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Abstract 

Background: Norovirus (NoV) is the main cause of non-bacterial acute gastroenteritis (AGE) outbreaks worldwide. 
From September 2015 through August 2018, 203 NoV outbreaks involving 2500 cases were reported to the Shenzhen 
Center for Disease Control and Prevention.

Methods: Faecal specimens for 203 outbreaks were collected and epidemiological data were obtained through the 
AGE outbreak surveillance system in Shenzhen. Genotypes were determined by sequencing analysis. To gain a bet-
ter understanding of the evolutionary characteristics of NoV in Shenzhen, molecular evolution and mutations were 
evaluated based on time-scale evolutionary phylogeny and amino acid mutations.

Results: A total of nine districts reported NoV outbreaks and the reported NoV outbreaks peaked from November 
to March. Among the 203 NoV outbreaks, 150 were sequenced successfully. Most of these outbreaks were associated 
with the NoV GII.2[P16] strain (45.3%, 92/203) and occurred in school settings (91.6%, 186/203). The evolutionary rates 
of the RdRp region and the VP1 sequence were 2.1 ×  10–3 (95% HPD interval, 1.7 ×  10–3–2.5 ×  10–3) substitutions/site/
year and 2.7 ×  10–3 (95% HPD interval, 2.4 ×  10–3–3.1 ×  10–3) substitutions/site/year, respectively. The common ances-
tors of the GII.2[P16] strain from Shenzhen and GII.4 Sydney 2012[P16] diverged from 2011 to 2012. The common 
ancestors of the GII.2[P16] strain from Shenzhen and previous GII.2[P16] (2010–2012) diverged from 2003 to 2004. The 
results of amino acid mutations showed 6 amino acid substitutions (*77E, R750K, P845Q, H1310Y, K1546Q, T1549A) 
were found only in GII.4 Sydney 2012[P16] and the GII.2[P16] recombinant strain.

Conclusions: This study illustrates the molecular epidemiological patterns in Shenzhen, China, from September 2015 
to August 2018 and provides evidence that the epidemic trend of GII.2[P16] recombinant strain had weakened and 
the non-structural proteins of the recombinant strain might have played a more significant role than VP1.
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Background
Norovirus (NoV), which is the main cause of non-bac-
terial acute gastroenteritis (AGE) worldwide, can infect 
all age groups, especially children under 5  years of age. 
According to estimations, NoV is annually associated 

with 900,000 clinic visits amongst children in industri-
alized countries and up to 200,000 deaths of children in 
developing countries [1, 2]. In general, NoV circulates 
in colder weather and causes gastrointestinal symptoms 
such as vomiting, diarrhoea and abdominal pain. NoV 
outbreaks are frequently reported in semi-closed insti-
tutions, such as hospitals, nursing homes, schools, and 
childcare centres [3].

NoV belongs to the Caliciviridae family and can be 
divided into 10 genogroups (GI ~ GX), of which GI, GII 
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and GIV infect humans. GI and GII are responsible 
for the majority of human diseases and can be further 
divided into nine (GI.1–GI.9) and 27 (GII.1–GII.27) 
genotypes based on the diversity of VP1 [4]. The full-
length single stranded RNA genome is approximately 
7.5 ~ 7.7  kb, with three open reading frames (ORFs) 
[5]. The first 5 kb closest to the 5’ end of the genome is 
ORF1, which encodes non-structural proteins, includ-
ing N-terminal protein (P48), NTPase, 3A protein 
(P22), VPg (viral genomic junction protein), 3 C-like 
protein (Pro) and RNA-dependent RNA polymerase 
(RdRp) [6]. These proteins are important for the rep-
lication of NoV. ORF2 is 1.6 kb in length and encodes 
the major structural protein VP1, which constitutes 
the main capsid structure and is responsible for the 
infectivity and antigenicity of NoV [7]. VP1 contains a 
well-conserved shell (S) domain and a protruding (P) 
domain, and the latter is divided into two subdomains, 
P1 and P2 [8]. Furthermore, the P2 region is consid-
ered a hypervariable part of the genome because the 
domain encodes the receptor-binding domain, which 
is responsible for histoblood group antigen (HBGA) 
binding, and important epitopes targeted by antibod-
ies that inhibit binding [9, 10]. ORF3 is 0.6  kb and 
encodes the minor structural protein (VP2) [11].

The global dominant epidemic variant strain is 
generally GII.4. Since 2002, new GII.4 variants have 
emerged every 2–3  years and replaced the previ-
ously predominant GII.4 strains, resulting in epi-
demics and sometimes global pandemics of AGE 
including GII.4 Hunter2004, GII.4 Yerseke2006a, 
GII.4 Den Haag2006b, GII.4 New Orleans2009, 
GII.4 Sydney2012 [12]. However, during the win-
ter of 2014–2015, a novel GII.17 strain initially 
emerged in Guangdong Province, surpassing GII.4-
caused NoV infections [13]. Moreover, in late 2016, 
a novel GII.2[P16] recombinant strain in which the 
RdRp region clustered closely with GII.3[P16]/GII.4 
Sydney2012[P16] strains (2015–2017) and the VP1 
sequence clustered closely with GII.2[P16] strains 
(2011–2012), leaded to rapidly increasing AGE out-
breaks in China [14] and during a short time, the 
GII.2[P16] recombinant strain swept through Japan, 
Italy, Germany [15–17]. The first GII.2[P16]-positive 
sample was also detected in Guangdong Province [14].

Shenzhen is one of the most important cities in 
Guangdong Province. However, information about 
NoV outbreaks in this region is limited. This ret-
rospective study aimed to determine the genotypic 
diversity of NoV strains in outbreaks and the genetic 
characteristics of the GII.2[P16] strain in Shenzhen, 
China, from September 2015 to August 2018.

Methods
The surveillance of NoV outbreaks
Faecal specimens in AGE outbreaks submitted to the 
Shenzhen Center for Disease Control and Prevention 
(Shenzhen CDC) by District Centers for Disease Con-
trol and Prevention (district-level CDCs) from Septem-
ber 2015 to August 2018 were obtained. District-level 
CDCs are responsible for conducting outbreak investi-
gations, including providing epidemiological and clini-
cal information. The Shenzhen CDC performs NoV 
detection and genotyping on the specimens. The NoV 
outbreaks were identified as > 5 acute gastroenteritis 
cases within 3 days after exposure in a common setting 
where > 2 samples (whole faecal, rectal swab, or vomi-
tus) had been laboratory confirmed as NoV.

Detection of NoV by real‑time RT‑PCR
For faecal specimen analysis, a 10% suspension was pre-
pared by mixing 0.1 g stool with 1 mL phosphate-buff-
ered saline (pH 7.2). Viral RNA was extracted from the 
clarified stool suspension using the Viral Nucleic Acid 
Extraction Kit II (Geneaid, China), after which the viral 
RNA was examined by real-time reverse transcription 
polymerase chain reaction (real-time RT-PCR) using 
Ag-Path Kit (Applied Biosystems, USA) with primers 
(Cog1F, Cog1R, Cog2F, and Cog2R) and TaqMan probe 
(Ring 1E and Ring 2) (Additional file 1: Table S1). The 
cycling conditions were described previously [18]. A 
negative control containing DEPC water and 2 posi-
tive controls containing RNA of NoV GI and GII were 
included in each experiment. Samples were scored as 
positive if the cycle threshold values were ≤ 40 and the 
positive and negative controls showed the expected 
values.

Genotyping of NoV by conventional RT‑PCR
NoV-positive samples were then amplified by con-
ventional reverse transcription and PCR (RT-PCR) 
using a one-step RT-PCR Kit (QIAGEN, Germany). 
Before October 2016, the primer sets G1SKF/G1SKR 
and COG2F/G2SKR were used for VP1 genotyping to 
detect GI (330  bp) and GII (387  bp), respectively [19] 
(Additional file  1: Table  S1). After October 2016, the 
primer sets MON432/G1SKR and MON431/G2SKR 
were used to amplify both the partial RdRp region and 
VP1 sequence of GI (543  bp) or GII (557  bp), respec-
tively [20] (Additional file 1: Table S1).

Genotyping analysis
Genotypes were confirmed by BLAST and an auto-
mated online NoV genotyping tool offered by the Neth-
erlands National Institute for Public Health and the 
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Environment (RIVM, http:// www. rivm. nl/ mpf/ norov 
irus/ typin gtool) [21].

Genome amplification of strains GII.2[P16] of NoV
All the samples of the genomes of the strains geno-
typed as GII.2[P16] were further amplified. cDNA was 
obtained by reverse transcription of viral RNA using a 
SuperScript III kit (Invitrogen, USA). Six primer sets 
(Additional file  1: Table  S1) were designed based on 
the whole genome of GII.2[P16] reference strain (Gen-
Bank accession No. KY421121). Genome amplification 
was carried out using touchdown PCR with a PrimeS-
TAR ® Max DNA polymerase kit (Takara, Japan). The 
samples contained 10 µl PrimeSTAR buffer, 7 µl DEPC 
water, 1 µl forward primer (20 M), 1 µl reverse primer 
(20 M) described in Additional file 1: Table S1, and 1 µl 
cDNA preparation in a total volume of 20 µl. The sam-
ples were initially heated at 95 °C for 1 min, followed by 
10 cycles consisting of 98 °C for 10 s, 60 °C (decreasing 
incrementally by 0.5  °C per cycle, 1F/1R, 3F/3R,4F/4R 
and 6F/VN3T20 chose 60  °C, 3F/3R and 5F/5R chose 
62  °C) for 30  s, and 72  °C for 2  min 30  s, then 95  °C 
for 1 min, followed by 32 cycles at 98 °C for 10 s, 55 °C 
(1F/1R, 3F/3R,4F/4R and 6F/VN3T20 chose 55  °C, 
3F/3R and 5F/5R chose 57  °C) for 30  s, and 72  °C for 
2  min 30  s, culminating with a final cycle at 72  °C for 
2  min 30  s. A negative control (PCR water) and posi-
tive-control samples were included in all experiments. 
The PCR products were analysed by electrophoresis on 
1.5% (wt/vol) agarose gels containing 1 × Tris–acetate-
EDTA buffer. The molecular size markers were run in 
parallel on all gels.

Phylogenetic analysis of the RdRp region and VP1
To evaluate the evolution of the NoV GII.2[P16] strain in 
Shenzhen, the full-length RdRp region or VP1 sequence 
from this study and all the sequences of the full-length 
RdRp region or VP1 sequence we found in GenBank as 
of September 2016 were collected. Phylogenetic trees 
were constructed using the Markov chain Monte Carlo 
(MCMC) method with the strict molecular clock in 
BEAST software v 1.8.2. The best substitution mod-
els were TN93 (Tamura-Nei) + G (Gamma) and TN93 
(Tamura-Nei) + G (Gamma) + I (Invariable) for the 
RdRp region and VP1 sequence, selected by MEGA 6.0 
using the BIC method [22]. MCMC chains were run 
for 1.0 ×  108 steps for the RdRp region sequences and 
2.0 ×  108 steps for the VP1 sequences. Effective sam-
ple sizes greater than 200 were confirmed by the Tracer.
The final result was visualized using the FigTree software 
v1.4.3.

Amino acid mutations of the non‑structural region and VP1
To evaluate the impact of the intergenic recombination 
of the non-structural region and VP1, the amino acid 
mutations of the non-structural region and VP1 among 
different genotypes were analysed by MEGA 6.0.

Statistical analysis
The difference between GII.2 NoV detection rates in 
the age distribution were compared using Fisher’s exact 
test by SPSS Statistics software v.22.0 through domi-
nant school settings (childcare centre, primary school, 
middle school), and a p-value less than 0.05 was consid-
ered statistically significant.

Nucleotide sequence accession numbers
The datasets generated during the current study for 
the GII.2[P16] strain sequences are available in the 
GenBank and the accession numbers are MK729081, 
MK681452, MK614124-MK614161, MK720506-
MK720583, and MK692738-MK692654.

Results
NoV outbreak settings and geographical locations
According to ten district-level CDCs, there were 203 
NoV outbreaks in Shenzhen between the period Sep-
tember 2015 and August 2018. Most outbreaks were 
from Nanshan district (30.5%, 62/203) and no outbreak 
was from Yantian district (Fig.  1). Information on the 
outbreak size was reported for 197 (97.0%), ranging 
from 5 to 115 cases per outbreak (Table 1). Of the 203 
outbreaks, 186 (91.6%, 186/203) occurred in school set-
tings, with 17 (8.4%, 17/203) occurring in non-school 
settings (Table  2). Of the 186 outbreaks occurred in 
school settings, 143 (76.9%, 143/186) occurred in child 
care centres. The reported outbreaks peaked in the cold 
season, especially from November to March (Fig. 2).

Genotypic distribution of identified NoV
Of the 203 outbreaks detected as caused by NoV accord-
ing to real-time RT-PCR from September 2015 to August 
2018, 150 were successfully genotyped. Of these 150 out-
breaks with genotype information, 137 (91.3%, 137/150) 
and 12 (8.0%, 12/150) were classified into GII and GI 
genogroups. One (0.6%, 1/150) outbreak involved both 
GI- and GII-positive samples. The dominant genotype 
was GII.2[P16] (61.33%, 92/150). In addition, we identi-
fied a novel recombinant genotype GII.17[Pe] that had 
not been previously found in Shenzhen before (Table 3).

Genotype distribution and outbreak characteristics
For outbreaks caused by the GII.2 strain, most occurred 
in school settings: 73 (79.3%, 73/92) outbreaks occurred 

http://www.rivm.nl/mpf/norovirus/typingtool
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in child care centres and the age distribution of GII.2 
infection showed no significant differences (Fisher’s 
exact test = 3.595, p = 0.177) through dominant school 
settings (child care centre, primary school, middle 
school). Of the thirteen outbreaks caused by the GII.3 
strains, most (86%, 11/13) also occurred in child care 
centre.

Phylogenetic analysis of the RdRp region and VP1 
sequence of the GII.2[P16] strain
To examine strain evolution, 52 full-length RdRp 
regions of strain GII.2[P16] sequences from Shenzhen 
and 95 reference sequences from GenBank were col-
lected for analysis. According to the maximum clade 
credibility (MCC) tree, the evolutionary rate of the 
RdRp region of the GII.2[P16] strain was estimated as 
2.1 ×  10–3 (95% HPD interval, 1.7 ×  10–3–2.5 ×  10–3) 
substitutions/site/year. The common ancestors of the 

GII.2[P16] strain from Shenzhen and GII.4 Sydney 
2012[P16] diverged from 2011 to 2012, and the RdRp 
region of the GII.2[P16] strain from Shenzhen showed 
genetic diversification during 2012 to 2013. The phylo-
genetic analyses suggested that the RdRp region clus-
tered with GII.4 Sydney2012[P16] (Fig. 3A).

Simultaneously, 72 full-length VP1 sequences of 
GII.2[P16] retrieved from Shenzhen and 146 GenBank 
reference sequences were used to explore the evolu-
tionary rate. The evolutionary rate of the VP1 sequence 
of the GII.2[P16] strain was estimated at 2.7 ×  10–3 
(95% HPD interval, 2.4 ×  10–3–3.1 ×  10–3) substitu-
tions/site/year based on the MCC tree. The common 
ancestors of the GII.2[P16] strain from Shenzhen and 
previous GII.2[P16] (2010–2012) diverged from 2003 
to 2004, and the VP1 sequence of the GII.2[P16] strain 
in Shenzhen showed genetic diversification from 2013 

Fig. 1 Geographical distribution of NoV outbreaks in Shenzhen from September 2015 to August 2018. A map of China is shown to localize the 
studied city, and the numbers on the map denote the numbers of outbreaks in the region. The different colours represent different numbers of 
outbreaks, which are marked on the left. The names of the counties are also shown. The map was created by an online tool offered by Dituhui 
(http://c. dituh ui. com/ apps)

http://c.dituhui.com/apps
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to 2014. The phylogenetic analyses suggested that VP1 
clustered with GII.2[P16] (2010–2012) (Fig. 3B).

Amino acid mutations of the non‑structural region 
of GII.2[P16]
To explore the amino acid mutations within the non-
structural region of the recombinant strains, 14 nearly 
full-length non-structural protein sequences and 22 
full-length reference sequences, including GII.17[P16] 
(2002), GII.2[P16] (2009–2014), GII.2[P16] (2010–2012), 
GII.13[P16] (2015), GII.3[P16] (2012–2013), GII.4[P16] 
(2015–2016) and GII.17[P16] (2016–2018), from Gen-
Bank were aligned. Sequence data revealed 102 (6%) par-
simony-informative sites, but no amino acid mutations 
in non-structural region of the GII.2[P16] recombinant 
strain. Furthermore, 6 amino acid substitutions (*77E, 
R750K, P845Q, H1310Y, K1546Q, T1549A) were found 
only in recent strains (GII.4 Sydney 2012[P16] and the 
GII.2[P16] recombinant strain), 2 sites (A644P, A1521V) 
were substituted in the GII.2[P16] recombinant strains, 
and 1 site (S/T753T) was reverted. The results showed 
that amino acid 1310 (motif G) was substituted (Table 4).

Amino acid mutations of HBGA‑binding and epitope sites 
of the GII.2[P16]
To explore the HBGA-binding profile, predicted epitopes 
and epitope A to E sites of the GII.2[P16] recombinant 
strain [9, 23, 24], 72 full-length VP1 sequences from this 

study and 65 reference sequences, including GII.2[Pc] 
(1976–1978), GII.2[Ph] (1997), GII.2[P2] (1987–2015), 
GII.2[P12] (2004–2006), GII.2[P21] (2010), GII.2[Pe] 
(2014), GII.2[P16] (2010–2012), GII.2[P16] (2008–2014) 
and GII.2[P16] (2016–2018), from 1975 to 2018 were 
collected and aligned. Sequencing data revealed 29 par-
isimony-informative sites, but there were no mutations 
in the HBGA-binding profile, predicted epitopes and 
epitopes A to E of the GII.2[P16] strain (Additional file 1: 
Table S2).

Discussion
In this study, NoV-associated AGE outbreaks in Shenz-
hen, China, from September 2015 to August 2018 were 
analysed. A total of 203 NoV outbreaks were reported to 
the Shenzhen CDC. NoV infection was initially described 
as "winter vomiting disease" due to its seasonal character-
istics [25]. Analysis of the monthly distribution also indi-
cated that the peak of the outbreak in Shenzhen occurred 
from November to March. Previous studies have found 
a link between climate or weather and increased NoV 
abundance, and low absolute humidity provides an ideal 
conditions for NoV persistence and transmission during 
cold months [26]. Indeed, NoV rapidly loses viability and 
infectivity with the increase in increasing temperature; 
therefore, NoV appears to be more stable in a cold cli-
mate and thus is transmitted more easily among people at 
cold times of the year [27, 28]. The peak in this study was 
in December, when Shenzhen began to become cold, and 
March, when the temperature began to turn warm, sug-
gesting that that climate change has an impact on NoV 
transmission. The NoV outbreaks usually occur in hos-
pitals, nursing homes, schools, childcare centres, hotels 
and other institutional settings [3]. A study in United 
States reported 3960 NoV outbreaks between 2009 and 
2013 and found that long-term care homes were the most 
frequent sites of NoV outbreaks [29]. Another study from 
Qin et al. [30] showed that middle school was the most 
important setting of NoV outbreaks in China, followed 
by primary school between 2006 and 2016. In this study, 
we classified the outbreak settings into 12 categories, and 
the results showed that most were occurred in childcare 
centre, followed by primary school. This suggests that 
school remains the most common setting for NoV out-
breaks in Shenzhen, but that the current high incidence 
is occurring among younger children who are under 6 
years of age. Combining the results of the monthly dis-
tribution of NoV outbreaks in Shenzhen, we suspect that 
the decrease in the number of NoV outbreaks in Janu-
ary and February is related to school holidays. When the 
scale of the outbreaks was analysed, the average number 
of people involved per outbreak in Shenzhen was nine, 
smaller than the 18 persons reported in the United States 

Table 1 Number of people with NoV gastroenteritis per 
outbreak according to genotype

N denotes the number; ill people denotes symptomatic individuals

Genotype N of ill 
people 
(range)

N of outbreaks 
involving ill 
people

Median no. 
of ill people 
(range)

GII.2 3–73 92 10

GII.3 3–45 13 7.5

GII.4Sydney 2012 9–14 7 11

GII.4 3–13 3 11

GII.6 4–8 8 6

GII.8 11–13 2 12

GII.17 3–12 8 5.5

GII.13 14 1 –

GII.21 11–23 2 17

Multiple genotype 3–10 2 6.5

GI.1 7 1 –

GI.2 5–9 3 7

GI.3 5–84 3 6

GI.5 3–5 2 4

GI.6 6–64 3 12

GII 3–115 53 9

Total 3–115 203 9
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Fig. 2 Monthly distribution of NoV outbreaks in Shenzhen by genotype. The numbers on the Y axis represent the number of NoV outbreaks

Table 3 Genotype distribution of identified NoV strains in Shenzhen, September 2015–August 2018

N denotes number

Genotype 2015.09–2016.08 2016.09–2017.08 2017.09–2018.08
N (percentage) N (percentage) N (percentage)

Capsid

GI.3 1 (4.8) 1 (0.9) –

GII.3 4 (19.0) 1 (0.9) –

GII.4 – 1 (0.9) 1 (1.4)

GII.4 Sydney2012 4 (19.0) 3 (2.7) –

GII.6 – 1 (0.9) 1 (1.4)

GII.8 – 1 (0.9) –

GII.17 3 (14.3) – –

GII.21 2 (9.5) – –

RdRp/Capsid

GI.1[P1] – 1 (0.9) –

GI.6[Pb] – – 3 (4.3)

GI.2[P2] – – 3 (4.3)

GI.3[Pd] – – 1 (1.4)

GI.5[P5] – – 2 (2.8)

GII.2[P16] – 73 (65.2) 19 (27.1)

GII.3[P12] – 2 (1.7) 6 (8.6)

GII.17[Pe] – 1 (0.9) –

GII.17[P17] – 2 (1.7) 2 (2.8)

GII.6[P7] – 1 (0.9) 5 (7.1)

GII.4[Pe] – – 1 (1.4)

GII.8[P8] – – 1 (1.4)

GII.13[P21] – – 1 (1.4)

Multiple genotype 1 (4.8) – 1 (1.4)

GII 6 (28.6) 24 (21.4) 23 (32.9)

Total 21 (100) 112 (100) 70 (100)
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[29]. Shenzhen is one of the cities where the economy 
is most developed, which may be a benefit of the local 
public health system and highly effective handling of 
public health emergencies in Shenzhen (http:// www. 
szemo. gov. cn). Regarding genotype detection, both the 
GI and GII genogroups were found, as were 15 capsid 
types and 15 polymerase types. Among the genotypes, 
the most common was GII.2, followed by GII.3. GII.4 
Sydney2012 only accounted for 3.4%. In this study, we 
identified the GII.2 strain as a GII.2[P16] recombinant 
strain similar to strains found in other regions in China 
[31, 32]. Moreover, the first outbreak identified as caused 
by the GII.2[P16] recombinant strain in Shenzhen was 
on September 30, 2016 after which the GII.2[P16] strain 

caused a steep rise in AGE in Shenzhen in the ensu-
ing months. In general, recombination is thought to be 
important and common in virus evolution [33]. Most 
recombination occurs within ORF1/ORF2 overlapping 
regions or near the RdRp region, resulting in different 
capsid and RdRp genotypes [34]. In this study, we calcu-
lated the evolutionary rates of the RdRp region and VP1 
sequence, which were 2.1 ×  10–3 substitutions/site/year 
and 2.7 ×  10–3 substitutions/site/year, respectively, indi-
cating that the polymerase and capsid regions of NoV 
GII.2[P16] strains had evolved independently, which was 
consistent with the results of previous studies [15]. The 
evolution rate of NoV GII.2 was much lower than that of 
GII.4 NoV (4.4 ×  10−3–7.4 ×  10−3 substitutions/site/year) 

Fig. 3 A Phylogenetic tree of the RdRp region of NoV GII.2[P16]. B Phylogenetic tree for the VP1 sequence of NoV GII.2[P16]. The scale bars denote 
the actual time (years). Estimated divergence times are shown on the ancestral nodes. Phylogenetic clusters, including the previous GII.2[P16] 
2010–2012 cluster, the previous GII.2[P16] 2008–2015 cluster and the GII.P16/GII.2 2016–2018 cluster, are marked. The sequences of the GII.2[P16] 
2016–2018 cluster were all collected from Shenzhen

http://www.szemo.gov.cn
http://www.szemo.gov.cn
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[35], suggesting that GII.2 was relatively stable in Shen-
zhen. Based on the evolutionary divergence time, the 
GII.2[P16] strains in Shenzhen might have recombined in 
2013–2014 providing a better understanding of the for-
mation of GII.2[P16] recombinant strains in Shenzhen.

The results of sequence alignment showed that 
important sites of VP1, including the HBGA-binding 
profile and epitope-predicted sites, were not mutated. 
This suggested that the reason for the prevalence of 
NoV GII.2[P16] strains in the population is different 
from that of the previous pandemic NoV GII.4, which 
was mainly due to changes in the capsid region lead-
ing to changes in blocking antibody epitopes to cause 
population among people [36, 37]. Parra et al. [37] ana-
lysed the GII.2 capsid sequences over a 40-year period 
and found only small differences, which agrees with our 
results, indicating that the GII.2 strain is more geneti-
cally stable than is the GII.4 strain. At the same time, 
the lack of variation in the antigen regions of strains 
may also explain their short duration. These results 
indicate that the presence of a structure other than the 
VP1 contributes significantly to the prevalence of the 
GII.2[P16] strain [38], which may help to reveal the 
reasons for the GII.17[P17] epidemic that caused the 
outbreak of acute gastroenteritis in many countries in 
the winter of 2014–2015. Tohma et al. [39] summarized 
the reasons for the epidemic caused by GII.17[P17] and 
believed it to be related to the non-structural region. In 
this study, amino acid substitutions were found within 
the nonstructural regions including P48, NTPase, P22 
and RdRp. These non-structural proteins play impor-
tant roles in NoV replication, damaging host cells and 

promoting virus synthesis by interfering with intra-
cellular protein transport, vesicle misorientation and 
Golgi disintegration [40–42]. The RdRp region can be 
divided into three highly conserved segments according 
to function and structure, including the fingers, thumb, 
and palm subdomains, which can be organized into 
motifs A to G [43]. The results of amino acid mutation 
of non-structural protein sites of the GII.2[P16] recom-
binant strain suggest that the non-structural region 
may provide materials for virus replication, accelerate 
apoptosis in host cells and enhance fitness by chang-
ing the interaction mode. Another study also reported 
that the GII.2[P16] strain leads to a higher viral load 
than GII.4[Pe] and GII.17[P17] in patients [44]. How-
ever, not all changes in the non-structural region would 
cause epidemics. The study of Tohma et  al. calculated 
the amino acid substitution sites in the RdRp region of 
GII.2[P2] and found that the replacement rate of GII.P2 
was higher than that of GII.P16 [45]. Regardless, NoV 
GII.2[P2] outbreaks have not resulted in pandemics, 
indicating that the RdRp region plays a crucial role in 
the GII.2[P16] epidemic.

This study showed that the GII.2[P16] outbreaks 
have decreased in Shenzhen, although the continuous 
surveillance to monitor genotypes is still necessary to 
identify new variants in a timely manner. The limita-
tions of this study were as follows. First, genotyping 
was only successful for 150 (73.9%) of the positive NoV 
cases in our study. Second, our study lacked clinical 
information and epidemiological data for outbreaks. In 
future studies, epidemiological surveillance should be 
more comprehensive and molecular analysis for differ-
ent NoV genotypes should be developed.

Table 4 Amino acid mutation of non-structural region in NoV GII.P16

P48 NTPase P22 RdRp

Year of Collection Variants 77 644 750 753 845 1310 1521 1546 1549

2002 GII.17 * A K S P H V K T 

2009-2014 GII.2 * A K S P H V K T 

2010-2012 GII.2 * S K I P H V K T 

2012-2013 GII.3 * P/S K V/I P H V K T 

2015 GII.13 * S K T P H V K T 

2015-2016 GII.4 E P/S R T Q H/Y V/I Q A 

2016-2018 GII.2 E P R T Q H/Y I Q A 

Motif G

List of amino acid changes in the non-structural protein of the GII.2[P16] recombinant strain compared with those of previous GII.P16 NoV. Asterisks denote residue 
deletion in the P48 protein of GII.P16 noroviruses. The sequences of P48, NTPase, 3A protein, VPg, Pro and RdRp were aligned. Motif G is one of the conserved 
segments of RdRp according to function and structure, and the 1310 position belongs to Motif G. The negative results are not shown
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Conclusions
In conclusion, this study reported the epidemiological 
patterns and genetic characteristics of NoV in Shenzhen 
from September 2015 through August 2018, revealing 
that the main cause was the GII.2[P16] strain. This study 
also provides evidence that the evolution of the NoV 
GII.2[P16] strain occurred relatively slowly in Shenzhen.
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