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Indication expansion aims to find new indications for existing targets in order to accelerate
the process of launching a new drug for a disease on the market. The rapid increase in data
types and data sources for computational drug discovery has fostered the use of semantic
knowledge graphs (KGs) for indication expansion through target centric approaches, or in
other words, target repositioning. Previously, we developed a novel method to construct a
KG for indication expansion studies, with the aim of finding and justifying alternative
indications for a target gene of interest. In contrast to other KGs, ours combines human-
curated full-text literature and gene expression data from biomedical databases to encode
relationships between genes, diseases, and tissues. Here, we assessed the suitability of
our KG for explainable target-disease link prediction using a glass-box approach. To
evaluate the predictive power of our KG, we applied shortest path with tissue information-
and embedding-based prediction methods to a graph constructed with information
published before or during 2010. We also obtained random baselines by applying the
shortest path predictive methods to KGs with randomly shuffled node labels. Then, we
evaluated the accuracy of the top predictions using gene-disease links reported after
2010. In addition, we investigated the contribution of the KG’s tissue expression entity to
the prediction performance. Our experiments showed that shortest path-based methods
significantly outperform the random baselines and embedding-based methods
outperform the shortest path predictions. Importantly, removing the tissue expression
entity from the KG severely impacts the quality of the predictions, especially those
produced by the embedding approaches. Finally, since the interpretability of the
predictions is crucial in indication expansion, we highlight the advantages of our glass-
box model through the examination of example candidate target-disease predictions.
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INTRODUCTION

Indication expansion (IE) is an emerging subject in drug discovery that aims to find alternative
therapeutic applications, or diseases (indications) for an existing drug target (Parisi et al., 2020).
Considering the high cost and slow process of bringing a new drug into the market, in silico
approaches for drug discovery and repurposing (Dudley et al., 2011; Picart-Armada et al., 2019; Sosa
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et al., 2020) became a popular subject in the bioinformatics
community due to the increasing availability of both
structured and unstructured data modalities. In fact, with the
improvement in text mining technologies, literature mining has
become an established and popular tool for indication expansion
in drug discovery (Andronis et al., 2011; Lekka et al., 2012;
Smalheiser, 2012; Sebastian et al., 2017; Sang et al., 2018; Sosa
et al., 2020). One can search for all potential disease relations for a
given drug in the literature via text mining techniques and expand
the analysis to all targets of the drug to establish a more
comprehensive search (Andronis et al., 2011; Lekka et al.,
2012; Smalheiser, 2012). The outcome of this method is the
direct disease-gene links (based on search criteria). On the
other hand, analysis of biological data sources (such as
molecular data, experimental data, gene expression data, etc.)
are common approaches to search for novel target-disease links
(Brown and Patel, 2017; Härtner et al., 2018; Picart-Armada et al.,
2019).

A natural extension of these studies would be the integration of
several data sources for amore comprehensive analysis. However, the
heterogeneity of data formats and sources raises questions during
their integration (Holzinger, 2018; Katsila andMatsoukas, 2018). The
best way to undertake this data integration challenge, together with
data contextualization, is the application of semantic web
technologies: ontologies and knowledge graphs (Qu et al., 2009;
Chen and Xie, 2010; Williams et al., 2012; Lin et al., 2017; Kanza
and Frey, 2019; Zhu et al., 2020). The main ideas of ontologies and
knowledge graphs (KGs) are that each resource has a unique
identifier, and once each resource is defined with the identifier,
regardless of where they are extracted from, they will be merged
and the integration process will be effortless. Secondly, integrating the
data sources brings up the topic of data governance, as data needs to
be findable, accessible, interoperable, and reusable or, in other words,
in alignment with the FAIR data principles (Wilkinson et al., 2016).
For this, ontologies can also be very helpful (Williams et al., 2012)
because all the data mapped using the same ontology will be already
linked which makes it very easy to search, query, and reuse. Lastly,
predictions from comprehensive and integrated data sets are often
difficult to interpret (Holzinger, 2018; Lecue, 2020). This is a major
challenge in the biological domain, which can be tackled by providing
ontological perspective into the prediction process to incorporate
human recognition and interpretation, thusmaking themethodology
a “glass box”model (Holzinger et al., 2017). Due to the importance of
semantic web technologies in addressing the above-mentioned
challenges, many researchers have added a semantic layer and
included KGs in their computational methods for drug discovery
studies (Kanza and Frey, 2019).

In our previous work, we divided the studies that use KGs for
drug discovery into two categories (Gurbuz et al., 2020): KGs built
from biological data sources (Qu et al., 2009; Fu et al., 2016; Han
et al., 2018; Celebi et al., 2019; Zhu et al., 2020) and KGs built
from the literature (Sang et al., 2018, 2019; Sosa et al., 2020).
Then, we distinguished between studies performing drug-disease
predictions (Qu et al., 2009; Fu et al., 2016; Han et al., 2018;
Sang et al., 2018, 2019; Sosa et al., 2020; Zhu et al., 2020) and
those predicting drug-drug interactions (Herrero-Zazo et al.,
2015; Celebi et al., 2019). The outcome of this review of the

state-of-the-art was that the studies using structured biological
data sources (BioGrid, StringDB, Human Protein Atlas, etc.) for
building the KG applied several network analysis methods to
predict either drug-disease relations or gene-disease associations.
Even though the value of available biological sources cannot be
denied, the outcome of such predictions based on statistical
confidence scores may not be sufficiently persuasive to kick-off
a full drug-development program (Holzinger, 2018). Literature
support would be more convincing for further investigation.
Therefore, the second group of studies constructed the KG
from literature sources but did not implement KGs that
combine both structured biological data sources and literature
sources for a more comprehensive indication expansion or target
repositioning approach. Additionally, all these studies did not
truly benefit from semantic web technologies. Instead, they
directly applied network analysis algorithms.

As a result, in the past we conducted an exploratory case study
aimed at constructing a comprehensive KG to facilitate indication
expansion (Gurbuz et al., 2020). We presented the methodology,
defined the reasoning and inferencing on the KG, and successfully
applied it to two randomly selected cases to predict the link
between the target and disease. We ranked the paths connecting
the target and disease based on the number of publications
associated with its constituent edges. In addition, a path was
considered more relevant when all the proteins in the path
showed expression in the same tissue, either at the RNA or
protein level. One limitation of the previous study was that we
conducted the exploratory cases at a small scale with a target and
a given candidate indication to find the mechanism of action. By
contrast, in the current study we extend the identification of novel
target-disease links to all available pairs, evaluate the performance
of the inferred edges based on random baselines, and study the
value of including RNA- and protein-level expression
information in our predictions. Moreover, we show how the
KG can be exploited to interpret candidate gene-disease
associations through the examination of two examples.

RELATED WORK

In this section, we review the approaches that have resorted to the
use of KGs for drug discovery regardless of whether the purpose
was drug-disease, gene-disease, or drug-drug interaction
prediction. Table 1 shows a comprehensive overview of the
reviewed methods.

Celebi et al. used KGs for drug-drug interaction identification
and used a publicly available dataset called Bio2RDF to extract
drug features (Celebi et al., 2019). After feature extraction via
RDF2Vec, TransE, and TransD embeddings, they applied
Logistic Regression, Naïve Bayes, and Random Forest models
and evaluated which combination of embedding and machine
learning models was better at predicting a reference set of drug-
drug interactions. The best performance they achieved was using
RDF2Vec together with a Random Forest model.

There are several studies which use KGs to predict
drug-disease relations. Fu et al. (Fu et al., 2016) built a
network from various biological and chemical data sources to
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predict drug-target relations using Random Forest and Support
Vector machine algorithms. However, they only benefited from
semantic web technologies at the stage of data integration and
concentrated on drug-target relations. Han et al. (Han et al., 2018)
integrates popular biological databases (DB) such as TTD,
DrugBank, PharmGKB, and AlzGene to predict novel drug
targets for Alzheimer’s disease. Their novel strategy was to
combine ontology inference together with enrichment analysis.
However, their main goal was limited to finding genes for one
specific disease, Alzheimer’s in this case. Zhu et al. built a drug
centric KG by integrating six drug data sources (PharmGKB,
TTD, KEGG DRUG, DrugBank, SIDER, and DID) (Zhu et al.,
2020). They implemented a machine learning approach on a
path-based representation and an embedding-based
representation, separately. To evaluate the effectiveness of the
KG, the authors used positive samples and unlabeled samples
(samples from diabetes mellitus only) and implemented positive
and unlabeled learning (PU) with Decision Tree, Random forest,
and SVM models. According to their performance evaluations,
the best outcome came from SVM implemented on path-based
representation (normalized path count). However, this study uses
a drug centric KG to understand the drug-disease interaction.

On the other hand, there are two studies by Sang et al. (Sang
et al., 2018; Sang et al., 2019) which used literature for building
the KG including SemaTyp. This KG is built from PubMed
abstracts by using a natural language processing (NLP) tool
called SemaRep. In the first study (Sang et al., 2018), they
applied logistic regression on the KG and outperformed the
results obtained with a random walk method. Their aim was
to predict drug-disease relations via drug-target-disease chains.
Later, the authors published a continuation of their work called
GrEDeL in which they used KG embedding methods for

discovering drug-disease relations from literature (Sang et al.,
2019). The authors again use SemaRep to extract associations
from PubMed abstracts and build the KG. This time they claim
that their previous work, which used logistic regression, couldn’t
reflect the order of the entities in the associations and couldn’t
show the detailed drug mechanism of action. Therefore, they first
used the TransE embedding method and applied a Long Short-
Term Memory (LSTM) based Recurrent Neural Network model
to show that graph embeddings capture more information than
logistic regression. However, they claimed that the limitation of
both studies is that the effectiveness of the methods is dependent
on the NLP tool. Likewise, Sosa et al. (Sosa et al., 2020) also
constructed a KG from PubMed abstracts to repurpose FDA-
approved drugs for rare diseases. They used graph embedding
and network proximity for generating their hypothesis. The
limitation of this study is that they missed important
knowledge that is usually present in the full text but not in
the abstract. Moreover, Nunes et al. (Nunes et al., 2020)
implemented a KG using all curated gene-disease links
extracted from DisGeNET1. They filtered out genes that did
not have protein correspondence in Uniprot or annotations in
the Gene ontology and genes and diseases that were not
annotated in Human Phenotypes. Then, they created 3
different KGs based on this filtering and deployed several
embedding strategies, noting that they achieved their best
performance for predicting gene-disease links with OPA2Vec.
However, they only included gene-disease relations in their KGs.

Furthermore, in another study by Paliwal et al. (Paliwal et al.,
2020), the authors built a heterogeneous KG in which 20% of the

TABLE 1 | Overview of knowledge graph usage in drug discovery.

Study Purpose Method Data source

Celebi et al.
(2019)

Drug-Drug Interaction: evaluating the different
embedding methods in various Cross Validation
schemes

Embedding: RDF2Vec, CBOW, Skip Gram, TransE, TransD
MLModel: Logistic Regression, Naive Bayes, Random Forest

Bio2RDF

Fu et al.
(2016)

Drug-target interactions Metapath + Random forest, SVM Biological and chemical datasets

Han et al.
(2018)

Drug target genes for Alzheimer’s Disease Inference + enrichment analysis TTD, DrugBank, PharmGKB,
AlzGene

Zhu et al.
(2020)

Drug centric KG Positive and Unlabeled Learning * SVM, Decision Tree and
Random Forest

PharmGKB, TTD, KEGG DRUG,
DrugBank, SIDER and DID

Sang et al.
(2018)

Potential drugs for diseases Logistic regression Pubmed Abstracts

Sang et al.
(2019)

Potential drugs for diseases TransE embedding + LSTM Pubmed Abstracts

Sosa et al.
(2020)

FDA approved drugs for rare diseases Network proximity Pubmed Abstracts

Paliwal et al.
(2020).

Predicting clinical failure Tensor factorization + gene prioritization 20% is from biomedical literature
and biological data sources

Nunes et al.
(2020)

Predicting Gene-Disease links Embeddings + Random Forest Gene-Disease links from Disgenet

Geleta et al.
(2021)

Knowledge Graph construction to support drug
discovery like predicting Gene-Disease links and

Embeddings (RESCAL) + XGBoot Gene and Disease nodes and
edges from public databases

KG for IE Target repurposing Tissue based semantic inferencing + Embeddings & Random
Forest

Human curated full text literature +
biological database

1https://www.disgenet.org/(accessed on 12.11.21).
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data comes from biomedical literature databases and the rest
from biological data sources. These sources consist of entities
such as genes, proteins, diseases, gene ontology processes,
pathways, and compounds (Paliwal et al., 2020). Although the
aim of the study was to evaluate translatability of in silico
predictions of clinical trial failure, they were able to predict
therapeutic genes for diseases using gene prioritization
algorithms. Note that, contrary to what we do in this work,
Paliwal and colleagues searched for therapeutic genes related to a
group of selected diseases. A similar study from Geleta et al.
(Geleta et al., 2021) also presents a comprehensive knowledge
graph built from internal data, external public databases such as
ChEMBL and Ensembl, and information extracted from PubMed
full-text using Natural Language Processing Techniques named
Biological Insights Knowledge Graph (BIKG) to be used for
knowledge discovery with machine learning. They use
RESCAL for knowledge graph embeddings and XGBoost as
machine learning method. They report their average F1 score
as 88% for gene-disease link prediction where they reduce the size
of the KG to Gene and Disease nodes. However, their focus lies on
the creation of the KG, whereas our paper addresses the practical
utility of KGs in the context of indication expansion in drug
development. Furthermore, they depend on natural language
parsers and the full details about the method for gene-disease
prediction are unavailable, hindering their reproducibility and
application to drug discovery. Likewise, Ochoa et al. (Ochoa et al.,
2020) also present a comprehensive knowledge graph with
characterization of targets, diseases, phenotypes, and drugs to
support target identification and prioritization. This is part of an
update within the Open Targets platform. While full text
literature is a data stream within Open Targets, its use for
drug discovery in indication expansion is not explored.

After analyzing these studies, we concluded that KGs are
becoming mainstream for supporting drug discovery initiatives,
but they have not benefited from semantic information and instead
have relied directly on the application of network analysis. In
consequence, we evaluated both tissue-based semantic inferencing
and various embedding strategies. Additionally, most literature-
based KGs were constructed with abstracts. However, the authors
behind these studies have acknowledged that this is a limitation
and that extracting information from full texts would increase the
predictive power of KGs in general. Therefore, we set out to address
these pitfalls and used full-text literature for building a KG for IE.
Predictions based on this graph can be accompanied by the
literature references supporting them, as well as the
mechanisms of action. Furthermore, our KG takes tissue
specificity information into consideration when inferencing and
predicting target-disease links.

METHODOLOGY

Knowledge Graph Development for
Indication Expansion
This section summarizes the methodology that improves upon the
KGdeveloped in our previous work to facilitate indication expansion
studies. More details can be found in Gurbuz et al. (2020).

We start with the upper layer ontology, which defines the data
and semantic layer of the KG. In the current study, we have
improved the KG and included the following entities: Protein/
Gene, RNA Tissue, Protein Tissue, Publication, and Disease.
Figure 1A shows the updated upper layer ontology. We have
used Python’s RDFLib2 for creating the ontologies and RDF
graph. Since it was not possible to create edge properties with
the RDF syntax and reification brings about efficiency problems,
the new RDF* syntax can be used for creating a weight property
on the edges (relations) with RDF4J 3. Alternatively, a third entity
can be created to store the references of these genes’ connection
information. In this study, we chose to create a third entity,
named Publication, between gene and disease. This entity holds
the information for PubMed IDs and the number of PubMed
articles between the given gene and the disease as data properties.

After building the upper layer ontology, we populated it with
Metabase4, a commercial source for human curated full-text
literature information. We only selected the high confident
relations between gene-gene and gene-disease interactions
provided by Metabase. We extracted the tissue-level gene
expression from the Human Protein Atlas5 (Uhlen et al.,
2010). The pipeline for building and analyzing the KG is
shown in Supplementary Figure S1. For data extraction and
analysis, we used the R programming language and for ontology
population and KG implementation we used Python’s RDFlib.
Both data extraction and ontology population processes were
automated with R and Python scripts (see script KGbuild_toy.py,
which can be used as a template for KG construction). Therefore,
building the KG took less than 1 day. We used Ensembl IDs for
gene/proteins and Mesh IDs for diseases as Unique Resource
Identifiers (URI).

Characterization of the Knowledge Graph
We described the following topological features of the KG: in- and
out-degree (i.e., number of directed links going in and out of a node,
respectively), total degree (sum of in- and out-degree), edge density
(ratio of the number of edges and the number of possible edges),
value of the coefficient of the power-law distribution fitted to the
degree distribution, and PageRank centrality (Page et al., 1999).

On the other hand, we explored the changes of the KG over the
years, focusing on the largest (weakly) connected component
consisting of only gene and disease nodes. To build the KG of a
given year, we only kept the gene-gene and gene-disease edges
whose first mention in literature was no later than that year.
Then, we represented the evolution of the number of nodes,
edges, the edge density, and the power law coefficient.

Tissue-Based Gene-Disease Link
Prediction From the Knowledge Graph
Since there may be indirect links (Lekka et al., 2012) between a
gene and a disease via secondary signaling cascades (modelled

2https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html (accessed on 12.11.21).
3https://rdf4j.org/documentation/programming/rdfstar/(accessed on 12.11.21).
4https://www.cortellislabs.com/page/?api=api-MB (accessed on 12.11.21).
5https://www.proteinatlas.org/(accessed on 12.11.21).
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as protein-protein interaction networks and pathways in our
KG), we defined hop-based inferencing rules with RNA- and
protein-level expression in tissues as key components (Gurbuz
et al., 2020). For instance, say a protein/gene instance X
interacts with another protein/gene instance Y and these
two entities are expressed in the same tissues. Then, it is
assumed that the disease D that Y is related to is one-hop-
related to the instance X. Similarly, if protein/gene X interacts

with Y, Y interacts with another protein/gene Z, all these
entities are expressed in the same tissues and Z is associated
with the disease D, we say that D is two-hop-related to the
instance X (see Figure 1B). These candidate gene-disease links
can be ranked according to the total number of publications in
the X-Y-D or X-Y-Z-D path (i.e., the sum of the edge weights).
A sample mock-up diagram can be found in Supplementary
Figure S2.

FIGURE 1 | Knowledge graph schema and gene-disease prediction strategies. (A) Upper layer ontology with the entities and relations defining the structure and
content of our knowledge graph. (B)Hop-based prediction strategies to find novel gene-disease associations via intermediary genes expressed in the same tissue at the
RNA or protein levels. (C) Embedding-based prediction strategy to find novel gene-disease associations via distances/similarities in a latent space.
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For inferencing, we used five different strategies: one-hop links
filtered by protein expression in the tissues, one-hop links filtered
by RNA expression in the tissues, two-hop links filtered by
protein expression in the tissues, two-hop links filtered by
RNA expression in the tissues, and the union of all these types
of predictions (see Figure 1B). We also evaluated the
performance of the one- and two-hop strategies without the
tissue filters.

Random Baselines
We created 100 random KGs to evaluate the performance of the
hop-based predictions. To this end, we shuffled the identity of the
protein/gene entities, which maintained the structure of the KG
unchanged but affected the biology encoded by the gene-gene,
gene-disease, and gene-tissue components of the graph.

In Silico Validation of Tissue-Based
Gene-Disease Predictions
For each gene-gene and gene-disease link, we have the
information of when the association was first reported
(published) and what is the last record (publication) of such
association. Accordingly, we used a prospective time-split
validation scheme, where interactions and indications
published before or in 2010 were eligible for the training data,
whereas indications reported after 2010 were used to construct a
gold standard or test set (see Table 2). It is important to note that
the gold standard was constructed by making sure that only genes
and diseases which also exists in KG_Before2010 were included,
as these are the only cases that can be predicted. We further
refined the gold standard by removing gene-disease pairs
separated by more than two hops in the original KG. This led
to fairer performance metrics because we considered a maximum
of two hops of separation between genes and diseases in our
predictions. Therefore, the final test set comprised 5,176 reference
gene-disease associations.

Knowledge Graph Embeddings
We employed the Nunes et al. (2020) implementation of the
most commonly used embedding methods for KGs, which are
RDF2Vec6, DistMult7, TransE8, TransH9, and TransD10 to
embed KG_Before2010 into a low-dimensional space (see

Figure 1C). We used a 200-dimensional space as
recommended in Nunes et al. (2020). Therefore, we
obtained 200-dimensional representations of all the gene
and disease entities, which we used to calculate Euclidean
distances and cosine similarities between gene-gene and gene-
disease pairs. These distances/similarities were used to build a
Random Forest model that we applied to the prediction of
gene-disease links. We selected this machine learning
approach based on the work of Celebi et al. (2019) and
Nunes et al. (2020) who found that Random Forests
outperformed other techniques in their studies for
predicting gene-disease links from ontologies.

To train the Random Forest and evaluate its
performance, we labeled all the gene-disease pairs
separated by at most 2-hops and which did not take place
in the train and test data (Table 2) as negative cases. This
allowed to construct a training set (98,426 positive and
98,426 negative cases) and a test set (5,176 positive and
5,176 negative cases).

Performance Metrics
We evaluated the overall prediction accuracy of the inference
strategies described above using the following definitions:

• True positive: Gene-disease link inferred from
KG_Before2010 and that is listed in the KG_After2010
gold standard.

• False positive: Gene-disease link inferred from
KG_Before2010 but that is not listed in the
KG_After2010 gold standard.

• False negative: Gene-disease link not inferred from
KG_Before2010 but that is listed in the KG_After2010
gold standard.

In addition, we constructed a table with all the possible
gene-disease links that can be formed with the
KG_Before2010 data (18,045 unique genes and 330 unique
diseases for a total of 5,954,850 possible gene-disease
associations). This list was further reduced to gene-disease
pairs separated by at most two hops in the KG_Before2010 for
a total of 458,640. Then, we determined which of those
combinations were corroborated in the gold standard
(positive cases) and scanned the list decreasingly based on
the scores assigned to each pair by the hop-based prediction
strategies (see Figure 1B). Gene-disease links not predicted by
the hop-based methods were given a score of 0. This allowed
us to construct Receiving Operating Characteristic (ROC) and
Precision-Recall curves (Cannistraci et al., 2013) using the
following definitions:

TABLE 2 | Validation scheme based on the date when the interaction was first reported.

Node1 Node2 Interaction First referenced Graph Type

Gi Dk hasDisease ≤2010 KG_Before2010 Train data
Gi Gj activates ≤2010 KG_Before2010 Train data
Gj Dk hasDisease >2010 KG_After2010 Test data

6https://github.com/IBCNServices/pyRDF2Vec (accessed on 11.10.21).
7https://github.com/thunlp/OpenKE (accessed on 11.10.21).
8https://github.com/thunlp/OpenKE (accessed on 11.10.21).
9https://github.com/liseda-lab/KGE_Predictions_GD (accessed on 11.10.21).
10https://github.com/liseda-lab/KGE_Predictions_GD (accessed on 11.10.21).
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• True positive: Gene-disease link above current weight
threshold that was reported after 2010.

• False positive: Gene-disease link above current weight
threshold that was not reported after 2010.

• False negative: Gene-disease link below current weight
threshold that was reported after 2010.

• True negative: Gene-disease link below current weight
threshold that was not reported after 2010.

FIGURE 2 | Topological properties of KG_Before 2010. (A) In- and out-degree of the nodes in each node type. Also shown is the total degree, defined as the
sum of the in- and out-degree. All node types have hubs with over 100 edges (log2 (101) ≈ 6.7). (B) PageRank centrality, by node type. (C) Probability of each node
degree suggest a power law; both axes are log scaled. (D, E) Temporal evolution of gene-gene and gene-disease links between 1990 and 2021. Edges were filtered
according to their first mention in the literature. (D) Evolution of the largest weakly connected component over time, in terms of node count, edge count, edge
density and power law coefficient. (E) Details on the relative growth by node types (genes or diseases) and by edge types (gene-gene interactions and gene-disease
annotations).
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Data and Code Availability
Gene-gene links and gene-disease links were extracted from the
commercial database Metabase11, which prevents us from sharing
these data. However, the code we used to define and populate our
KG is available in the github link: https://github.com/bi-
compbio/kg_for_ie and can be used with publicly available
databases like StringDB12 for gene-gene links and DisGeNET13

for gene-disease links. Gene-tissue links for the resulting KG can
be retrieved using the Human Protein Atlas R package14 (Tran
et al., 2019).

RESULTS

Characterization of the Graph
The KG was created from 18,790 unique nodes (464 diseases;
18,165 genes; 124 ProteinTissues; 37 RNATissues) and
669,900 edges (70,380 hasDisease; 263,106
hasProteinExpression; 234,294 hasRNAExpression; 102,120
Interaction). The graph was directed and contained no multi-
edges. After imposing the publication date restriction,
KG_Before2010 had 12,906 nodes (330 diseases; 12,417
Ensembl genes; 122 Protein-Tissues; 37 RNA-Tissues) and
518,427 edges (34,201 hasDisease; 222,438
hasProteinExpression; 197,563 hasRNAExpression; 64,225
Interaction). Its edge density was 0.00311.

The topological properties ofKG_Before2010 suggest it follows
a scale free architecture (power law coefficient of 2, Figure 2C).
Regarding their in-degree, genes are the least central nodes,
followed by diseases, Protein-Tissues, and RNA-Tissues
(Figure 2A). The out-degree is only positive for genes, with a
maximum of 1,025. The total degree shows trends like those in the
in-degree, except for genes and disease being on par due to the
addition of the out-degree of genes. Using PageRank as a
centrality measure depicts a similar scenario to the in-degree
(Figure 2B). All the node types show heavy tails and hubs with
more than 100 connections (Figures 2A,C). Such properties are
in line with those of molecular networks and KGs in the
biomedical domain.

Temporal Evolution of Indications
To characterize the time dynamics of indication discovery, we
started from the induced subgraph containing genes and diseases
only and built year-specific subgraphs by removing the edges
whose first mention in literature was posterior to the year under
consideration (Figure 2). When accounting for all-time data
(i.e., the 2021 network), the network encompassed 16,552
nodes and 172,118 edges (16,530 and 172,044 in the largest
weakly connected component, respectively). In contrast, the
largest connected component dating from 1990 consisted of
705 nodes and 1,360 edges, and the one from 2010 had 12,151

nodes and 95,375 edges. We observed a reduction of the increase
rate in both the number of nodes and edges, more pronounced
from 2015 onwards (Figure 2D), which might be explained by
changes in the literature curation criteria or by the pace of data
ingestion. Both edge density and the power law coefficient tend to
decrease and plateau (Figure 2D), which might indicate the new
addition of nodes over time that remain sparsely connected. The
growth patterns in number of nodes and edges also hold for their
sub-types (Figure 2E).

Performance Evaluation of Hop-Based
Methods
Overall precision and recall values for the different strategies to
predict indirect gene-disease links are shown in Table 3. The
average performance metrics across 100 random KG are also
reported, together with p-values from a one-sided z-test
comparing the actual performance values and the distribution
of random ones. In all cases, both precision and recall are higher
than expected by chance with the one-hop with RNA tissue
predictions producing the best precision-recall combination,
followed by the one-hop with Protein tissue inferences
(Table 3 and Figure 3A). Interestingly, while removing the
tissue expression entity from the KG does have an impact on
precision, the sensitivity of the one-hop and two-hop strategies
without tissue is higher. This responds to the fact that, in these
cases, the intermediary nodes connecting the gene with its
predicted associated disease (see Figure 1B) do not have to be
expressed in the same tissue, resulting in many more predicted
gene-disease links and a higher probability to identify pairs in the
gold standard. This is also the case for the two-hop and the union
of all predictions (Figure 3A). However, when precision and recall
are summarized with the F1 statistic, it becomes evident that the
best predictions come from the one-hop methods (Figure 3A). We
believe that, even though the F1 metric from the one-hop no tissue
approach is comparable to that of the predictions with tissue
constraints, it is better to ensure tissue homogeneity.

Table 3 shows that each hop-based method predicts tens of
thousands of gene-disease links, a number of associations that
is unlikely to be validated by experimental means. Therefore,
we assessed the performance of the hop-based approaches for
early retrieval by looking at metrics for the top-100
predictions (see Supplementary Table S1). In particular,
Precision@100 shows that one-hop with RNA tissue and
one-hop without tissue constraints are the best approaches
for early recognition.

To better understand whether predicted gene-disease links with
high scores were corroborated in publications after 2010, we built
performance curves by scanning a list of all possible gene-disease
pairs in KG_Before2010 separated by at most 2 hops (seeMethods).
Figure 3B shows the receiver operating characteristic (ROC) and
Precision-Recall curves of all the gene-disease inference strategies,
while Figure 3C shows the areas under these curves. The plots
corroborate that one-hop predictions are the best when it comes to
early retrieval and the tails of the curves represent the random ranks
for gene-disease pairs that were given artificial scores of 0 (see
Methods).

11https://www.cortellislabs.com/page/?api=api-MB (accessed on: 09.11.2021).
12https://string-db.org/(accessed on: 12.11.2021).
13https://www.disgenet.org/(accessed on: 12.11.2021).
14https://bioconductor.org/packages/release/bioc/vignettes/hpar/inst/doc/hpar.
html (Accessed on: 13.10.2021).
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Performance Evaluation Based on Random
Forest on Several Knowledge Graph
Embeddings
We employed 5 different dimensionality reduction strategies15

(Nunes et al., 2020) to embed the KG_Before2010 into a

200-dimensional space, obtain vector representations of genes
and diseases, and use these vectors to build a machine learning
model for gene-disease link prediction (see Methods and
Figure 1C). Intuitively, a good embedding method should put
gene-disease associations reported in the gold standard near each
other in the latent space. We computed the distance between all
gene-disease pairs, binned the distance range into 10 groups, and
calculated the probability of finding gene-disease links reported
after 2010 within each bin (Supplementary Figures S3, S4). This

TABLE 3 | Types of inferencing and their overall performance scores based on a total of 5,176 reference gene-disease links reported after 2010. Average ± standard
deviations are reported for the random predictions.

Type
of inferencing

Predicted
links

Precision Precision
at100

Precision
(random)

p-value
precision

Recall Recall
(random)

p-value
recall

All the inferences 170,506 0.0296 0.23 0.0152 ± 0.0003 2.55E-
284

0.9737 0.5449 ± 0.0223 1.50E-81

One-hop and protein
tissue

33,633 0.0817 0.21 0.0227 ± 0.0006 0.00E+00 0.5307 0.2234 ± 0.0060 0.00E+00

One-hop and RNA tissue 45,664 0.0794 0.3 0.0227 ± 0.0006 0.00E+00 0.7007 0.2235 ± 0.0061 0.00E+00
Two-hop and protein
tissue

120,319 0.0319 0.14 0.0158 ± 0.0003 0.00E+00 0.7417 0.5247 ± 0.0088 4.50E-
127

Two-hop and RNA tissue 167,939 0.0295 0.23 0.0157 ± 0.0003 7.10E-
286

0.9571 0.5286 ± 0.0088 0.00E+00

One-hop without tissue 47,734 0.0787 0.30 0.0227 ± 0.0006 0.00E+00 0.7262 0.2235 ± 0.0061 0.00E+00
Two-hops without tissue 174,305 0.0291 0.23 0.0157 ± 0.0003 7.10E-

286
0.9795 0.5286 ± 0.0088 0.00E+00

FIGURE 3 | Performance evaluation of the hop-based predictions. (A) Precision, Recall, F1 and Precision@100 metrics calculated from all the gene-disease links
predicted by each hop-based approach. (B) ROC and Precision-Recall performance curves for all the hop-based prediction methods. (C) Area under the ROC (AUROC)
and Precision-Recall (AUPRC) curves shown in (B).

15https://github.com/liseda-lab/KGE_Predictions_GD (Accessed on 13.10.2021).
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analysis showed that TransD, TransE, and TransH were the
approaches that produced the expected gene-disease proximity
patterns. To confirm whether these methods would indeed
produce good gene-disease link predictions, we computed the
Euclidean distances and cosine similarities between genes and
diseases in the five different 200-dimensional spaces and used
these measures to train a Random Forest model whose
performance was evaluated with the gold standard
mentioned above (see Methods). Table 4 and Figure 4 show

the performance of the Random Forest predictions refined with
and without the tissue expression information. TransE
embeddings using cosine similarity vector as the training
data for Random Forest achieved the best performance
overall. These results also show that embeddings from the
KG that contains gene-tissue links outperform the
embeddings that don’t have this information, highlighting
the importance of this entity for the embedding approaches
(Table 4; Figure 4 and Supplementary Table S2).

TABLE 4 | Random Forest predictions on different embeddings.

With tissue No tissue

Category Precision Recall F1 Category Precision Recall F1

DistMult/Cos-sim/@all 0.5339 0.1609 0.247278 DistMult_notissue/Cos-sim/@all 0.3747 0.0326 0.059981
DistMult/Euclidean/@all 0.6758 0.2413 0.355622 DistMult_notissue/Euclidean/@all 0.4152 0.0917 0.150222
RDF2Vec/Cos-sim/@all 0.4765 0.2057 0.287353 RDF2Vec_notissue/Cos-sim/@all 0.5711 0.1636 0.25434
RDF2Vec/Euclidean/@all 0.412 0.242 0.304905 RDF2Vec_notissue/Euclidean/@all 0.4074 0.1246 0.190835
TransD/Cos-sim/@all 0.7356 0.3827 0.503468 TransD_notissue/Euclidean/@all 0.6038 0.3066 0.40669
TransD/Euclidean/@all 0.5312 0.3462 0.419196 TransD_notissue/Cos-sim/@all 0.6794 0.1027 0.178428
TransE/Cos-sim/@all 0.6988 0.6854 0.692035 TransE_notissue/Cos-sim/@all 0.6894 0.6049 0.644392
TransE/Euclidean/@all 0.6604 0.5085 0.57458 TransE_notissue/Euclidean/@all 0.5958 0.3098 0.407639
TransH/Cos-sim/@all 0.6922 0.5884 0.636093 TransH_notissue/Euclidean/@all 0.54 0.3021 0.387446
TransH/Euclidean/@all 0.6187 0.5818 0.599683 TransH_notissue/Cos-sim/@all 0.6601 0.6263 0.642756

Bold numbers show the highest performance.

FIGURE 4 | Embedding based gene-disease prediction evaluation. (A) Embedding performances in which gene-tissue links were included in the knowledge graph.
(B) Embedding performances in which gene-tissue links were not included in the knowledge graph.
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Performance Evaluation Per Disease
Finally, we investigated the precision, recall, and F1 metrics for
each disease separately to determine whether the biological
knowledge encoded by the graph allows to make better
predictions for certain diseases compared to others.

Figure 5A and Supplementary Figure S5 show that the hop-
based strategies tend to perform well in a common set of
disorders like Tauopathies (D024801), Esophageal Diseases
(D004935), Stomach Neoplasms (D013274), and Digestive
System Diseases (D004066). A similar pattern is observed for
the embedding methods, with Arthritis (D01168), Amyotrophic
Lateral Sclerosis (D000690), Mental Disorders (D001523), and
Bacterial Infections (D001424) among the top-10 diseases in at
least four embedding approaches (Figure 5B and
Supplementary Figure S6).

The hop-based strategies show a similar behavior across
diseases: many predictions, which makes recall high but causes
low precision (see numbers in brackets in Supplementary Figure
S5). Yet, the one-hop strategies show more balance between
precision and recall than the two-hop strategies, as reflected
by higher F1 scores (Supplementary Figure S5). In contrast,
the embedding methods produced, in general, less predictions for
the top-10 diseases, which led to low recalls but very high
precisions as most of them were true hits (Supplementary

Figure S6). This corroborates the metrics reported in
Supplementary Table S2 and highlights that these prediction
strategies are well suited for early retrieval tasks. Of note, when
the embedding methods predicted more links for a disease (e.g.,
see Mental Disorders or ALS in TransE on Figure 5B), these were
also mostly true hits, leading to high recall and F1 statistics. In the
following section, we interpret some use cases for the diseases
with the best local performance and showcase the interpretability
of the predictions.

Use Cases
In order to showcase the potential of our approach, we identified
the best performing disease areas as promising domains of
application. Then, we demonstrate how both predictions with
highest literature support and with highest prediction score yield
sensible links that were confirmed after 2010.

Based on Figure 4, the best performing embedding method
was TransE followed by a Random Forest prediction on the
cosine-similarity of the gene and disease low-dimensional
vectors. Performance evaluation per disease (Figure 5B)
showed that this method attained its highest F1 score for
Mental Disorders (D001523) and Amyotrophic Lateral
Sclerosis (ALS) (D000690). There were 55 gene-Mental
Disorders pairs that were published after 2010, and with the

FIGURE 5 | Performance evaluation per disease. (A) Precision, recall and F1 metrics attained by each the top two best performing hop-based prediction methods.
(B) Same as (A) but for the top two embedding methods. Only the top 10 diseases are shown based on the precision value. The numbers in parentheses indicate the
total number of gene-disease links in the gold standard for that disease, the number of predicted gene-disease links and how many of those were positive, respectively.
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TransE embedding strategy 48 of them were correctly predicted.
In the ALS case, TransE recovered 88 of the 111 gene-disease
pairs, TransH recovered 80, and the one-hop with Protein tissue
strategy covered 63 reported after 2010. To explain these
predictions, one can go back to the KG and study their paths,
literature, and tissue support.

For Mental Disorders, the path with the strongest literature
backing (i.e., total number of publications) was the one linking
TGFB1 with this disease group via IL-6, both genes co-expressed
in the cerebral cortex (see Figure 6A). Before 2010, the activation
of IL-6 by TGFB1 is endorsed by 45 publications, while the link
between IL-6 and Mental Disorders is endorsed by 2 as shown in
Figure 6A. Moreover, there are 22 different one-hop paths
(TGFB1—gene X—Mental Disorders) and 926 different two-
hops paths (TGFB1—gene Y—gene Z—Mental Disorders)
between TGFB1 and Mental Disorders in which all genes are
expressed in the cerebral cortex. The predicted TGFB1-Mental
Disorders link, which later were published in López-González
et al. (2019), supports the theory that dysfunction of the immune
system plays an important role in the etiology of mental illnesses,
such as schizophrenia and depression (Frydecka et al., 2013;
Bialek et al., 2020). In fact, significantly higher serum levels of the
IL-6 and TGFB1 cytokines have been reported in patients with
schizophrenia compared to healthy controls (Ergün et al., 2017)
and mutations in TGFB1 have been associated with the
susceptibility and treatment response of schizophrenia
(Frydecka et al., 2013) and major depressive disorder (Bialek
et al., 2020).

For ALS, on the other hand, the top prediction from the
embedding methods is Ubiquitin and ALS. There are 32 different
one-hop paths (Ubiquitin—gene X—ALS) and 547 two-hops
paths (Ubiquitin—gene Y—gene Z—ALS) in which all the
genes in the paths were expressed in cerebral cortex as shown
in Figure 6B. In this context, the strongest one-hop literature link
(in terms of publication numbers) is Ubiquitin—c-Jun—ALS
with 27 publications. The predicted Ubiquitin—ALS link is
supported by the literature (Hasegawa and Arai, 2007;
Watanabe et al., 2010; Keller et al., 2012) stating that

Ubiquitin inclusions have been seen in ALS patients. JNK/
c-Jun signaling has been found involved in the cell death
caused by TDP-43, which is closely linked with ALS and
ubiquitin inclusions (Suzuki and Matsuoka, 2013). It is
important to note that the link between Ubiquitin and ALS
has been discussed in the literature before 2010 (Hasegawa
and Arai, 2007), but this was not considered a high-confidence
association in Metabase and was therefore not known by our
predictive model.

DISCUSSION

In this study, we presented the evaluation of the effectiveness of
the methodology that we developed to build a comprehensive KG
for target-repurposing (indication expansion) studies. We first
evaluated the effectiveness of the constructed KG for target-
disease prediction via semantic inferencing, i.e., by linking
targets and diseases that are one or two hops away from each
other passing through genes that are expressed in the same tissue
as the target. In addition, we checked whether embedding our KG
to a low dimensional space to then use the inferred gene and
disease coordinates to generate dis-/similarity inputs for a
machine learning model could lead to more reliable
predictions. For these experiments, we divided the KG in two
parts such that edges reported before 2010 were used as training
data and edges reported after 2010 served as our gold standard.
This splitting allowed us to have a reliable gold standard
reference, supported by the literature.

Our experiments showed that the hop-based strategies
using RNA- and Protein-level expression data significantly
outperformed our random baselines and were more precise
than hop-based predictors without tissue information. Also,
the one-hop RNA prediction method outperformed the two-
hop and the one-hop Protein strategies. This reflects the fact
that there is much more available information about gene
expression at the RNA level (and/or protein abundance data is
still incomplete) and suggests that two-hop predictions

FIGURE 6 | Example prediction from the knowledge graph. (A) TGFB1 is connected to Mental Disorders via IL6. (B) Ubiquitin is connected to ALS via c-Jun. Both
panels also show the number of alternative connections from the genes to the predicted disease via one-hop and two-hop links.
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incorporate too many false positives to be reliable, especially
for early recognition. In addition, using Euclidean distances
and cosine similarities between gene and disease vectors
inferred by KG embeddings to train a Random Forest
model led to much better gene-disease prediction results.
In particular, the TransE and TransH embedding methods
followed by the computation of cosine similarities between
genes and diseases represented the best training platform for
the constructed Random Forests. Our initial quality controls
of the embeddings already hinted at this result, as the
probability of finding gold standard gene-disease
associations at short embedding distances was very high for
these methods. Moreover, added value by gene-tissue links is
more visible in the KG Embeddings strategies.

One of the limitations of this study is that when creating
the training data set, the true negatives are usually unknown.
We use as proxy gene-diseases for which no connection is
known, but this does not imply that they are unrelated. This
can also overestimate the number of false positives: even
though a predicted link might have not yet discovered, we
simply assumed that if the predicted link does not appear in
the KG after 2010, then it is a false positive. Secondly, gene-
gene interaction network is incomplete due to evolution of the
network over time (which is continuous), and also it is
technically challenging and costly to test each protein pairs’
interaction in humans. Thirdly, we have the relations for
tissue-specific expressions, but we cannot distinguish cell
type-specific effects. And genes and diseases which are
linked to low number of genes and diseases (in other words
with less neighbors) are most likely result in worse
predictions. Lastly, this study only focuses on the human
data and other organisms are out of scope. However, this
method can be applied on other organism data as well.

Although the explainability of the predictions, i.e., the glass-box
property of the KG, is easier to see in the hop-based methods, it is
also possible to query the KG in order to explain the predictions
produced by embedding combined with machine learning
approaches, as we did for our two use cases. In addition, it is
possible to inspect the resulting Random Forest model to
determine which features have a strong impact on a decision.
This kind of analysis was outside of the scope of this study.

To the best of our knowledge, this work is the first one to apply
inferencing constrained by tissue expression on a semantic KG.

Moreover, our KG is built from full-text literature sources and not
only abstracts, which means that the graph does not miss any
important information and does not depend on NLP tools like
other literature-based approaches. As future work, we plan to
extend the data sources employed to construct our KG, explore
other predictive modelling methods, as well as to make it a key
component of our target identification pipelines.
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