
Frontiers in Oncology | www.frontiersin.org

Edited by:
Ye Wang,

Qingdao University Medical College,
China

Reviewed by:
Quan Du,

Zhejiang University School of
Medicine, China
Pranjal Sarma,

University of Cincinnati, United States

*Correspondence:
Huixiao Wang

samgf@163.com

Specialty section:
This article was submitted to

Cancer Genetics,
a section of the journal
Frontiers in Oncology

Received: 17 June 2021
Accepted: 27 September 2021
Published: 12 November 2021

Citation:
Gao F, Wang Z, Gu J, Zhang X and

Wang H (2021) A Hypoxia-Associated
Prognostic Gene Signature Risk Model
and Prognosis Predictors in Gliomas.

Front. Oncol. 11:726794.
doi: 10.3389/fonc.2021.726794

ORIGINAL RESEARCH
published: 12 November 2021

doi: 10.3389/fonc.2021.726794
A Hypoxia-Associated Prognostic
Gene Signature Risk Model and
Prognosis Predictors in Gliomas
Feng Gao, Zhengzheng Wang, Jiajie Gu, Xiaojia Zhang and Huixiao Wang*

Department of Neurosurgery, The Affiliated People’s Hospital of Ningbo University, Ningbo City, China

Most solid tumours are hypoxic. Tumour cell proliferation and metabolism accelerate
oxygen consumption. The low oxygen supply due to vascular abnormalisation and the
high oxygen demand of tumour cells give rise to an imbalance, resulting in tumour hypoxia.
Hypoxia alters cellular behaviour and is associated with extracellular matrix remodelling,
enhanced tumour migration, and metastatic behaviour. In light of the foregoing, more
research on the progressive and prognostic impacts of hypoxia on gliomas are crucial. In
this study, we analysed the expression levels of 75 hypoxia-related genes in gliomas and
found that a total of 26 genes were differentially expressed in The Cancer Genome Atlas
(TCGA) database samples. We also constructed protein–protein interaction networks
using the STRING database and Cytoscape. We obtained a total of 10 Hub genes using
the MCC algorithm screening in the cytoHubba plugin. A prognostic risk model with seven
gene signatures (PSMB6, PSMD9, UBB, PSMD12, PSMB10, PSMA5, and PSMD14) was
constructed based on the 10 Hub genes using LASSO–Cox regression analysis. The
model was verified to be highly accurate using subject work characteristic curves. The
seven-gene signatures were then analysed by univariate and multivariate Cox. Notably,
PSMB10, PSMD12, UBB, PSMA5, and PSMB6 were found to be independent
prognostic predictive markers for glioma. In addition, PSMB6, PSMA5, UBB, and
PSMD12 were lowly expressed, while PSMB10 was highly expressed, in the TCGA
and GTEx integrated glioma samples and normal samples, which were verified through
protein expression levels in the Human Protein Atlas database. This study found the
prognostic predictive values of the hypoxia-related genes PSMB10, PSMD12, UBB,
PSMA5, and PSMB6 for glioma and provided ideas and entry points for the progress of
hypoxia-related glioma.
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INTRODUCTION

There are more than 100 histological subtypes of primary brain and central nervous system (CNS)
tumours (1). Gliomas account for 24% of all primary brain and CNS tumour types, including low-
grade gliomas (LGG) and glioblastoma multiforme (GBM), and are the most common and lethal
type of primary malignancies of the CNS (2). Currently, although surgical resection, chemotherapy,
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and radiotherapy are considered clinically standard treatments
for gliomas (3), treatment efficacy is very limited, with no cure
for gliomas and very poor prognosis for patients (4, 5). In
addition, most glioma patients are prone to drug resistance
and relapse during treatment (6, 7). Therefore, the search for
new molecular therapeutic targets and prognostic predictive
markers is important to predict treatment response and clinical
outcome in glioma.

Tumour hypoxia is a condition in which tumour cells are
deprived of oxygen (8). During the growth of malignant
tumours, the tumour cells grow faster than the blood vessels;
therefore, the blood supply cannot keep up with the demand
that matches the tumour size, leaving parts of the tumour with
significantly lower oxygen concentrations than healthy tissues,
resulting in a hypoxic microenvironment (9, 10). The hypoxic
tumour microenvironment is widely recognised as an
independent prognostic indicator that is commonly
associated with low survival rates in various cancer types,
including breast and lung cancers. In gliomas, hypoxia is a
driver of the malignant phenotype of the glioma class (11).
Tumour hypoxia is associated with antiapoptosis, recurrence,
chemo- and radiotherapy resistance, invasive potential, and
reduced patient survival (12).

Cancer cells have multiple mechanisms for evading
radiotherapy-induced cel l death. Among them, the
development of tumour hypoxia and its associated metabolic
pathways is one of the most important contributors to clinical
radioresistance (13). This is attributed to the fact that hypoxic
tumours require approximately three times the normal
radiation dose to achieve the desired cell death (14). This
likewise suggests that a tumour hypoxia greatly reduces the
efficacy of conventional anticancer approaches. Previous
studies have shown that T cells and natural killer cells
present an incompetent or depleted state in a hypoxic
microenvironment, which results in dysfunction (15, 16).
Currently, the predictive biomarkers for immunotherapy
mainly include programmed death-ligand 1 (PD-L1),
microsatellite instability/defective mismatch repair (MSI/
dMMR), and tumour mutational load (TMB) but often ignore
the hypoxic tumour microenvironment as a prerequisite (17).
Recent studies (18) have constructed and validated a hypoxia
risk model that serves as an independent prognostic indicator
for glioma, reflecting the overall strength of the immune
response in a glioma microenvironment. However, it is still
difficult to determine the hypoxic status of tumours due to the
diversity of oxygen levels in different tissues. Under hypoxic
conditions, tumour cells can adapt to the microenvironment
where they grow by altering the expression of endogenous
enriched genes; these gene expression profiles can reflect the
hypoxic status (19, 20). Therefore, exploring the exact or
relevant mechanisms of hypoxia in tumour development is
expected to provide new targets and indicators for the
treatment and prognosis detection of gliomas.

In this study, we analysed the expression and correlation of 75
hypoxia-related genes in gliomas and thereafter constructed a
Frontiers in Oncology | www.frontiersin.org 2
highly accurate prognostic risk prediction model consisting of
seven gene signatures. PSMB10, PSMD12, UBB, PSMA5, and
PSMB6 were found to be independent predictors of
glioma prognosis.
METHOD

Data Sources
The data of 663 glioma (GBM + LGG) samples, and mRNA
expression data, were downloaded from The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/) website, while the
mRNA expression data of 2,642 cases of normal tissues were
downloaded from the Genotype-Tissue Expression (GTEx,
https://gtexportal.org/) website. The 75 hypoxia-associated
genes were cited in Wei et al. (21).
Selection and Processing of Hypoxia-
Associated Genes
The collected data were normalised, and 2,642 normal lung
tissues from GTEx were added to the glioma TCGA dataset.
The R package (v4.0.3) was used to analyse the differences in the
75 hypoxia-associated gene expressions. Correlations between
quantitative variables without a normal distribution were
described using Spearman’s correlation analysis. p < 0.05 was
considered statistically significant.
Seventy-Five Hypoxia-Associated
Gene Subgroup Types
Consistency analysis was performed using the R package
ConsensusClusterPlus (v1.54.0) with a maximum number of
clusters of six and 100 replicates to extract 80% of the total
sample, clustering = “hc”, innerLinkage = ‘ward.D2’. The
clustering heatmaps were all analysed using the R software
package pheatmap (v1.0.12). The gene expression heatmaps
were retained for genes with variances above 0.1.
Protein–Protein Interaction Network
Construction and Hub Gene Screening
The STRING database (https://string-db.org/) was used to
identify known and predicted PPIs. Seventy-five hypoxia-
associated genes were analysed, and PPI networks were
constructed using STRING. The top 10 Hub genes in the PPI
networks were further screened using cytoHubba in Cytoscape
(v3.8.2) software.
Kaplan–Meier Survival Analysis
Survival analysis was performed using Survival in the R package.
The p-values and hazard ratios (HR) with 95% confidence
intervals (CI) in the Kaplan–Meier curves were derived
November 2021 | Volume 11 | Article 726794
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through log-rank test and univariate Cox proportional
hazards regression.
LASSO Model Construction

The LASSO regression algorithm was used for feature selection,
and 10-fold cross-validation was used to determine the
parameters needed to obtain a suitable model. The genes
obtained from LASSO regression were then subjected to
multifactor Cox regression analysis, and the multifactor
regression coefficient of each gene was calculated to construct
the risk score equation. The patients were divided into high- and
low-risk groups according to the median risk score values. The
Kaplan–Meier survival curve analysis was used to compare the
overall survival times of the two groups, and the predictive value
of the genetic markers was evaluated through time-related
receiver operating characteristic (ROC).
Univariate and Multivariate Cox
Regression Analysis

Cox regression analysis was performed using the Survival
package, and forest plots were plotted using the forestplot
package to obtain the p-value, HR, and 95% CI for each
variable. Based on the results of the multivariate Cox
Frontiers in Oncology | www.frontiersin.org 3
proportional risk analysis, column line plots were constructed
using the RMS package to predict the 1-, 3-, and 5-year
survival rates.

Protein Expression Validation
Immunohistochemical staining maps of the gene expression in
both glioma tissues and normal tissues were downloaded from
the Human Protein Atlas (HPA) database.

Gene Set Enrichment Analysis
Samples were divided into two groups of high and low expression
according to the median value of gene expression, and the
enrichment of Kyoto Encyclopedia of Genes and Genomes
(KEGG) and HALLMARK pathways in the high and low
expression groups were analysed using gene set enrichment
analysis (GSEA).
RESULTS

Expression and Correlation of Hypoxia-
Associated Genes in Gliomas
The analysis results of the expression levels of 75 hypoxia-related
genes in 663 glioma samples and five paraneoplastic tissue
A B

FIGURE 1 | Expression levels and correlations of hypoxia-related genes in the TCGA database. (A) Expression levels of 75 hypoxia-related genes in the TCGA
database and (B) correlation of expression levels of 75 hypoxia-related genes in the TCGA database glioma samples. *p < 0.05, **p < 0.01, ***p < 0.001.
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samples from the TCGA database showed that EGLN2, PSMD1,
HIF1AN, PSMD10, PSMB10, ELOB, PSME2, PSMF1, AJUBA,
PSMB4, LIMD1, PSMC6, PSMB1, PSMB8, ARNT, GUL2,
PSMA3, SEM1, EPAS1, PSMA2, EPO, PSME3, PSMB9,
HIF1A, UBA52, and RPS27A were significantly differentially
expressed in cancer and paraneoplastic tissues (Figure 1A). The
analysis further revealed that most of the 75 hypoxia-related
genes were positively correlated. Among them, PSMB3 was the
most significantly correlated with PSMB6 (Figure 1B). This
suggests that when PSMB3 is upregulated, the PSMB6 gene is
most likely to be upregulated.
Consensus Clustering of Hypoxia-
Associated Genes

The ConsensusClusterPlus package was used to classify the
subgroups of the 663 glioma samples, which were identified as
having the best cluster stability from K = 2 to 6 when K = 2
Frontiers in Oncology | www.frontiersin.org 4
(Figure 2). The 663 glioma patients were subsequently classified
into two subgroups, namely, cluster 1 (C1, n = 421) and cluster 2
(C2, n = 242), based on the expression levels of the hypoxia-
related genes.
Expression of Hypoxia-Associated Genes
in Different Subgroups and Clinical
Characteristics of Glioma Patients
The expression levels of 75 hypoxia-associated genes were
observed in the two subgroups (Figure 3). The results showed
that except for UBE2D1 and EGLN3, the differences in the
expression levels of the remaining 72 hypoxia-related genes in
the two subgroups were statistically significant (p < 0.05). The
distribution of clinical data and the survival of the samples in the
two subgroups are shown in Table 1, thereby underscoring the
significant differences (p < 0.05) between the two groups in terms
of tumour histological grade, and the need (or not) for
radiotherapy and chemotherapy (Supplementary Figure S1).
A B

DC

FIGURE 2 | Subtype grouping of 75 hypoxia-associated genes in the TCGA database glioma samples. (A) Consensus clustering matrix at K = 2, (B) ConsensusClusterPlus
consistency clustering result heatmap at K = 2, (C) CDF curve at K = 2–6, and (D) CDF Delta area curve at K = 2–6.
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PPI Network Construction and
Hub Gene Identification
A PPI network of 75 hypoxia-related genes, including 75 nodes
and 2,110 edges, was constructed using the STRING database
(Figure 4A). The top 10 Hub genes with the highest linkage
degrees were then obtained using the MCC algorithm of the
cytoHubba plugin in the Cytoscape software, namely, PSMB6,
PSMD9, UBB, PSMD12, PSMB10, PSMB11, PSMD13, PSMA5,
PSMD14, and TCEB1 (Figure 4B).
Frontiers in Oncology | www.frontiersin.org 5
LASSO Prognostic Model Construction
The prognostic features were constructed using the
LASSO-Cox regression model to analyse the expression
levels of the Hub genes. A prediction model with seven
gene signatures (Figures 5A, B) was constructed according
to the minimum criterion (Lambda.min = 0.0121), selecting
PSMB6, PSMD9, UBB, PSMD12, PSMB10, PSMA5, and
PSMD14, whose predicted risk scores consisted mainly of
the following:
FIGURE 3 | Differences in the expression levels of 75 hypoxia-related genes in the two subgroups (*p < 0.05, ***p < 0.001).
November 2021 | Volume 11 | Article 726794
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Riskscore = ( − 0:5071) ∗ PSMB6 + (0:3068) ∗PSMD9

+ (0:3587) ∗UBB + (0:9338) ∗ PSMD12

+(0:2287) ∗PSMB10 + (0:7667) ∗PSMA5

+(0:0892) ∗PSMD14

The sample was divided into high- and low-risk groups
(Figure 5C) according to the risk score ranking, with the
median risk score as the threshold. The results of the Kaplan–
Meier analysis showed that patients in the high-risk group had
significantly worse prognoses than those in the low-risk group
(Figure 5D). In addition, the sensitivity and specificity of the
model for predicting the patients’ OS periods were verified by
applying the ROC curves. We found that the present risk model
predicted AUC values of 0.818, 0.861, and 0.830 for the 1-, 3-,
and 5-year prognosis, respectively. This indicates that the model
has high accuracy in predicting the prognostic survival of glioma
patients (Figure 5E).

Univariate and Multivariate
Cox Regression Analysis
In this study, our objective was to analyse whether SMB6,
PSMD9, UBB, PSMD12, PSMB10, PSMA5, and PSMD14 are
Frontiers in Oncology | www.frontiersin.org 6
independent prognostic factors for glioma. Univariate and
multifactorial COX regression analyses were used to determine
that PSMB10, PSMD12, UBB, PSMA5, and PSMB6 may be
independent prognostic factors for gliomas (Figures 6A, B).
Next, we generated a nomogram using COX regression to
construct a model for predicting the overall survival at 1, 3,
and 5 years (Figure 6C). The calibration results showed that the
1-, 3-, and 5-year overall survival models had good predictive
properties compared with the ideal model (Figure 6D).
Expressions and Protein Assays of
PSMB10, PSMD12, UBB, PSMA5,
and PSMB6 in Gliomas
The expression levels of PSMB10, PSMD12, UBB, PSMA5, and
PSMB6 were analysed by integrating 663 glioma cancer tissue
samples and 5 paraneoplastic tissue samples from the TCGA
database and 2,642 normal tissue samples from the GTEx
database. The results showed that PSMB6, PSMA5, UBB, and
PSMD12 were significantly downregulated, and PSMB10 was
significantly upregulated in gliomas (Figure 7A). The protein
expressions of the five genes in the glioma cancer tissues and
normal tissues were verified using the HPA online database
TABLE 1 | Distribution of clinical data of the samples in the two subgroups.

Characteristic C1 (n = 421) C2 (n = 242)

Status Alive 338 78
Dead 83 164

Age Mean (SD) 42 (13.5) 55.1 (14.4)
Median[MIN,MAX] 39 [14,87] 57 [21,89]

Gender Female 182 100
Male 239 142

Race American Indian 1 0
Asian 6 7
Black 16 15
White 389 218

Grade* Discrepancy 1 0
G2 236 12
G3 179 82

New tumour event type Progression 2 62
Recurrence – 16

Radiation therapy* Non-radiation 109 11
Radiation 104 39

History of neoadjuvant therapy Yes 3
No 418 242

Therapy type* Ancillary : Chemotherapy:Targeted Molecular Therapy 1
Chemotherapy 175 107
Chemotherapy: 5 2
Chemotherapy : Targeted Molecular Therapy 1 –

Chemotherapy : Hormone Therapy 1 15
Chemotherapy : Hormone Therapy : Immunotherapy: 1 –

Chemotherapy : Hormone Therapy : Other (specify in notes) 3 –

Chemotherapy : Immunotherapy 8 5
Chemotherapy : Other (specify in notes) 3 1
Chemotherapy : Targeted Molecular Therapy 17 36
Immunotherapy 2 –

Chemotherapy : Hormone Therapy : Other (specify in notes):Targeted Molecular Therapy – 1
Chemotherapy : Hormone Therapy : Targeted Molecular therapy – 1
Chemotherapy : Immunotherapy:Targeted Molecular Therapy – 2
Hormone Therapy – 6
Hormone Therapy : Targeted Molecular Therapy – 1
November 2
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A B

D

E

C

FIGURE 5 | Construction of the LASSO prognostic model. (A) Coefficients of selected features shown by lambda parameters; (B) partial likelihood deviation plotted
against log(l) using LASSO-Cox regression model; (C) risk score and survival time with survival status profile and expression levels of the seven gene signatures;
(D) Kaplan–Meier curves for patients in the high- and low-risk groups; and (E) ROC curve validation (LASSO model for 1-, 3-, and 5-year prediction accuracies).
A B

FIGURE 4 | Visualisation of the protein–protein interaction network and Hub genes. (A) PPI network map of 78 hypoxia-associated genes and (B) screening of Hub
genes using the MCC algorithm.
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(Figure 7B). The results showed that PSMB6, PSMA5, UBB, and
PSMD12 were highly expressed in the glioma tissues, while
PSMB10 was lowly expressed in the glioma tissues compared
with the normal tissues.
Gene Set Enrichment Analysis
Figure 8 shows the top 3 most abundant signalling pathways or
biological processes, respectively, ranked according to
normalized enrichment score (NES) values of PSMB10,
PSMD12, UBB, PSMA5, and PSMB6 in gliomas. As the results
showed, high PSMB6, PSMA5, UBB, and PSMB10 expressions
were all enriched in ubiquitin-mediated proteolysis and UV
response pathway. PSMD12 was enriched in cysteine and
methionine metabolism and reactive oxygen species pathway.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

Hypoxia is one of themain features of a glioma (22). The presence
of hypoxia in human gliomas has been experimentally
demonstrated in previous studies (23). Furthermore, the close
correlation between hypoxia and radioresistance in gliomas has
been reported in numerous studies (24, 25). Radiation therapy
targets rapidly proliferating tumour cells mainly by increasing
reactive oxygen species (ROS)-induced oxidative stress. Reactive
oxygen molecules include superoxide radicals and hydroxyl
radicals. ROS break chemical bonds, activate cascade reactions
generated by DNA damage, and ultimately lead to cell death. In
this process, oxygen is the key to mitigating ROS-induced DNA
damage, which is the fundamental mechanism of radiation for
cancer therapy (26). Tumour hypoxic zones recruit some
A B

D

C

FIGURE 6 | Prognosis prediction by Cox analysis of seven gene signatures. (A) p-value, risk factor HR, and confidence interval for single-factor Cox analysis of
seven gene signature expressions and clinical characteristics. (B) p-value, risk factor HR, and confidence interval for multifactor Cox analysis of seven gene signature
expressions and clinical characteristics. (C) Column line graphs predicting overall survival at 1, 3, and 5 years for glioma patients. (D) Calibration curves of the overall
survival column line graph model.
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immunosuppressive cells, such as bone marrow-derived
suppressor cells (MDSCs), tumour-associated macrophages
(TAMs) and Tregs, and thereafter inhibit the activation of
CD8+ T and CD4+ T cells (27, 28). Under hypoxic conditions,
cancer cells upregulate the key metabolic enzymes that help them
adapt to the demand for nutrients and the changes in redox status
(29). Therefore, understanding the molecular mechanisms
underpinning the effects of hypoxia on tumour treatment is
crucial to improve the effectiveness of tumour therapy.

In the current study, we applied consistent clustering, a
method that provides quantitative evidence for determining
the number and membership of possible clusters in a dataset,
to hypoxia-related genes. We divided 663 glioma samples into
two subgroups by consistency clustering, and our analysis
showed significant correlations between the subgroup level and
the tumour histological grade, radiotherapy or lack thereof, and
chemotherapy modality. We also constructed a glioma
prognostic prediction model consisting of seven hypoxia-
Frontiers in Oncology | www.frontiersin.org 9
related gene signatures, and the model manifested high
accuracy in predicting patients’ prognoses at 1, 3, and 5 years.
Subsequent univariate and multivariate COX regression analyses
eventually identified PSMB10, PSMD12, UBB, PSMA5, and
PSMB6 as independent prognostic markers.

PSMA5, PSMB6, and PSMB10 are all subunits (a and b
subunits) of the 20S proteasome core complex. This proteasome
is a large multisubunit complex that is involved in protein
degradation via the ubiquitin–proteasome pathway. Moreover,
it is mainly associated with various biological processes, such as
cell cycle, apoptosis, angiogenesis, cell adhesion, and
transcription. The assembly of the eukaryotic 20S proteasome
is thought to begin with the formation of the a-loop and requires
the involvement of PSMA5 (30, 31). Previous studies have
reported that PSMA5 mRNA expression levels are highly
expressed in the serum of patients with sepsis presenting with
hypoxemia but are lowly expressed in an in vitro hypoxia model
(32). PSMB6 is associated with the progression of chronic
A

B

FIGURE 7 | Expressions and protein validations of PSMB10, PSMD12, UBB, PSMA5, and PSMB6 in gliomas. (A) Expression levels of five genes in glioma samples
from the TCGA and GTEx databases and (B) protein expression levels of five genes in glioma tissues and normal brain tissues from the HPA database. ***p < 0.001.
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hypoxic pulmonary hypertension and is involved in pulmonary
vascular remodelling in hypoxia-induced rats (33). In addition,
PSMB6 is upregulated in hypoxia models, lung cancer, and
mesenchymal thyroid cancer (33–35). PSMB10 has also been
shown to be a prognosis-related Hub gene in endometrial cancer
(36). In the present study, PSMA5 and PSMB6 were found to be
highly expressed in gliomas, while PSMB10 was found to be
lowly expressed by integrating the TCGA and GTEx databases’
glioma sample analyses. PSMD12 was found in foetuses with
neurodevelopmental disorders characteristic of autism and
craniofacial anomalies, clubfoot, and syndactyly (37, 38).
Disruption assays also support the biological importance of
PSMD12 in proteasome function, especial ly during
development and neurogenesis (39). In addition, PSMD12
expression is reportedly upregulated in glioma tissues
compared with normal brain tissues and positively correlated
with glioma grade. Zhang et al. (40) constructed a PSMD12-
Frontiers in Oncology | www.frontiersin.org 10
containing prognostic model for hypoxia in colorectal cancer
and verified its high accuracy. UBB is a ubiquitin gene, a protein
found in eukaryotic cells. The ubiquitin system helps regulate
protein turnover. Ubiquitin attaches to the proteins that are to
be degraded, effectively labelling them, and then the proteins
are taken to a structure called the proteasome to form the
ubiquitin–proteasome system (UPS). The UPS system can
affect the survival of tumour cells by either promoting the
interpretation of oncogenic proteins such as P53 or by
blocking the degradation of oncogenic proteins (41). The
components of the UPS system have become feasible targets
for the development of potentially effective drugs against certain
diseases, including some of these drugs that are already in clinical
use or in the experimental phase. However, the UPS system is the
primary pathway for intracellular protein degradation, thus
hindering the development of protein degradation-based drugs,
with only about 5% of Food and Drug Administration (FDA)-
FIGURE 8 | Gene set enrichment analysis of the genes in gliomas.
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approved drugs currently targeting UPS system components (42,
43). Similarly, the five gene signatures in the prognostic
prediction model constructed in this study are UPS
system components.

Combining the above findings, we can identify the important
roles of PSMB10, PSMD12, UBB, PSMA5, and PSMB6 in
gliomas, thus providing new targets and ideas for tumour-
targeted therapy. The present study has some limitations.
Given that there is a dearth of research analysing the genes in
tumours, the discovery of their mechanisms of action still needs
improvement. Therefore, more biological experiments are
needed to prove whether the conclusions reached can be
verified in vivo or in vitro.

In summary, we constructed a prognostic model for glioma
based on seven hypoxia-related genes and further identified five
independent predictors of prognosis in glioma patients, thereby
providing potential new targets for glioma gene-targeting therapy.
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