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Fungal infections still represent relevant human illnesses worldwide and some are accom-
panied by unacceptably high mortality rates.The limited current availability of effective and
safe antifungal agents makes the development of new drugs and approaches of antifungal
vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-
derived peptides are arousing great expectations as new potential antifungal agents. In
this topic, the search path from the study of the yeast killer phenomenon to the produc-
tion of Ab-derived peptides characterized by in vitro and in vivo fungicidal activity will be
focused. In particular, Abs that mimic the antimicrobial activity of a killer toxin (“antibiobod-
ies”) and antifungal peptides derived from antibiobodies (killer peptide) and other unrelated
Abs [complementarity determining regions (CDR)-based and constant region (Fc)-based
synthetic peptides] are described. Mycological implications in terms of reevaluation of
the yeast killer phenomenon, roles of antibiobodies in antifungal immunity, of β-glucans
as antifungal targets and vaccines, and of Abs as sources of an unlimited number of
sequences potentially active as new immunotherapeutic tools against fungal agents and
related mycoses, are discussed.
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INTRODUCTION
Fungal infections still represent relevant human illnesses world-
wide and often are sentinel markers of immunological primary
disorders or induced suppression (Vinh, 2011). Some mucocu-
taneous infections can be persistent or refractory and involve
much of the population, such as vulvovaginal candidiasis that
may affect up to 75% of women at least once in their childbearing
age (Sobel, 1997). More problematic are invasive fungal infections
(IFIs) that are dramatically increasing and are often severe, dif-
ficult to treat, and accompanied by unacceptably high mortality
rates. Aspergillosis, cryptococcosis, and invasive candidiasis are
among the most widespread, less treatable, and life-threatening
IFIs. They are emerging with increasing frequency, typically in the
setting of immunocompromised patients, even those treated with
new antifungal drugs (Wisplinghoff et al., 2004; Kauffman, 2006;
Binder and Lass-Flörl, 2011). This poses a serious threat to public
health, taking into account that the currently available antifungal
agents are limited in number, and often their prolonged adminis-
tration can have significant toxicity. Even newer antifungal agents
have important limitations related to their spectrum of activity,
pharmacokinetics, and drug–drug interactions. The increasing
resistance to old and new antifungals makes the situation even
more complicated and far from satisfactory. On the one hand,
therefore, the development of new antifungal drugs is becoming
every day more demanding (Zhai and Lin, 2011), the other, much
attention has been paid in recent years to new approaches of anti-
fungal vaccination and/or immunotherapy. In this Research Topic,
the search path from the study of the yeast killer phenomenon to
the production of antibodies (Abs) that mimic the antimicrobial
activity of a killer toxin (KT) to Ab-derived peptides characterized
by fungicidal activity will be focused.

FROM KILLER TOXIN TO “ANTIBIOBODIES”
The demonstration that the killer effect, which was previously
considered to be restricted to conspecific yeasts, was extensible
to taxonomically unrelated fungi opened unannounced perspec-
tives in antifungal therapy (Polonelli and Morace, 1986). KTs are
exotoxins, generally proteins or glycoproteins, that exert their anti-
fungal activity with different mechanisms of action by means of
a preliminary, basic interaction with specific cell-wall receptors
(KTRs; Magliani et al., 1997b). The therapeutic effect of a wide-
spectrum KT, produced by Wickerhamomyces anomalus (formerly
Pichia anomala and Hansenula anomala; PaKT), in the topi-
cal treatment of experimentally induced pityriasis versicolor-like
lesions suggested the possible use of KTs as potential new antifun-
gals (Polonelli et al., 1986). This was later ruled out because of the
characteristics of PaKT in terms of toxicity, as well as antigenic-
ity and instability in the physiological milieu (Pettoello-Mantovani
et al., 1995). The production and characterization of a monoclonal
Ab (mAb KT4), capable of neutralizing the fungicidal activity of
PaKT (Polonelli and Morace, 1987), allowed its use as an immuno-
gen in rabbit for the production of anti-idiotypic (anti-Id) Abs
that competed with PaKT for the binding site of mAb KT4 and,
most importantly, were able to kill in vitro cells of Candida albi-
cans, adopted as fungus model, thereby mimicking the effect of
PaKT (Polonelli and Morace, 1988). PaKT-like anti-Id Abs allowed
to visualize, by immunofluorescence, PaKTRs on C. albicans cell
wall, but not on mammalian cells (Polonelli et al., 1990). The
preferential location of PaKTRs in budding scars and germ tubes,
where inner cell-wall components are synthesized and exposed on
the surface before being buried beneath the dense mannoprotein
outermost coat, confirmed other observations on the greater sus-
ceptibility to PaKT of cells in their active phase of growth and then
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suggested a role of inner components, such as β-glucans (BGs), as
PaKTR constituents (Guyard et al., 2002). Affinity chromatogra-
phy purified anti-Id Abs were likewise able to visualize PaKTRs
also in PaKT-producing cells and to kill them, which are nor-
mally resistant to the activity of their own KT. The killer activity
of anti-Id Abs could be neutralized by pre-incubation with mAb
KT4, thus supporting the specificity of their action. PaKT-like
Abs able to exert a direct fungicidal activity, without the interven-
tion of other factors or cells of the immune system, were defined
“antibiobodies” (antibiotic-like Abs; Polonelli et al., 1991).

Antibiobodies showed to compete with PaKT for both the
combinatorial site of the neutralizing mAb KT4 and PaKTRs
of susceptible microorganisms suggesting, therefore, their three-
dimensional structural and functional homology. As antibiobodies
could be considered to mimic in some way the fungicidal activity
of PaKT, the combinatorial site of mAb KT4 could be considered
as a mimic of PaKTR. Based on these considerations, studies on
“idiotypic vaccination,” using mAb KT4 as parenteral or mucosal
immunogen to stimulate the production of antibiobodies in differ-
ent formats and experimental conditions, were carried out. Poly-
clonal antibiobodies elicited in mice or rats immunized with mAb
KT4 induced protection against experimental systemic or vagi-
nal infections, respectively, caused by PaKT-susceptible C. albicans
cells. The protection was associated with rising titers of circulat-
ing or mucosal antibiobodies. MAb KT4 affinity chromatography
purified antibiobodies were capable of killing C. albicans cells
in vitro and were able to passively transfer the protective state
to non-immunized animals (Polonelli et al., 1993, 1994). PaKT-
like antibiobodies were also produced in unlimited quantities of
indefinitely available formats. Thus, monoclonal (mAb K10) and
recombinant single-chain (scFv H6) antibiobodies were produced
by immunization of rats and mice, respectively, with mAb KT4
using established hybridoma and recombinant DNA technologies.
Both antibiobodies formats proved to be candidacidal in vitro and
to compete with PaKT for the specific PaKTR on C. albicans cells.
The fungicidal activity of mAb K10 and scFv H6 was neutralized
by mAb KT4 and, when administered at the time of challenge
or postchallenge in an experimental model of vaginal candidiasis,
they proved to exert a significant therapeutic activity (Magliani
et al., 1997a; Polonelli et al., 1997).

As an obvious corollary, natural antireceptor antibiobodies
were detected in the serum or secretions of animals and humans
undergoing experimental or natural infections caused by PaKT-
susceptible C. albicans cells. Rising titers of fungicidal Abs could
be detected, after intravaginal or intragastric inoculations of
PaKTR-bearing C. albicans cells, in vaginal fluids of rats previ-
ously vaccinated or never immunized with mAb KT4. Antireceptor
antibiobodies were also consistently found in the vaginal fluid
of women afflicted with recurrent vaginal candidiasis, as well as
in the serum, saliva, and/or bronchial washing of HIV positive
patients with oral or lung infections caused by PaKTR-bearing
fungi. Similar to what previously observed, affinity chromatogra-
phy purified human natural antibiobodies were capable of killing
C. albicans cells in vitro and their activity was neutralized by
mAb KT4. These antibiobodies were also able to passively transfer
the protective state to non-immunized animals (Polonelli et al.,
1996).

The natural existence of candidacidal Abs as part of the Ab
response against C. albicans added significance to the growing evi-
dence on the importance of Ab-mediated acquired immunity for
host defense against candidiasis and other relevant fungal infec-
tions (Casadevall et al., 1998). The availability, moreover, of repro-
ducible antibiobodies in different formats and unlimited amounts,
potentially free of undesired toxic effects, suggested the feasibility
of new therapeutic approaches for the immunotherapy of candidi-
asis (Magliani et al., 2002). Based on the wide antifungal spectrum
of PaKT and the potential diffusion of PaKTRs (Magliani et al.,
1997b), antibiobodies should display a fungicidal activity against
various fungal agents. While PaKT’s activity was severely limited
by the environmental conditions, being manifested at acidic pH
(4.6) and temperatures around 28˚C, antibiobodies proved to be
active in physiological conditions (pH 7 and 37˚C). Conversely,
the idiotype of mAb KT4 or purified PaKTR could be suggested
as potential antifungal vaccines.

Human natural antibiobodies proved to exert in vitro a strong
and specific inhibitory activity against rat-derived P. carinii organ-
isms, in terms of attachment to cultured cells and infectivity
to nude rats. This activity could be abolished by their previous
incubation with mAb KT4. Immunofluorescence studies of com-
petition with PaKT showed that antibiobodies efficiently bound
to specific PaKTRs on the surface of P. carinii cells (Séguy et al.,
1997). Pneumocystosis (PCP) extension was significantly reduced
by aerosol administration of mAb K10 in a PCP experimental
nude rat model (Séguy et al., 1998). In a murine model of allo-
geneic T-cell-depleted bone marrow transplantation, treatment
with mAb K10 protected mice with profound neutropenia from
experimental invasive pulmonary aspergillosis in terms of long-
term survival and decreased pathology associated with inhibition
of fungal growth and chitin content in the lungs. This finding was
supported by the in vitro effect of mAb K10 against Aspergillus
fumigatus swollen conidia (inhibition of the hyphal development
and metabolic activity; Cenci et al., 2002). A Gram-positive gen-
erally recognized as safe bacterium, Streptococcus gordonii, was
engineered to produce scFv H6 as molecules secreted or displayed
on the bacterial surface. Recombinant bacteria were able to sta-
bly colonize vaginal mucosa, and proved to be as efficacious as
fluconazole in rapidly abating the fungal burden and in curing
the infection in a rat model of experimental candidiasis (Beninati
et al., 2000).

FROM ANTIBIOBODIES TO KILLER PEPTIDE
Synthetic peptides derived from the sequence of scFv H6 could
still display in vitro candidacidal activity. In particular, a decapep-
tide containing the first three amino acids of the light chain (L)
complementarity determining region (CDR)1, with an alanine
replacement of its first residue (AKVTMTCSAS), proved to exert a
strong candidacidal activity in vitro, and was therefore designated
killer peptide (KP). Significantly, KP competed with mAb K10
for binding to germinating cells of C. albicans. Furthermore, KP
demonstrated a significant therapeutic activity against infections
caused by fluconazole-susceptible or -resistant C. albicans strains
in a rat model of vaginal candidiasis as well as against systemic
candidal infections in immunocompetent or severely immuno-
compromised mice (Polonelli et al., 2003). Thus, KP proved to act

Frontiers in Microbiology | Fungi and Their Interactions June 2012 | Volume 3 | Article 190 | 2

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Fungi_and_Their_Interactions
http://www.frontiersin.org/Fungi_and_Their_Interactions/archive


Magliani et al. Antifungal antibody fragments

as functional mimotope of PaKT. KP demonstrated a broad anti-
fungal spectrum without any detectable toxicity (Magliani et al.,
2004a). Rapid candidacidal activity of KP was confirmed in time-
killing studies and proved to be inhibited, in a dose-dependent
fashion, by laminarin, a soluble 1,3-BG (Magliani et al., 2004b).
KP was able to kill, in vitro, both capsular and acapsular Crypto-
coccus neoformans cells and impaired the production of specific
virulence factors, such as the capsule, rendering the fungus more
susceptible to natural effector cells. More importantly, KP reduced
significantly the fungal burden in immunosuppressed mice with
cryptococcosis and protected most of them from an otherwise
lethal experimental infection (Cenci et al., 2004). KP demonstrated
a significant activity against Paracoccidioides brasiliensis and exper-
imental paracoccidioidomycosis being fungicidal in vitro, even in
its d-isomeric form, and therapeutic in vivo by markedly reducing
the fungal load in target organs (liver, lung, spleen) of infected
animals (Travassos et al., 2004).

Killer peptide exerted a strong dose-dependent candidacidal
activity against a large number of candidal strains isolated from
saliva of adult diabetic and non-diabetic subjects, regardless of
their species and pattern of resistance to conventional antifungal
drugs (Manfredi et al., 2005). KP showed killing activity on C.
albicans cells even adhered to sanded acrylic resin disks, a major
condition in which candidal biofilms are formed (Manfredi et al.,
2007).

The spectrum of KP activity was subsequently extended to phy-
topathogenic fungal agents, such as Botrytis cinerea and Fusarium
oxysporum. KP was expressed in an active form in plants (Nico-
tiana benthamiana) by using a Potato virus X-derived vector.
KP-expressing plants showed enhanced resistance to an experi-
mental bacterial challenge with Pseudomonas. syringae pv. tabaci
(Donini et al., 2005).

Killer peptide, moreover, was able to bind selectively to murine
dendritic cells (DCs) and, to a lesser extent, to macrophages,
possibly through major histocompatibility complex (MHC) class
II, CD16/32, and cellular molecules recognized by anti-specific
intercellular adhesion molecule-grabbing non-integrin R1 Abs.
The peptide proved to modulate the multiple functions of DCs,
improving their capacity to induce better immune antimicrobial
response (Cenci et al., 2006).

The fungicidal activity of KP was apparently based on a new
mechanism of action as no resistant mutant was found by test-
ing a wide Saccharomyces cerevisiae non-essential gene deletion
strain library that included isolates resistant to conventional anti-
fungal drugs such as caspofungin and fluconazole (Conti et al.,
2008).

Even though the precise molecular mechanism of action has
still to be clarified, KP caused in C. albicans the appearance of
significant internal alterations, such as cell-wall swelling, plasma
membrane collapse, and condensation and fragmentation of
nuclear material, similar to those observed by treatment of the
yeast cells with classical apoptotic agents (Magliani et al., 2008b).
KP proved to be very stable in its lyophilized form and, when
solubilized in non-reducing conditions, due to the presence of a
cysteine residue, it could easily dimerize by formation of disul-
fide bridges. KP dimer turned out to be the functional unit as
confirmed by the instant and total candidacidal effect showed by

the dimeric molecule synthesized ad hoc. After dimerization, KP
revealed its ability to spontaneously and reversibly self-assemble
in an organized network of fibril-like structures that resembled
physical hydrogels. This process was catalyzed by the addition of
1,3-BG, as soluble laminarin or C. albicans cells exposing BGs on
their surface, that caused an immediate conformational conversion
of the peptide from random coil to antiparallel β-sheet. This self-
assembled state was concentration- and temperature-dependent
and could provide protection against proteases and assure a release
of the active form over time. KP was proposed as paradigmatic of
a new class of autodelivering therapeutic peptides (Pertinhez et al.,
2009).

FROM KILLER PEPTIDE TO Ab-DERIVED ANTIFUNGAL
PEPTIDES
All the peptides reproducing the six CDRs of scFv H6 showed can-
didacidal activity in vitro, even if to a lesser extent compared to KP
(Polonelli et al., 2003). Other Abs have been reported meanwhile
as characterized by direct antifungal activity: a human anti-heat
shock protein 90 recombinant Ab (Mycograb; Matthews et al.,
2003); a mAb (C7), directed to a protein epitope of a C. albicans
cell-wall stress mannoprotein, that, besides its candidacidal activ-
ity, proved to exert inhibition of both adhesion and filamentation
as well as blockage of the reductive iron uptake pathway of the
yeast (Moragues et al., 2003; Brena et al., 2011); a scFv and a scFv-
derived peptide able to mimic the fungicidal activity of the H.
anomala HM-1 KT (Selvakumar et al., 2006; Kabir et al., 2011).
The existence of a family of antifungal Abs, from which new inno-
vative wide-spectrum fungicidal tools could be properly derived,
was suggested (Magliani et al., 2005).

As seen in available databases, the sequence of P6, the peptide
from which KP was derived, was present within the V regions
of many unrelated Abs. On this basis, it was speculated that
CDR-related peptides may display antifungal activity regardless
of their specificities. Synthetic peptides with sequences identical
to the CDRs of mAb C7 were proved for candidacidal activity
in comparison to the CDRs of two unrelated Abs, whose vari-
able region sequences were deposited and available. A murine IgM
(mAb pc42), directed to a synthetic peptide containing the surface
antigen of hepatitis B virus and the T-helper-cell epitope from the
circumsporozoite protein of Plasmodium falciparum, was selected
because it shared CDR H1 and H2 with mAb C7. A human IgM
(mAb HuA), specific for difucosyl human blood group A sub-
stance, was selected because not sharing any sequence homology
with either mAb C7 or mAb pc42 CDRs and because represent-
ing an Ab widely diffused in normal population. When tested
in in vitro and in vivo experimental models against C. albicans,
some CDR peptides showed differential fungicidal and thera-
peutic activities. Alanine substituted derivatives of candidacidal
CDR peptides showed further differential increased, unaltered,
or decreased candidacidal activity. Thus, short synthetic CDR-
related peptides may display fungicidal activity irrespective of
Ab specificity for a given antigen, conceivably involving differ-
ent mechanisms of action. Alanine substitution can be used to
increase variability of CDR peptides’ fungicidal activity (Polonelli
et al., 2008). A synthetic peptide representative of CDR H3 of
a murine mAb (MoA) conspecific with HuA and representing
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the different ways by which the same epitope can be recognized
by different immune systems though presenting unrelated pri-
mary sequences, showed no candidacidal activity in vitro. MoA
H3, however, was able to induce a significant increased produc-
tion of proinflammatory cytokines, IL-6, and TNF-α, in murine
splenocytes and peritoneal macrophages (PMs), but not in peri-
toneal neutrophils. Further characterization of MoA H3 allowed
to visualize its binding and uptaking by PMs. This activated the
Akt pathway in correlation to an increased production of TNF-α,
and significantly up-regulated TLR-4 gene and protein expression.
The state of PM activation could explain the therapeutic effect
observed by treatment with MoA H3 in the mouse experimental
model of systemic candidiasis in terms of survival and impres-
sive decrease of candidal recovery from kidneys (Gabrielli et al.,
2009).

MYCOLOGICAL IMPLICATIONS
These studies contributed to the advancement of knowledge on
various aspects of treatment and control of fungal diseases. In
particular, they suggested unusual considerations and perspectives
on potential therapeutic and prophylactic approaches based on the
yeast killer phenomenon, idiotypic vaccination, antibiobodies, and
Ab-derived peptides.

REEVALUATION OF THE YEAST KILLER PHENOMENON
Given the impossibility of directly using KTs as antifungal ther-
apeutic agents, their fungicidal properties have been harnessed
by generating Ab derivatives. The production of antibiobodies
and Ab-derived antimicrobial peptides (Magliani et al., 1997b,
2008b; Selvakumar et al., 2006; Kabir et al., 2011) suggests that
very similar approaches can be applied with other KTs. Different
antifungal molecules could be obtained, thereby taking advantage
of the mimic of a widely spread natural phenomenon. Unravel-
ing their mechanisms of action could result in the discovery of
new potential targets for antifungal agents and/or immunopre-
vention, such as 1,3-BG, the suggested target of antibiobodies and
Ab-derived antimicrobial peptides.

ANTIBIOBODIES AND HUMORAL ANTIFUNGAL IMMUNITY
The relative importance of cell-mediated (CMI) and humoral
immunity against fungal infections has been longly debated. While
CMI continues to be rightly considered the primary mechanism
for antifungal defense, Ab response has been increasingly taken
into consideration (Polonelli et al., 2000). In particular, antibio-
bodies were shown to occur in the Ab repertoire mounted during
fungal infections caused by PaKT-sensitive fungi. Their clinical rel-
evance, however, still needs to be determined. They may represent
only a minor part of the plethora of Abs produced during experi-
mental or natural infections by PaKTR-bearing fungal organisms
and they could be very scarcely produced in vivo being unable to
reach protective titers. The occurrence of interfering Abs of differ-
ent specificities and isotype, moreover, could explain the negative
results often achieved in active and passive immunoprotection
experiments based on humoral immunity. The interplay between
protective and interfering Abs could dictate the outcome of fungal
infections and may also help to explain why subjects with ele-
vated anti-Candida Ab titers could remain nonetheless susceptible

to candidiasis (Bromuro et al., 2002). The observations made in
the past decade, showing that Abs can function as direct effec-
tor molecules against fungi, suggest the need for new conceptual
approaches in the understanding of humoral immunity to fungal
infections (Casadevall and Pirofski, 2011).

β-GLUCANS AS CRITICAL VIABILITY MOLECULES, ANTIFUNGAL
TARGETS, AND VACCINES
BGs, 1,3-BG in particular, have emerged as viability-critical inner
components of many fungal cell walls and were reasonably sug-
gested as PaKTRs constituents. While 1,3-BGs are biosynthesized
by a wide range of fungal species, they are not produced by mam-
malian cells (Magliani et al., 2008a). In the fungal cell wall, 1,3-BGs
are usually masked beneath the dense mannoprotein outermost
layer and this may protect them by recognition of Abs. When
exposed on the surface, mainly during the active phase of growth,
such as in budding cells and germ tubes in C. albicans (Iorio et al.,
2008), BGs can represent a relevant fungal virulence factor being
recognized as major pathogen associated molecular pattern able to
act as potent proinflammatory molecules. Their critical structural
role was underscored by the discovery of a new class of antifungals,
the echinocandins, that are fungicidal by inhibiting the 1,3-BG
synthesis (Denning, 2003) and by reports on antibiobodies and
Ab-derived peptides. An innovative antifungal vaccine composed
of laminarin, a soluble poorly immunogenic linear polymer of 1,3-
BG purified from the brown alga Laminaria digitata, conjugated
with diphtheria toxoid CRM197, was developed. In animal mod-
els, the elicited Abs proved to protect against ascomycetous and
basidiomycetous fungal agents, such as A. fumigatus, C. albicans,
and C. neoformans (Torosantucci et al., 2005; Rachini et al., 2007;
Bromuro et al., 2010). As outlined by Casadevall and Pirofski, these
observations introduced a fungal heresy into the immunological
dogma that effective immune responses should be pathogen spe-
cific and that Abs to “common,” “universal,” or “cross-reactive”
antigens may not be protective. In the case of 1,3-BG, over all
derived from a non-fungal source, a single vaccine induced pro-
tection against three major fungal pathogens. Furthermore, this
provides a vulnerable Achilles heel for Ab-mediated antifungal
protection, suggesting the possibility to develop Abs for passive
therapy of the diseases caused by each of these fungal pathogens
(Casadevall and Pirofski, 2007). Recently, radiolabeled Abs to BG
and other common fungal antigens as well as plant-derived recom-
binant Abs to BG have been described and proposed as universal
tools for fungal disease (Capodicasa et al., 2011; Bryan et al., 2012).
1,3-BG-conjugated vaccines can be seen as “universal” vaccines
that could be administered to patients who share risk factors (e.g.,
neutropenia) to immunize them, before they become debilitated
and immunocompromised, against all of the main opportunistic
fungal agents (Cassone and Rappuoli, 2010). Further studies will
hopefully clarify all the different aspects in this field, including the
role that anti-BG Abs, that are ubiquitous at low levels in human
sera, may play in determining susceptibility or resistance to fungal
infections (Chiani et al., 2009).

Ab-DERIVED PEPTIDES AS NEW IMMUNOTHERAPEUTIC TOOLS
The concept that short synthetic peptides corresponding to
segments of variable region of immunoglobulins (Igs), CDRs
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particularly, may display antifungal activities regardless of the
specificity of the belonging Ab was claimed. This opened new
perspectives in the field of antifungal therapy and encouraged to
continue research on Abs as source of fungicidal peptides. Peptides
encompassing sequences of the constant region of mammalian
Abs (Fc-peptides) belonging to different isotypes (IgG, IgM, IgA),
putatively released in vivo by proteolysis of Igs, were synthesized.
Selected Fc-peptides proved to exert a fungicidal activity in vitro
against pathogenic yeasts, such as C. albicans, C. glabrata, C. neo-
formans, and Malassezia furfur, including caspofungin and triazole
resistant strains, without any hemolytic, cytotoxic, and genotoxic
effect. An Fc-peptide (N10K), included in all human IgGs and
selected as a proof-of-concept, displayed a therapeutic activity
when administered in consolidated mouse models of systemic
and vaginal candidiasis. N10K proved to spontaneously aggre-
gate in a rich β-sheet structure and this possibly contributed to its
in vivo therapeutic activity. The decapeptide bound to the surface
of Candida cells, without causing major lysis. However, gross alter-
ations in the morphology of yeast cells, with disruption of internal
organelles, were seen (Polonelli et al., 2012). N10K, moreover,
was able to induce in human monocytes, in vitro, IL-6 secretion,
pIkB-α activation and up-regulation of Dectin-1 expression, lead-
ing to an increased activation of BG-induced pSyk, CARD9, and
pIkB-α, and an increase in the production of proinflammatory
cytokines, such as IL-6, IL-12, IL-1β, and TNF-α (manuscript sub-
mitted for publication). These findings may be of great interest
from an immunological point of view. While significant amounts
of specific fragments from the Ab variable regions, such as CDRs,
are unlikely to be released in vivo, Fc-peptides could potentially
occur in vivo and influence the antifungal immune response in a
way reminiscent of molecules of innate immunity. Ongoing stud-
ies using mass spectrometry-based approaches are aimed to search
for the presence of Fc-peptides in human sera from individuals in
various clinical conditions. Positive results would shed new light
on the role that Ab fragments could exert in the antifungal home-
ostasis. Furthermore, the reported high frequency of Ab-derived
fungicidal peptides suggests that Abs, irrespective of their isotype
and specificity for a given antigen, may be the source of poten-
tially active and therapeutically exploitable molecules for devising
new immunotherapeutic tools against pathogenic fungi (Magliani
et al., 2009).

CONCLUSION
From the study of the interesting, but apparently therapeutically
impracticable, yeast killer phenomenon, fungicidal antibiobod-
ies, antibiobody-derived peptides, and Ab-derived CDR – as well
as Fc-peptides were produced. Like many other proteins, such as
bactericidal proteins (D’Alessio, 2011), hemoglobin (Catiau et al.,
2011), Helicobacter pylori ribosomal protein L1 (Park and Hahm,
2012), human lactoferrin (Brouwer et al., 2011), human milk
lysozyme (Ibrahim et al., 2011), human salivary protein (Gorr
et al., 2011), and thrombin (Kasetty et al., 2011), longicin (Galay
et al., 2012), thymic stromal lymphopoietin and kininogen (Sones-
son et al., 2011a,b), ubiquitin (Pasikowski et al., 2011), among
the most recently reported, Abs should be considered as contain-
ing many hidden peptides, known as “cryptides” (Ng and Ilag,
2006; Pimenta and Lebrun, 2007; Ueki et al., 2007; Samir and
Link, 2011) in both their variable and constant regions. They
can exert biological effects that cannot be predicted based on the
activity of the precursor protein (Polonelli et al., 2012). These
observations call into question the traditional distinction between
acquired and innate immunity, suggesting a further close link
between them. Ab-derived antifungal peptides, on the other hand,
may be promising molecules for future therapeutic developments.
Their easy production, engineering, and chemical optimization,
through aminoacidic substitutions, peptidomimetics, etc., can
greatly expand the possibilities of obtaining effective antifungal
immunotherapeutic tools. These approaches may reasonably fall
within the “fragment-based drug discovery,” i.e., the design of
good-quality lead compounds from fragment hits that can be
developed into clinical candidates (Foloppe, 2011).

Future studies on Ab-derived peptides will be addressed to
better clarify their molecular mechanisms of fungicidal action,
presumably leading to the discovery of cellular targets for new
therapeutic antifungal approaches in the never ending war against
fungal diseases.
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