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Purpose: Sepsis, which is deemed as a systemic inflammation reaction syndrome in the face of infectious stimuli, is the primary cause 
of death in ICUs. Sepsis-induced cardiomyopathy (SIC) may derive from systemic inflammation reaction and oxidative stress. Retinoic 
acid (RA) is recognized by its beneficial roles in terms of the immunoresponse to infections and antioxygen actions. However, the 
treatment efficacy and potential causal links of RA in SIC are still elusive.
Methods: By virtue of the STITCH database, we identified the targets of RA. Differentially expressed genes in SIC were acquired 
from the GEO database. The PPI network of intersected targets was established. GO and KEGG pathway enrichment analysis was 
completed. Hub genes were analyzed by cytoHubba plug-in. In the process of experimental validation, a mouse sepsis model was 
established by lipopolysaccharide (LPS), and the treated mice were intraperitoneally injected with RA or Dexamethasone (DEX) 60 
min prior to LPS injections. Survival conditions, cardiac functions and antioxidant levels of the mice were assessed. Cardiac 
inflammation and injury were detected by HE and TUNEL. The levels of key genes and signal pathway expression were analyzed 
by RT-PCR and Western blot.
Results: PPARA, ITGAM, VCAM-1, IGF-1 and IL-6 were identified as key therapeutic targets of RA by network pharmacology. 
PI3K-Akt signaling pathway is the main regulatory pathway of RA. In vivo researches unraveled that RA can improve the survival rate 
and cardiac function of LPS-treated mice, inhibit inflammatory factors and myocardial injury, and regulate the expression of key 
therapeutic targets and key pathways, which is PI3K-Akt signaling pathway.
Conclusion: Network pharmacological method offers a predicative strategy to explore the treatment efficacy and causal links of RA 
in endotoxemic myocarditis. Through experimental verification, we discover that RA can reduce lipopolysaccharide-induced cardiac 
dysfunction by regulating the PI3K-Akt signaling pathway and key genes.
Keywords: retinoic acid, lipopolysaccharide, sepsis-induced cardiomyopathy, network pharmacology, inflammatory response

Introduction
Sepsis is a lethal critical disease, identified as a main health concern across the world. In the past 10 years, hospital 
mortalities from sepsis and septic shock every year registered 17% and 26%, separately, causing about 8 million deaths 
each year.1,2 Cardiac function disorder induced by sepsis, often referred to as SIC, is commonly seen and has long been 
an intriguing topic.3 As a pathophysiological syndrome caused by infection rather than a specific disease, the specific 
identification of targeted SIC is essential for minimizing the mortality and morbidity in this regard. Despite the fact that 
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the indications for supervising and healing SIC are clinical and directed toward restoring tissue perfusion, a deeper 
comprehension of the important gene signatures and underlying pathogenesis of SIC can assist in optimizing treatments 
and ameliorating clinical results.4–7

Gram-negative bacterial endotoxin (lipopolysaccharide, LPS) serves as a key sepsis mediator for septicemia-asso-
ciated multiple organ dysfunction or mortality.8 After undergoing LPS insult, both macrophages and cardiomyocytes can 
release substantial inflammatory mediators, such as MCP-1, GM-CSF, IL-1α, IL-1β, IL-6, IL-7, IL-8, and IL-12.9,10 

These inflammatory cytokines could give rise to the imbalance of calcium homeostasis,11 disturbance of energy 
metabolism,12 impairment of adrenergic signaling, and excess production of nitric oxide,13 all of which facilitate 
decreased contractility, diastolic dysfunction, impaired ejection fraction and reduced cardiac index. Cytokines, especially 
IL-1β, IL-6, and TNF-α, are major contributors in the initiation of SIC.14

RA is a powerful derivant of vitamin A, and is pivotal for body developmental process and organ genesis via 
regulating cellular proliferative and differentiative activities. Substantial researches on animal models and clinic tests 
have verified its capability of preventing infections and enhance immunosystems.15,16 Austenaa et al demonstrated that 
RA inhibited LPS-triggered stimulation in mice and mankind monoblasts.17 In addition, Martire-Greco D et al displayed 
that all-trans retinoic acid (ATRA), which could improve functional immunoresponses in LPS-exposed mice, could serve 
as a novel underlying method for the healing of the immune suppressive status of sepsis.18 Considering the increasing 
evidence that RA can improve immune function and reduce inflammation, we speculated that RA might exert a beneficial 
effect on LPS-induced heart function disorder. The present research aimed to determine the roles of RA in LPS-induced 
cardiac dysfunction and explore its underlying mechanisms.

Currently, the network pharmacological approach can be employed to forecast the correlation between targets and 
diseases.19,20 The network pharmacological approach was deemed as a new method of medicine design.21,22 Network 
pharmacology methods are developing rapidly and have been leveraged to find new treatment methods, ameliorating the 
approved drugs and expanding the application scenarios of clinical medicines. They can also be utilized to effectively 
search for undeveloped targets for compounds or natural products.23 The purpose of network construction was to reveal 
the interaction between bioactive compounds and target proteins as well as the interaction between various target 
proteins. We identified and verified key nodes through network analysis and verification.21 Systematic or network 
pharmacology combined with multiomics analysis showed unique advantages in predicting and explaining the pharma-
cological principles of drugs and mechanisms of action in treating various diseases.24,25 For that reason, herein, network 
pharmacological approach was employed to discover treatment targets and associated signaling pathways of RA 
against SIC.

The primary aims of our research were 1) to select the underlying targets of Retinoic acid and DEGs in SIC heart 
tissues; 2) to study the potential causal links of Retinoic acid against SIC via bioinformatic analysis; 3) to confirm the 
anti-inflammation, antioxidant levels and potential signaling pathways of Retinoic acid in LPS-induced cardiac dysfunc-
tion. Our research might offer a novel treatment method for improving sepsis-induced cardiomyopathy.

Materials and Methods
Animals
Male C57BL/6 mice (8–10 weeks) were kept at the Experiment Animal Center of Wenzhou Medical University. Those 
animals were kept at 23±1°C with a 12-hour light/dark period in a specially disinfected environment with free access to 
bacteria-free water and food. Every animal assay, with a minimum sacrificed mice according to our design, was accepted 
by the Animal Assay Ethical Board of our university (ID: WYYY-AEC-2021-301). All experiment procedures were 
completed blindly, such as the animal models and following assays. The animals were stochastically separated into these 
groups: (1) Saline (i.p., n = 6), (2) LPS (10 mg/kg i.p., n = 6), (3) LPS (10 mg/kg) plus RA (1 mg/kg, i.p., n = 6), (4) 
LPS (10 mg/kg) plus RA (3 mg/kg, i.p., n = 6), (5) LPS (10 mg/kg) plus Dexamethasone (DEX) (2.5 mg/kg, i.p., n = 6). 
The administration of RA was arranged 60 min prior to LPS injections. Subsequently, after 24 hours of supervision, the 
animals were euthanised via exsanguination with overdosage of sodium pentobarbital and all our efforts aimed to 
minimise pains of the animals. Meanwhile, all heart samples were collected for histology analyses or immediately frozen 
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in liquid nitrogen, preserved under −80 °C for future biochemistry examination. Lipopolysaccharide (LPS), Retinoic 
Acid (RA) and Dexamethasone (Dex) were bought from Sigma (St Louis, MO, USA). 

Identification of DEGs
The gene expression dataset GSE44363 related to endotoxemic myocarditis was acquired from the GEO database.26 The 
GSE44363 data collection, which involved 4 normal and 4 endotoxemic myocardium that were treated for 24 hours with 
either saline or LPS, was based on wild-type mice. All RNA information of the chosen specimens was acquired for future 
analysis. The limma package27 was employed to calculate the difference between two groups of patients, and gene 
screening conditions with p.adj<0.05 and | Log2FC | > 1 were used for filtering DEGs in SIC.

Retinoic Acid Target Prediction
The chemistry structure and SMILES of Retinoic acid was acquired from PubChem web site.28 The target forecast of Retinoic 
acid was completed via the STITCH data base (http://stitch.embl.de/),29 while the species was limited to “Mus musculus”.

GO and KEGG Pathway Enrichment Assays
GO function analysis (CC, BP, and MF) was a potent biological information method to categorize genetic expressing and 
its performances,30,31 while KEGG pathway analysis was adopted to determine which cellular pathway may participate in 
the variations of DEGs.32,33 The visualization of GO enriching assay (p.adj<0.05) and KEGG pathway assay (p.adj<0.05) 
was realized via the R ggplot2 package.

PPI Network Analysis
The PPI net of targeted genes was acquired via from STRING 11.0 database,34 with minimal needed interactive score 
≥0.7. The visualization of the PPI net was realized via Cytoscape 3.7.2.35 In the net, nodal points denoted targeted 
protein, and edges denoted the forecasted or verified mutual effect between protein. Topology analyses of targeted genes 
were completed via the Cytohubba plug-in of Cytoscape. Targeted protein was subjected to filtration, respectively, as per 
the BottleNeck, Betweenness, Stress and Radiality subnetworks, which were computed via Cytohubba plug-in. Top 10 
genes of every sub-net were searched, and overlapping genes were chosen as critical targets herein.

Survival Condition
Another 50 mice were stochastically separated into the following groups: (1) Saline (i.p., n = 10), (2) LPS (10 mg/kg i.p., 
n = 10), (3) LPS (10 mg/kg) plus RA (1 mg/kg, i.p., n = 10), (4) LPS (10 mg/kg) plus RA (3 mg/kg, i.p., n = 10), (5) LPS 
(10 mg/kg) plus Dexamethasone (DEX) (2.5 mg/kg, i.p., n = 10). Administration of saline, RA, or DEX was scheduled 
60 minutes before LPS injection and then administered for 7 consecutive days. The intervention and modeling methods 
of mice in each group were the same as before. After modeling, the 7-day survival rates of the five groups of mice were 
observed.

CK-MB and LDH in Serum
CK-MB (MEIMIAN, China) and LDH (LEAGENE, China) levels in serum were quantified using kits according to the 
manufacturer's instructions.

Assessment of Oxidative Stress
Our team prepared samples according to the test kit specifications. The levels of catalase (CAT),36 superoxide dismutase 
(SOD)37 and GSH/GSSG38 in the heart samples were determined by colorimetry according to the kits in previous studies 
mentioned above. The results of CAT and SOD were expressed in units of protein per mg (U/mg prot).

Echocardiography
Echocardiography was implemented by a Vevo 3100 ultrasonic equipment with a 10-MHz linear array ultrasonic 
transducer (Fujifilm, VisualSonics, USA) after mice were anesthetized by 1.5% isoflurane. As medial echocardiographic 
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readings were collected from 3–5 heart cycles, heart function indexes, such as fractional shortening (FS), ejection 
fraction (EF), etc., were documented.

Total RNA Extraction and qauantitative real-time PCR
Overall RNA from all frozen cardiac tissues was abstracted via TRIzol reagent (Invitrogen). Overall RNA (2 μg) was 
converted to cDNA through reverse transcription by cDNA synthesis kit (TaKaRa). qPCR was completed by toroivd 
SYBR Green qPCR Master Mix (20 μL). The cycling status were stated below: denaturalization under 95°C for 60s, 40 
cycles under 95°C for 10s, 60°C for 30s, and 72°C for 45s. The RNA quantity was computed via the comparative 
threshold cycle approach, with every primer customized by Sangon Biotechnology Co., Ltd. (Shanghai, China). 
Eventually, each primer sequence is presented in Table 1.

Western Blot
Proteins were abstracted from the entire frozen cardiac tissues via RIPA lysis buffering solution with 1% protease 
suppressor mixture. The BCA approach was employed to compute the protein level. Equal amounts of proteins were 
separated by 10–15% SDS-PAGE. Samples were moved onto PVDF films, subjected to blockade via 5% dry skimmed 
milk, and incubated with primary antibodies including anti-ITGAM (Abcam, Ab133357, 1:1000), anti-VCAM1 (Abcam, 
Ab134047, 1:1000), anti-PPARA (Abcam, Ab61182, 1:1000), anti-IGF1 (Abcam, Ab9572, 1:1000), anti-IL-6 (Abcam, 
Ab259341, 1:1000), anti-GAPDH (Abcam, Ab181602, 1:2000), anti-phospho-Akt S473 (Cell Signaling Technology, 
4060, 1:1000) and anti-Akt (Cell Signaling Technology, 4691, 1:1000) separately, at 4°C nightlong. Posterior to the 
cleaning in TBST, the blots were cultivated with antirabbit or antimouse second antisubstances for 60 min under ambient 
temperature. Afterwards, the outcomes were identified via the ECL identification reagents. Proteins in Western blot were 
quantified via Image Lab software. All assays were completed in triplicate.

Histological Analysis
Cardiac specimens were subjected to 4% neutral PFA fixation, paraffin embedment, and sectioning. For H&E dyeing 
(Solarbio, Beijing, China), 5 μm slices were dyed in hematoxylin for 600 s, and afterwards cleaned and dyed in 0.5% 
eosin for 300 s. Posterior to the cleaning in water, the samples were subjected to dehydration in 70%, 85%, 95%, and 
100% ethyl alcohol and afterwards in xylene. Heart injuries were analyzed by microscopic fields of every tissular 
specimen, which was stochastically chosen. The morphological status of myofilament and inflammation cell infiltration 
were evaluated as standard.

For IHC, paraffin slices were subjected to deparaffinization via xylene and subjected to rehydration via the 
concentration gradient of ethyl alcohol. Subsequently, antigen repair was completed and the specimens were cultivated 
with anti-CD68 (CST, D4B9C, 1:200) nightlong at 4 °C. Eventually, the slices were cultivated by an antirabbit 
EnVisionTM +/HRP reagent for sixty minutes at 37 °C for the observation via a light microscopy (Nikon, H550L, 
Tokyo, Japan).

Table 1 Primers Used for qPCR of Genes from Mouse

Gene Forward (5′-3′) Reverse (5′-3′)

IL-1β AATGAAGGAACGGAGGAGCC CTCCAGCCAAGCTTCCTTGT
IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC

TNFα ACTGAACTTCGGGGTGATCGGT TGGTTTGCTACGACGTGGGCTA

ITGAM CCATGACCTTCCAAGAGAATGC ACCGGCTTGTGCTGTAGTC
VCAM1 GTTCCAGCGAGGGTCTACC AACTCTTGGCAAACATTAGGTGT

PPARA AACATCGAGTGTCGAATATGTGG CCGAATAGTTCGCCGAAAGAA

IGF1 GTGAGCCAAAGACACACCCA ACCTCTGATTTTCCGAGTTGC
GAPDH ACTCCACTCACGGCAAATTC TCTCCATGGTGGTGAAGACA

Abbreviation: qPCR, quantitative real-time polymerase chain reaction.
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Terminal Deoxynucleotidyl Transferase (TdT)-Mediated dUTP Nick
End Labeling (TUNEL) Assay
By virtue of the TUNEL approach, heart slices were dyed for identifying DNA fragmentation, which could reflect cell 
apoptosis. Slices were cultivated in TdT-reaction liquor and the visualization of nuclei was realized via TUNEL reagents 
(Promega, America) and DAPI nuclear dye. Fluorescent pictures were captured via a Nikon microscopic device. 
Quantitation of TUNEL-positive cells was completed via identifying the corresponding proportion (%) (green) in several 
high-power fields (n = 3 slices every mouse strain and treatment group).

Statistical Analysis
The experiment data were studied via GraphPad Prism 8.0. The entire experiment data were described as average ± SD. 
Student's t-test was used for comparison between the two groups, and the diversities between the groups were compared 
by one-way ANOVA. P < 0.05 had significance on statistics. Survival rate was evaluated by Kaplan–Meier analysis.

Results
Target Screening of Retinoic Acid and Sepsis-Induced Cardiomyopathy
The 2D structure of RA was acquired from PubChem (Figure 1A). An overall 500 genes were identified as targeted genes 
of RA from the STITCH database. In addition, 1035 DEGs were selected from GSE44363 dataset, and 547 genes were 
regulated upward, with 488 regulated downward (Figure 1B). By pairing DEGs with RA targets (Figure 1C), 54 genes 
were chosen as underlying targeted genes in septic cardiac dysfunction. The thermograph of those 54 genes was 
presented by Figure 1D.

Enrichment Analysis of Overlapped Target
GO analyses of the 54 underlying treatment target genes were completed via the DAVID database. Targeted genes were 
primarily enriched in the regulation of ossification, myeloid leukocyte differentiation and epithelial cell proliferation in 
BP enrichment analysis, and they were also enriched in extracellular matrix, collagen-containing extracellular matrix and 
membrane raft in CC analysis. In MF analysis, they were enriched in glycosaminoglycan binding, heparin binding, and 
cytokine activity (Figure 2A). The outcome of KEGG pathway enriching analyses revealed that targeted genes were 
remarkably enriched in the PI3K-Akt signaling pathway, transcriptional misregulation in cancer, and TNF signaling 
pathway, etc. (Figure 2B and C).

PPI Network Establishment
The PPI net of aforesaid targeted proteins was established via STRING and the visualization of the network was realized 
via Cytoscape. The PPI net comprised 54 nodal points and 266 edges (Figure 3A). BottleNeck, Betweenness, Stress and 
Radiality of targeted protein were computed via topology analyses (Figure 3B–E). Top 10 hub nodes of BottleNeck, 
Betweenness, Stress and Radiality sub-nets were searched, and we discovered 5 overlapping genes: Peroxisome 
proliferator activated receptor alpha (PPARA), Integrin Subunit Alpha M (ITGAM), Vascular cell adhesion molecule-1 
(VCAM1), Insulin-like growth factor 1 (IGF-1), and Interleukin-6 (IL-6) (Figure 3F).

The Effective RA Concentration Was Determined According to the Survival Rate and 
Serum Levels of CK-MB and LDH
Our team studied the role of RA in survival condition by intraperitoneally injecting male C57BL/6 mice with LPS 
(10mg/kg), LPS (10 mg/kg) plus RA (1 mg/kg), LPS (10 mg/kg) plus RA (3 mg/kg), LPS (10 mg/kg) plus DEX (2.5 mg/ 
kg) or an equal volume of saline for 7 days. As presented in Figure 4A, our team computed the 7-day survival rate in the 
five groups below: the Sham group, LPS group, LPS + RA (1 mg/kg) group, LPS + RA (3 mg/kg) group, LPS + DEX 
(2.5 mg/kg) group. The 7-day survival rate in the Sham group was nearly a hundred percent, whereas 7 days posterior to 
LPS treatment, the survival rate of LPS group dropped notably to 40%. RA (1 mg/kg) pretreatment enhanced the survival 
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rate to 50% in LPS-exposed animals. RA (3 mg/kg) pretreatment elevated the survival rate to 70% in LPS-exposed 
animals. DEX (2.5 mg/kg) pretreatment elevated the survival rate to 60% in LPS-exposed animals.

Since LDH and CK-MB are sensitive biomarkers of cardiac injury, our team measured LDH and CK-MB levels in 
serum. We found that using RA (1 mg/kg), RA (3 mg/kg) and DEX (2.5 mg/kg) significantly reduced the level of CK- 
MB in LPS-injected mice, and the administration of RA (3 mg/kg) displayed the most significant effect (Figure 4B). 

Figure 1 Target genes of RA and DEGs in GSE44363. (A) Chemical structure of Retinoic acid; (B) DEGs in GSE44363 (Upregulated genes were marked in red and 
downregulated genes were marked in blue). (C) Venn diagram of Retinoic acid target genes and DEGs. (D) Clustered heat map of overlapped genes .
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Meanwhile, the administration of RA (3 mg/kg) and DEX (2.5 mg/kg) significantly reduced LDH levels in LPS-injected 
mice. However, the administration of RA (1 mg/kg) also reduced LDH in LPS-injected mice, whereas it was not 
statistically significant (Figure 4C). As high-dose group showed a more significant efficacy when it came to the 
improvement of mortality and myocardial injury in mice, the dose of RA was 3 mg/kg in the subsequent experiments.

Figure 2 Enrichment Analysis of Overlapped Target. (A) Gene ontology (GO) enrichment analysis for key targets (Top 10 were listed). (B) KEGG pathway enrichment 
analysis of key targets (Top 10 were listed); the abscissa label represents GeneRatio. (C) KEGG pathway analysis and related genes (Top ten were listed).
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Figure 3 PPI network construction. (A) PPI network construction of overlapped genes (Retinoic acid target genes and DEGs). (B–E) Top 10 genes with the highest 
BottleNeck, Betweenness, Stress and Radiality. (F) Venn diagram summarizing overlapped genes in four sections.
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RA Suppressed Oxidative Stress, Cardiac Inflammation, and Cardiac Injury in 
LPS-Treated Mice
As shown in Figure 5A–C, after LPS treatment, SOD, CAT, GSH/GSSG in the heart tissue of mice in the model group 
were significantly lower than those in the Sham group (P < 0.05), while SOD, CAT, GSH/GSSG in the heart tissue of the 
RA group were significantly higher than those in the model group (P < 0.05). The activation of inflammatory response 
marks one of the most essential pathology variations in sepsis-caused cardiac muscle injury. Hence, our team studied the 
inflammatory cell infiltration and the mRNA expression of proinflammatory cytokines in all groups. As shown in 
Figure 5D–F, qRT-PCR results displayed the favorable effect of RA on heart inflammatory events induced by LPS, as 
proven by the reduced mRNA contents of TNF-α, IL-1β and IL-6 in myocardium tissues. By virtue of the 

Figure 4 Determine the effective concentration of RA. (A) Survival curve of mice treated with saline, LPS (10 mg/kg), LPS (10 mg/kg) plus RA (1 mg/kg), LPS (10 mg/kg) plus 
RA (3 mg/kg), LPS (10 mg/kg) plus DEX (2.5 mg/kg). Observe and record the mortality of mice within 1 week (n = 10) .(B and C) The serum levels of CK-MB and LDH in 
mice treated with saline, LPS (10 mg/kg), LPS (10 mg/kg) plus RA (1 mg/kg), LPS (10 mg/kg) plus RA (3 mg/kg), LPS (10 mg/kg) plus DEX (2.5 mg/kg) for 24h were 
determined. *P < 0.05, **P < 0.01, ***P < 0.001 vs LPS. ns: no significant difference.
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echocardiographic method, our team explored heart functions in 3 groups. RA pretreatment reinforced ejection fraction 
and fraction shortening in LPS-exposed animals (Figure 5G and 5H).

The myocardium slices were dyed by H&E to evaluate the heart muscle injury and inflammatory cell infiltration. 
Histological features of heart damage, such as evident capillary congestion, interstitial tissue oedema, and infiltration of 
massive inflammation cells, were identified in the LPS group. However, in the LPS + RA group, the myocardium fibers 
registered obvious striation and little inflammatory infiltration was detected in heart muscle tissues (Figure 5I). IHC dyeing 
revealed that the infiltrative activities of CD68-labeled macrophages, which were caused by LPS, were inhibited by Retinoic 
acid (Figure 5J). Furthermore, the cardiac injury was evaluated in 3 groups. Tunel dyeing outcomes revealed that the LPS + 
RA group exhibited less programmed cell death in contrast to the LPS group (Figure 5K). Taken together, those data revealed 
that Retinoic acid could ameliorate oxidative stress, cardiac inflammation, cardiac injury and heart functions in septic mice.

Figure 5 RA suppressed oxidative stress, cardiac inflammation, and cardiac injury in LPS-treated mice. (A–C) SOD, CAT, GSH/GSSG levels in myocardial tissue of each 
group. (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 vs LPS. (D–F) The mRNA levels of IL-1β, IL-6 and TNF-α in myocardial tissues of each group (n = 6). *P < 0.05, **P < 0.01, 
***P < 0.001 vs LPS. (G and H) Effects of saline, LPS and LPS+RA fractional shortening ejection fraction (n = 6). (I–J) Representative images of the morphological analysis and 
inflammatory cells infiltration as reflected by the H&E staining, and immunohistochemistry staining for CD68 protein.(K) TUNEL assay was used to detect apoptosis of 
cardiac tissue in each group.
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Retinoic Acid Modulated PPARA, ITGAM, VCAM-1, IGF-1, and IL-6 in LPS-Treated Mice
To verify the network pharmacological forecast of Retinoic acid in LPS-treated mice, we performed qRT-PCR and WB 
observation to calculate the PPARA, ITGAM, VCAM-1, IGF-1, and IL-6 levels in healthy cardiac samples and cardiac 
samples from the LPS group and LPS + RA group. Posterior to the normalization with GAPDH, the expressing levels of 
ITGAM, VCAM-1, and IL-6 were remarkably elevated in the LPS group in contrast to the Sham group, whereas the 
expressing levels of those biomarkers were remarkably decreased (P< 0.05) in the RA-exposed group in contrast to the 
LPS group. Meanwhile, the expression levels of PPARA and IGF-1 were remarkably reduced in the LPS group in 
contrast to the Sham group, whereas the expressing levels of them were remarkably increased (P < 0.05) in the RA- 
exposed group (Figures 5E and 6A). Then, Western blot analyses verified that Retinoic acid markedly diminished the 
ITGAM, VCAM-1, and IL-6 protein levels compared with the LPS group, and LPS markedly decreased the protein 
levels of PPARA and IGF-1. In addition, RA reversed LPS-induced PPARA and IGF-1 inhibition as expected 
(Figure 6B–F). Therefore, those outcomes revealed that RA might suppress the stimulation of inflammation reactions 
and engage in the progress of SIC by means of the aforementioned molecules.

Retinoic Acid Can Regulate the Activation of the PI3K/Akt Signaling Pathway in 
LPS-Treated Mice
In order to further verify the network pharmacological prediction of RA in lipopolysaccharide-induced cardiac dysfunc-
tion, Western blot analysis was performed to detect the phosphorylation level of Akt. The results showed that RA could 
restore the expression of P-Akt in LPS-treated mouse heart tissues (P < 0.05) (Figure 7).

Discussion
The definition for sepsis from the third international consensus states that “sepsis is a lethal organ function disorder 
induced by an aberrant reaction to infections”.39 Cytokines, especially IL-1β, IL-6, and TNF-α, are major contributors in 
the initiation of SIC.40 It has been demonstrated that when endotoxin like LPS binds to the receptor TLR4 expressed on 
cardiomyocytes and macrophages, these cells can release massive inflammatory mediators, such as MCP-1, GM-CSF, IL- 
1α, IL-1β, IL-6, IL-7, IL-8, and IL-12.41

Retinoic acid (RA) has been reported to reduce the levels of circulation endotoxin and ameliorate survival in 
endotoxaemic rats.42 Furthermore, RA was a powerful derivant of vitamin A. In previous studies, administrating vitamin 
A to infants and minors could decrease the risks of septic diseases, immune deficiencies and inflammatory events in 
endemic regions with deficient vitamin.17,43,44 Eriksson et al also demonstrated that vitamin A administered before 
a E. coli endotoxin infusion modified the harmful events on heart-lung systems which was caused by such LPS.45 

Pretreating with vitamin A counteracted the role of endotoxin in mean arterial pressure (MAP) and cardiac index (CI). 
Therefore, exploring the mechanism by which RA fights against SIC is quite pregnant.

Network pharmacology method is a comparatively new way to investigate the treatment potency and potential causal 
links of medicines on the foundation of the net of medicines and targets.46 Herein, our team utilized network 
pharmacology method to explore the treatment targets participating in the RA healing of SIC. We revealed that RA 
exposure could elevate survival rate and heart functions of LPS-induced mice while inhibiting inflammatory cytokines 
and oxidative stress of cardiac muscles. Furthermore, the treatment of RA reversed the production of PPARA, ITGAM, 
VCAM-1, IGF-1, and IL-6 in LPS-induced SIC.

PPARs are vital targets for approved and experiment medicines in substantial clinical indications, such as metabolism 
and inflammation illnesses.47–49 The expression of PPARA is extensive in our bodies (particularly in hearts, kidneys, and 
livers), as an important regulator in the heart after LPS administration.50 Described that heart PPARA expression was 
imperative for protecting against sepsis-triggered heart damage.51 The 3 PPAR sub-groups, PPARα, PPARγ, and PPARβ/ 
δ generate heterodimers with their obligatory dimer partner RXR,52 and RA modulates genetic expression straightly via 
binding to a heterodimer of the RARs and RXRs, which are capable of binding to RAREs in the modulatory area of the 
targeted genes.17 These results suggest that altered RA-mediated PPARA expression might be vital for sepsis-associated 
end-organ damage and function disorder, particularly in cardiac tissues.
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Integrin subunit alpha M (ITGAM) was discovered to be highly expressed in adults and sepsis of the newborn.53,54 

A past research unraveled that ITGAM primarily facilitated septic development via fostering the nucleus, cytoplasm 
movement and stimulating the releasing of HMGB1.55 ITGAM block antibodies or suppressors could defend mice 
against the fatalness related to LPS and microbe sepsis.56 ITGAM, namely CD11b, regulates the activation, adhesion, and 
migration of leucocytes from blood to injury sites.57 Vitamin A and its active metabolite retinoic acid (RA) are essential 
for the development and function of the immune system. Recent studies have also indicated that vitamin A stimulates the 
development of CD11b+ dendritic cells, and affects the generation of a specific niche that drives CD11b+ dendritic cells 

Figure 6 RA modulated PPARA, ITGAM, VCAM-1, IL-6 and IGF-1 in hearts of LPS-treated mice. (A) The mRNA levels of ITGAM, VCAM-1, PPARA and IGF-1 in myocardial 
tissues of each group (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 vs LPS. (B–F) The protein levels of ITGAM, VCAM-1, PPARA, IGF-1, and IL-6 in myocardial tissues of each 
group (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 vs LPS.
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(CD11b+ DC) differentiation.58–61 Thus, we speculated that RA might exert an anti-SIC effect via preventing the 
ITGAM-associated leukocyte recruitment to inflamed tissues.

The vascular cell adhesion molecule (VCAM-1), a heterodimeric molecule expressed on the surface of leukocytes, is 
induced in inflammatory stimulation.46,62–64 Mice deficient of endothelial selectins exhibited increased survival in an 
animal model of sepsis.65,66 Furthermore, increased serum content of VCAM1 was a superior predicting factor for sepsis- 
induced brain diseases in adult community-onset sepsis on admission.67 Recently, Moser J et al have identified that RIG- 
I, a new modulator of endothelium pro-inflammation stimulation functioning in parallel with TLR4, can regulate the 
expressing of VCAM-1 in reaction to LPS exposure.68 Gille et al reported that pretreatment with all-trans-retinoic acid 
prevented the TNFa-mediated VCAM-1 induction.69 In the present study, the experiment outcomes revealed the 
suppressive role of RA in VCAM-1 generation.

The insulin-like growth factor-1 (IGF-1), a hormone with an insulin-alike architecture, is the main mediating factor of 
growing hormone.70 Additionally, studies have demonstrated that oxidative stress regulates the level of IGF-1, which is 
reduced in the acute phase of critical patients’ blood samples,71,72 and that IGF-1 can facilitate the growth and repairment of 
hearts.73 Furthermore, IGF-1 may defend our hearts against sepsis-triggered myocarditis.74–76 In another study, the 
researchers found that RA increased the production of THREE-DIMENSIONAL human dermal equivalents (HDEs) IGF1 
and IGF2.77 The WB outcome revealed that RA restored the expressing of IGF1 in LPS-induced cardiac dysfunction.

The Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway is a classic signaling pathway. It plays an 
important role in regulating cell growth, proliferation, differentiation, metabolism, cytoskeletal reorganization, autophagy and 
apoptosis.78–80 Various growth factors and cytokines activate the PI3K/Akt signaling pathway, which ultimately phosphor-
ylates Akt. Substantial studies have revealed that activated Akt1 has cardioprotective effects.81–83 A number of studies have 
found that the apoptosis of myocardial cells in Akt2 knockout mice is more serious than that in normal mice during myocardial 
ischemia, which reveals that Akt2 can also reduce the apoptosis of myocardial cells and protect the heart.84 Therefore, the 
activation of the PI3K/Akt signaling pathway can reduce cardiac injury and protect cardiac function through various ways. By 
analyzing the potential target of RA-treated lipopolysaccharide-induced cardiac dysfunction, we discovered that the PI3K/Akt 
signaling pathway was the key pathway in the RA treatment of lipopolysaccharide-induced cardiac dysfunction. After 
experimental verification, we found that RA could restore the activation of the PI3K/Akt signaling pathway in the heart 
tissues of LPS-treated mice.

Hence, our team estimate that RA might be an anti-inflammation agent in SIC. Nevertheless, there were certain 
deficiencies in our research. First, as the experimental subjects were merely mice, future researches have to investigate the 
roles of lipopolysaccharide-induced cardiac dysfunction in human. Furthermore, the effects of the 5 key targets of RA on LPS- 
induced cardiac dysfunction in mice require further exploration so as to unravel the corresponding mechanisms underneath.

Figure 7 RA affects the expression of p-Akt in hearts of LPS treated mice. (A) Representative Western blot images of p-Akt, Akt. (B) Densitometric quantification analysis 
of the protein expression levels of p-Akt and Akt in mice. **P < 0.01, ***P < 0.001 vs LPS.
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Conclusion
In the present research, we analyzed the cellular component, biological process, molecular function, and relevant 
pathways of retinoic acid, as well as its molecular effects on lipopolysaccharide-induced cardiac dysfunction in mice 
through extensive bioinformatics analysis. Using the Cytohubba software, we successfully identified five potential key 
therapeutic targets. In addition, by regulating 5 survival-related key therapeutic targets and a key pathway, PI3K-Akt 
signaling pathway, our team confirmed that Retinoic acid could be a potential therapeutic drug for lipopolysaccharide- 
induced cardiac dysfunction.
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