of risk scores (top) and survival status of patients in differe

(G) Image representing the pathological H&E staining between the high- and low-TIRS

(H) Immunohistochemistry detects the expression of PDK1, GBP1, MAP2K6, EIF4EBP
patients with lower risk scores may have higher levels of immune
activity.
Protein-level validation based on AHQU cohorts

Transcriptome-level outcomes were extended to the protein level to
explore the clinical potential of TIRS. The technical route is illustrated
in Figure 5A. In this study, formalin fixation and paraffin embedding
(FFPE) from 95 patients with TNBC was obtained and used to pre-
pare tumor-associated macrophages (TAMs), and IHC based on eight
key targets was performed. A total of 2,280 patches were finally
sampled to create the test dataset. Intensity conversion was performed
on the RGB 3D data of the image to obtain the staining-intensity value
of the patch. Then, the fitting histogram of each patch area was calcu-
lated to clarify its probability distribution in the image. Finally, we
calculated the risk score based on the first three parts of the captured
probability values and used X-tile to obtain truncation values to
divide the high- (n = 37) and low-risk (n = 58) groups.

Survival analysis was further performed using TIRS obtained from the
risk model in the AHQU cohort by separating patients into high- and
low-risk groups. The survival curve (Figure 5B) showed that the sur-
vival time of the low-risk group was significantly higher than that of
the high TIRS group (p = 0.014). In addition, compared with other
risk factors such as age, ki67, and p53, TIRS had the highest AUC
value (AUC = 0.810) (Figures 5C and 5D), and a higher neutro-
phil-to-lymphocyte ratio tended to be associated with a higher
TIRS (Figure 5E). Patient death was more likely to occur in high-
risk groups (Figure 5F). Meanwhile, the histopathological section
confirmed that the low-TIRS group showed higher infiltration of lym-
phocytes (Figure 5G), indicating that TIRS was negatively correlated
with immune infiltration and prognosis. The protein-level validation
(Figure 5H) suggested that the risk-scoring model has a good predic-
tive power for patient prognosis, which highlights the potential signif-
icance of these findings for risk assessment and survival in patients
with TNBC.
Immune landscape of four tumor immune microenvironment

types (TIMTs)

Considering the limited clinical benefit of patients with TNBC
receiving immunotherapy, it is necessary to further identify different
patterns of TNBC immune infiltration in detail. We scored 1,471 im-
mune expression signatures and used NMF algorithm cluster analysis
to identify modules of immune signature sets. The iteration number
was set to 50, and the optimal clustering number was obtained as four
based on the analysis of the relevant features (Figure 6A). The detailed
grouping is shown in Table S4.
LR, and P53 index in AHQU cohort.

nt groups (bottom) in the AHQU cohort.

groups, with low lymphocyte infiltration in the high-risk group.

1, TOR2A, BCL2A, ARTN, and DLL4 in the AHQU cohort.
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Figure 6. Identification of the four distinct TIMTs

(A) The consensus map of NMF clustering.

(B) The schematic diagram of immune cell infiltration microenvironment of four TIMTs. The most significant immunoreactive subtype was reflected in TIMT-II, while the oppo-

site was true for TIMT-IV. TIMT-I was enriched in neovascularization, and TIMT-III had the presence of a highly unstable genome.

(C) Overall survival of four TIMTs.

(D) Violin plot showing riskscore between four subtypes.

(E) Heatmap showing the immune-infiltration landscape of four subtypes.

(F) Differential distribution of key immune infiltrating cells in four TIMTs. The asterisk indicates the p value, with ***p < 0.001.

(G) KEGG and GO analyses of the DEGs between four TIMTs.
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Four TIMTs were identified by reclassification of TNBC based on im-
mune characteristics (Figure 6B). Survival and immune characteris-
tics were further described for different TIMTs. TIMT-II exhibited
the best prognosis with statistically significant differences among
the four subtypes (p = 0.035), while TIMT-IV showed the contrary
(Figure 6C). According to the Wilcoxon test, a significant correlation
between TIRS and the four TIMTs was found (Figure 6D). TIMT-IV
patients with the worst survival had the highest risk score, while
TIMT-II had the lowest risk score.

The immune cell infiltration and the scoring of key immune targets of
the four TIMTs were further analyzed in detail (Figure S3A, S3B, and
S4). These results suggest that TIMT-IV may have a higher immune
risk and poorer immune infiltration. To test this hypothesis, heat-
maps based on the results of the ESTIMATE and CIBERSORT
analyses for the expression of immune cell infiltration state were
developed in patients with TNBC (Figure 6E). Proinflammatory
response, CD8+ T cells, cytotoxicity, checkpoints, B cells, and TILs
678 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
were all enriched in the TIMT-II type (Figure 6F), suggesting an im-
mune-activated tumor microenvironment. However, the expression
of these cells and pathways was exhausted in the TIMT-IV type.

Moreover, in the KEGG and GO pathway analysis (Figures 6G, S5A,
and S5B), inflammatory response, innate immunity, and adaptive im-
munity were prominent in the TIMT-II type, further confirming its
better immune cell infiltration and immunotherapy response. Specif-
ically, TIMT-II reflected the most important immunoreactivity sub-
type, which displayed the highest immune score, best survival, and
smallest mutation frequency (Figures 7A and 7B). It is more likely
to be in an immune-activated tumor microenvironment, which is
characterized by high infiltration of immune cells (CD8+ T cells),
high expression of immune cytokines, and effective enrichment of
immune cell signals. In addition, the elevation of CD8a, GZMA,
and PRF1mRNA levels suggested that TIMT-II met the “hot tumor”
criteria (Figure 7C), further suggesting the possible benefit of
immunotherapy.



Figure 7. Characteristic analysis of four TIMTs

(A) Waterfall diagram showing the mutation status of the four TIMTs.(B and C) Expression level of immune score and markers (CD8A, GZMA, PRF1) between four TIMTs. ***p

< 0.001.(D) The gene-expression alterations of characteristic pathways in four TIMTs. The heatmap shows the fold changes, with red representing upregulated genes and

blue representing downregulated genes.(E) Boxplot showing the differential expression of HRD-related indicators. **p < 0.01, ***p < 0.001.(F) Drug-sensitivity analysis of a

single TIMT.
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Conversely, TIMT-IV showed obvious immune-rejection character-
istics. The significant downregulation of immune-related genes and
more frequent mutations made it more prone to “cold tumor” fea-
tures. The low expression of immunoregulatory factors (IDO1,
ICOs, CD27, CTLA4, and CD274) and low infiltration of TILs
(markers as CD8a, GZMA, PRF1) further indicated a lower immu-
notherapy response rate (Figures 7C and S4).

TMIT-I patients had more non-synonymous mutations (Figure 7A)
and the highest estimated stromal score (Figure S3C), suggesting that
they might comprise the distribution of interstitial cells, such as tu-
mor-associated fibroblasts. Moreover, despite the lack of unique
genomic changes, they showed features associated with cancer stem
cells (CSCs). To further understand the alterations in this subtype,
the JAK/STAT3 signaling pathway (Figure 7D), which plays a crucial
role in the maintenance of breast CSCs, was investigated. The high
expression of JAK1, interleukin-6 (IL-6), and STAT3, suggesting that
the TIMT-I subtype may be a potential beneficiary of STAT3 inhibi-
tors. In response to these characteristics, we tested TIMT-I samples
for drug sensitivity to provide a possible medication strategy.15 We
found that, except for being sensitive to JAK inhibitors (CEP.701), these
patients may also benefit from vascular endothelial growth factor
(VEGF) inhibitors (Axitinib, AZ628), TKI, SRC inhibitors (Bosutinib),
and PI3K and mTOR inhibitors (NVP BEZ235) (Figure 7F).

For TIMT-III, the main difference was the highly unstable genome.
The number of mutations in this subtype was equal to the sum of
the mutations of other subtypes, and most of them were non-synon-
ymous mutations (Figure 7A). Most of the TP53 mutations in TIMT-
III were frameshift insertions (ins) or frameshift deletions (dels),
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while most of the others were missense mutations. The high level of
gene instability may be one of the factors contributing to the higher
immune risk score of this subtype. In addition, higher homologous
recombination deficiency (HRD) (Figure 7E) is present in TIMT-III
as a matter of course and is a common molecular feature of genomic
instability. Interestingly, we also found that the expression of CDK4
and CDK6 (Figure 7D) was preserved in TIMT-III tumors, while
the expression of RB1 mRNA was significantly reduced, suggesting
that this type may be a potential candidate for CDK4/6 inhibitors.
Based on these characteristics, we conducted drug-sensitivity tests
(Figure 7F) on the samples and found that cisplatin, which acts on
DNA function and microtubule-associated inhibitors (Epothilone.b),
may produce better clinical benefits.

DISCUSSION
When immunotherapy has changed the pattern of tumor manage-
ment, the analysis and identification of immune benefits of patients
with TNBC will be more important than ever before. Because of
limited performance and inconsistent predictive values of clinico-
pathologic variables for survival, patients with TNBC, as a heteroge-
neous group, urgently need reliable classification criteria to identify
subgroups that might benefit more from the addition of immuno-
therapy. We have adopted a systematic and comprehensive
biomarker detection and verification method and successfully identi-
fied a novel multi-molecular panel that can effectively identify the
benefits of immunotherapy and clinical prognosis of TNBC patients.
These findings were verified in several independent clinical cohorts,
which further confirmed the effectiveness of TIRS in depicting the im-
mune landscape of TNBC. We further collected FFPE samples and
confirmed the clinical potential of this feature at protein level, high-
lighting the potential significance of these findings for their clinical
translation for improved risk assessment and survival in patients
with TNBC. Moreover, based on the gene-expression signals derived
from intratumoral immune infiltrates, we distinguished four immune
clusters with significantly different molecular landscapes, ultimately
providing a comprehensive description of the immune environment
in TNBC.

We established an 8-gene panel to distinguish between high and low
risk of the sample and successfully stratified prognosis in all cohorts.
However, because the AUC focuses on discrimination rather than risk
prediction, and the significance of its increment cannot be explained
intuitively from a clinical perspective, the degree of improvement in
the AUC alone is not enough to explain the contribution of newly
added indicators to the clinical model degree. The model utility quan-
titative evaluation indicators IDI and NRI were applied to quantify
the contribution of TIRS. The results showed that TIRS has a better
risk prediction than the traditional TNBC staging assessment, and
this advantage was not optimized after the joint TNM staging. It is
suggested that TIRS can be used as a good index to independently
assess prognosis. In addition, the risk assessment and survival prob-
ability were further quantified according to the nomogram containing
TIRS with clinical information, and the DCA model also showed that
TIRSs all exhibited better clinical net income at different threshold
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probabilities. This has overcome its unsatisfactory efficiency, in
contrast to some clinicopathological variables. Therefore, the panel
provides a potential supplemental prognostic tool for TNBC in the
clinic.

In the past few years, immunotherapy has been recognized as an
important clinical option in cancer therapy,16 and TNBC with stron-
ger immunogenicity is no exception. Extensive clinical trials have
shown that immunotherapy raises great hope for the treatment of
TNBC, especially in PD-L1-positive subgroups. However, we must
be aware that PD-L1 does not seem to be an ideal predictor of im-
mune benefits. The phase III Keynote-522 trial described that the pro-
portion of PCR among patients in the pembrolizumab arm (64.8%)
was significantly higher than that in patients without anti-PD-1 treat-
ment (51.2%).17 However, this benefit was observed regardless of PD-
L1 status. The same numerical improvement results in pathological
complete response were observed in the IMpassion031 and
GeparNuevo study, where atezolizumab and durvalumab were bene-
ficial in early TNBC regardless of PD-L1 status.18,19 The response
observed in patients with PD-L1-negative tumors underscores the
need to study more powerful biomarkers. In this context, precise im-
mune signatures are essential for defining refined TNBC immune
characteristics to better predict the response to immunotherapy.

The superiority of TIRS was reflected in the immune landscape of
TNBC. The immune characteristics of the low-risk group were as fol-
lows: (1) more immune cell infiltration and higher estimate immune
scores; (2) higher expression of immune checkpoints; (3) higher
expression of immunocyte-associated chemokines and their re-
ceptors; and (4) higher levels of MHC genes involved in immune
regulation. In addition, in terms of mutation frequency, both groups
contained high mutations of TP53, PIK3CA, and MUC families, but
the high-risk group had more frequent mutations (gene number with
mutation frequency >5%: 259 versus 43), specifically reflected in on-
cogenes such asMED12, BAP1, and FGD5, which are associated with
poor survival in patients with breast cancer.20–23 Then, we attempted
to analyze the potential pathway mechanism. Pathways such as the
T cell receptor signaling pathway, NK-cell-mediated cytotoxicity,
and the chemokine signaling pathway were significantly enriched in
the low-risk group by both GSEA and KEGG. In addition, GO anal-
ysis also showed the immune characteristics of the low-risk group,
such as immune response, adaptive immune response, and chemo-
kine activity. TIRS not only supports the fact that high-risk patients
have a poor prognosis but also predicts the immune characteristics
of the TNBC cohort well, suggesting that ICI administration for sub-
groups may directly guide the curative effect of these patients.

Previous studies have shown that in addition to the classification of
PAM50, the genome-wide map seems to have identified several
TNBC subgroups, namely immunomodulatory (IM), luminal
androgen receptor (LAR), basal-like 1 (BL1), BL2, mesenchymal
(MES), and mesenchymal stem-like (MSL).24,25 Jiang further overlap-
ped it into four subtypes: basal-like/immune suppressed (BLIS),
basal-like/immune activated (BLIA), LAR, and mesenchymal



www.moleculartherapy.org
(MES),26 which is consistent with the research of Burstein.27 Based on
these data and considering the limited clinical benefits of imm-
unotherapy in unselected patients with TNBC, research toward
optimizing treatment through molecular subtyping needs to be
continuously promoted. Therefore, in addition to constructing the
immune panel TIRS, we performed NMF clustering to further subdi-
vide TNBC subgroups specifically based on immune characteristics.
Four TIMTs with different characteristics were identified. The most
significant immunoreactive subtype was reflected in TIMT-II
(16%), which showed the highest estimated immune score and the
best survival. Moreover, it had effective enrichment of immune cell
signals and a better expression of immune cytokines such as imm-
unocyte-associated chemokines and MHC genes, especially the
significant overexpression of PD-L1, CTLA4, and IDO1, providing a
rationale for the use of immune checkpoint blockade as a therapeutic
approach. In addition, TIMT-II also conforms to the criteria of hot
tumors according to the criteria of Chen,28 specifically manifested
as higher levels of CD8A, GZMA, and PRF1 mRNA, which further
suggests the possible benefits of immunotherapy. In contrast,
TIMT-IV showed immune rejection, with the worst survival and
the highest TIRS, and was significantly associated with the downregu-
lation of immune genes. Genetic mutations in ATM, ARTX, and
ERCC2 suggest that the TIMT-IV subtype is related to an imbalance
in the DNA damage repair mechanism.

Despite the lack of distinctive genomic alterations, tumors in the
TIMT-I subtype (23.7%) displayed characteristics associated with
CSCs. Meanwhile, this subtype displayed the highest estimated stro-
mal score, suggesting a possible correlation with the widespread dis-
tribution of cancer-related fibroblasts and tumor-associated vascular
cells.29 The significant enrichment of the JAK/STAT3 signaling
pathway confirmed this feature because it not only plays a crucial
role in the maintenance of breast CSCs but is also a key driver in regu-
lating the interaction between fibroblasts and tumors.30,31 This sub-
type exhibited a higher expression of JAK1, IL-6, and STAT3, which
are important drivers of JAK/STAT3 activation.32 Despite the recent
evidence of the limited activity of the JAK1/2 inhibitor ruxolitinib in
metastatic TNBC,33,34 our data suggest that the identification of
TIMT-I subtypes in JAK/STAT-activated populations may be a po-
tential beneficiary of STAT3 inhibitors. In addition, despite being
genetically more stable, TIMT-I tumors showed overexpression of
“inducing angiogenesis” hallmarks such as VEGF, PDGF, and
PDGFR. It may also be affected by the activation of JAK/STAT3,35

but this feature promoted the occurrence of TIMT-I tumors and sup-
ported the benefits of anti-angiogenic therapy in this group. The
outcome of drug-susceptibility prediction confirmed this view.

Differentiated TIMT-III (44.3%) to other TNBC subtypes was the
presence of a highly unstable genome, with which the number of mu-
tations in this subtype is equal to the sum of others, and we demon-
strated that TIMT-III tumors retained characteristics of DNA damage
while showing significantly lower half maximal inhibitory concentra-
tion (IC50) of cisplatin and epothilone B. This suggests that patients
diagnosed with TIMT-III tumors may be potential candidates for
chemotherapy. Meanwhile, they may also benefit from MEK1/2 in-
hibitors because of the mutation in MAP2K1/2 and overexpression
of KRAS, NRAS, and BRAF mRNA. Based on the different immune
states observed in these four subgroups, we further explored the appli-
cability of our TIRS signature. Specifically, the patients with high
TIRS risk were significantly distributed in the TIMT-IV subtype
with immune-escape characteristics, while the opposite was true for
the immune-benefit subtype TIMT-II, which is completely consistent
with the characteristic analysis of the above subtypes.

Although this study provides important evidence for the applica-
tion of immune models for the benefit of immunotherapy and
prognosis of TNBC, it still has some shortcomings. The retrospec-
tive nature of our study is an inevitable limitation. We must recog-
nize that sampling biases caused by tumor genetic heterogeneity
and cross-platform integration can only be reduced, not
completely eliminated. To minimize this bias, we included as
many datasets (including our own cohort) as possible for rigorous
verification and combined different functions, such as Combat, to
reduce batch effects. Second, the incomplete clinicopathological
information of most breast cancer cohorts used in our study led
to the instability of TIRS in the construction of a clinical
nomogram, and the adjustment for more clinicopathological infor-
mation in multivariate Cox regression analysis may affect the effi-
ciency of TIRS as an independent prognostic factor. However,
compared with TNM staging, which is already excellent in clinical
practice, IDI and NRI both showed better benefits of TIRS.
Compared with previous studies, we strengthened the connection
between mRNA and proteome and conducted clinical cohort veri-
fication at protein level. In contrast to relying solely on patholo-
gists to judge the intensity of staining, as has been done in the
past, we also performed machine analysis on immunohistochem-
ical images to quantify the pathological information and more
intuitively present the actual expression status of different
markers. In addition, IHC can be widely used as a routine test
in subsequent studies at hospitals. Therefore, our current study
provides convincing evidence that the proposed TIRS model is
valuable for predicting prognosis and immune-invasion character-
istics. Nevertheless, future prospective studies with larger patient
cohorts are still necessary before considering these biomarkers in
clinical settings.

In conclusion, we have identified and developed a novel TIRS signa-
ture that is a robust tool for survival prediction and treatment guid-
ance for TNBC. Four TIMT immune-landscape classifications of
TNBC were obtained. These outcomes need to be validated in future
prospective studies, but our findings highlight the potential clinical
implications of more appropriate patient choices and improved indi-
vidualized treatment strategies for TNBC patients.

MATERIALS AND METHODS
TNBC cohort dataset acquisition and preprocessing

To obtain the mRNA expression profiles of TNBC patients, we con-
ducted a systematic search using TCGA (https://portal.gdc.cancer.
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gov/), GEO (https://www.ncbi.nlm.nih.gov/geo/), and METABRIC
(http://www.cbioportal.org/) databases. Detailed steps are provided
in the supplemental methods.

The specimens for the validation cohort at the protein level were
collected independently from the AHQU cohort. Based on the
WHO criteria, FFPE samples from patients in the cohort were
screened by pathologists to further clarify the sample quality and mo-
lecular subtypes.
TIRS panel identification

To determine the differential expression signature with the diagnostic
value of patients with TNBC, the Limma package in R was used for
patients with and without TNBC. The differentially expressed genes
were integrated with immune-related genes for further analysis.
The LASSO Cox model was used to identify the most predictive im-
mune risk markers in TNBC and output gene coefficient. The regres-
sion coefficient was used to calculate the risk score and construct the
TIRS. The details are shown in the supplemental methods.
Robustness verification of the TIRS model

There are many shortcomings in the application of AUCs in clinical
models. It focuses more on differentiation, and the improvement de-
gree of the AUC alone is not enough to explain the contribution de-
gree of newly added indicators to clinical models. Therefore, the
improvement in TIRS was measured by calculating the NRI and
IDI.12 Specific methods and formulas are shown in the supplemental
methods.
Clinical feature analysis

The significance of the AUC increment usually cannot be directly ex-
plained from a clinical perspective. Therefore, we adopted the DCA
curve to obtain the net benefit of this scoring model. Riskplot and
risk heatmaps were used to reflect the specific distribution state of
patients related to the risk score. In addition, multivariate Cox regres-
sion analysis was used to assess whether the risk score was indepen-
dent of other clinical features, and a visual risk prediction was pro-
vided with a nomogram score for each clinical feature. Nomograms
and calibration plots were drawn using the “rms” package of R soft-
ware. The performance of the Nomo diagram was assessed using a
calibration curve, time-dependent ROC analysis, and DCA curve
analysis.
Immune cell characteristics and mutational landscape

CIBERSORT deconvolution analysis36 and ssGSEA were performed
to quantify the immune infiltrating cells in TNBC specimens. Both
estimated the proportions of cell types in a mixed cell population
based on normalized data and matched more than 20 immune cells.
Furthermore, the ratio of immune stroma of each TNBC sample was
expressed in the estimate score, stromal and immune scores, and
tumor purity, calculated by the ESTIMATE package with default pa-
rameters.37 These scores were calculated by decomposing the im-
mune components from the expression profiles.
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The somatic mutation and copy-number-variation profiles obtained
from TCGA were transformed. Using “Maftools” and “Genvisr” in
R software, a waterfall diagram was drawn to visualize the mutation
frequency.In addition, HRD scores38 were defined as the sum of
loss of heterozygosity (LOH), Large-scale state Transitions (LST),
and Telomeric Allelic imbalance (TAI), that is, HRD=ScoreLOH+
ScoreLST+ScoreTAI.

Pathway enrichment analysis

The analysis of immune landscapes among different subtypes was
further characterized based on transcriptome andmutationmaps. Af-
ter identifying differentially expressed genes in high- and low-risk
groups, GO and KEGG pathway enrichment analyses were per-
formed, and p values were adjusted using the Benjamini and Hoch-
berg methods. GSEAwas performed between different subtypes using
the R package clusterProfiler.39 The NES was defined as the degree of
each immune infiltration characteristic.

Preparation and IHC of tissue microarray

For each TNBC tissue specimen, the typical tissue was first identified
on the H&E section, and then the tissue was transferred to a wax mold
to make a tissue microarray (TMA) module. Further H&E staining
and IHC of key targets were implemented based on TMA, and
detailed steps are provided in the supplemental methods.

Fully automatic image analysis and design

The image-data-information-processing method based on MATLAB
software was chosen for image recognition of immunohistochemical
outcomes. As the whole immunohistochemical image contains
redundant information and artifacts such as folding, missing, and
broken tissue, three representative image patches were selected for
each complete TNBC image by two pathologists selecting tumor re-
gions. This procedure eliminated artifacts and low-quality regions
and was performed on 8-indicator staining immunohistochemical
images.

Next, we extracted all representative regions of each index of each
patient from its original index image and gathered them into a rect-
angular image. Detailed calculation methods are provided in the sup-
plemental methods. Then, wematched the dyeing intensity value with
the risk weight of each index to obtain the risk score. X-tile software
was used to calculate the best truncation value, and then that was
divided into high- and low-risk groups to verify the survival
difference.

Construction of four TIMTs

To further reveal the distribution of features in patients with TNBC
and identify robust clusters, unsupervised NMF was used to process
the transcriptome expression data in the training set. The cluster
number K was set to 2–10 and 50 iterations. The optimal clustering
number was determined using the cophenetic, dispersion, and silhou-
ette indicators. NMF clustering was combined with ssGSEA to reveal
immune-related expression patterns in different subtypes and was set
as differential TIMTs.
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Based onNMF clustering, Kaplan-Meier analysis was used to evaluate
the survival results of each group. Subsequently, we compared the
expression levels of various immune cells and immune factors, as
well as molecules or pathways associated with immune invasion
and immune escape enriched in each group. The prediction of the
drug-sensitivity response based on the sorted expression profiles for
the different subtypes was executed to obtain a better clinical-benefit
scheme.

Statistics analysis

All statistical analyses were performed using R software (v.4.0.3). The
differences in OS times between different subtypes can be determined
by constructing a survival curve and estimating by the bilateral log
rank test. The Spearman method was used to calculate the p value
in the correlation analysis. Kruskal-Wallis test was performed for
more than two groups, and that of two groups was compared by
the Wilcoxon test. All statistical tests were two-sided unless otherwise
stated, and statistical significance was set at p <0.05.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2022.04.034.
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