CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 9 January 2017
Accepted 15 January 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland
\# Additional correspondence author, e-mail: pheard@sunway.edu.my.

Keywords: crystal structure; rhenium; dithiocarbamate; carbonyl; Hirshfeld surface analysis.

CCDC reference: 1527565

Supporting information: this article has supporting information at journals.iucr.org/e

fac-Acetonitriletricarbonyl(dimethylcarbamodithioato $-\kappa^{2} S, S^{\prime}$)rhenium (I): crystal structure and Hirshfeld surface analysis

Sang Loon Tan, ${ }^{\text {a }}$ See Mun Lee, ${ }^{\text {a }}$ Peter J. Heard, ${ }^{\text {b }} \neq$ Nathan R. Halcovitch ${ }^{\mathrm{c}}$ and Edward R. T. Tiekink ${ }^{\text {a* }}$

${ }^{\text {a }}$ Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, ${ }^{\text {b }}$ Office of the Provost, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, and ${ }^{\text {c }}$ Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK. *Correspondence e-mail: edwardt@sunway.edu.my

The title compound, $\left[\operatorname{Re}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)(\mathrm{CO})_{3}\right]$, features an octahedrally coordinated Re^{I} atom within a $\mathrm{C}_{3} \mathrm{NS}_{2}$ donor set defined by three carbonyl ligands in a facial arrangement, an acetonitrile N atom and two S atoms derived from a symmetrically coordinating dithiocarbamate ligand. In the crystal, dithiocarbamate-methyl-H...O(carbonyl) interactions lead to supramolecular chains along [361]; both dithiocarbamate S atoms participate in intramolecular methyl-H. . S interactions. Further but weaker acetonitrile-C $-\mathrm{H} \cdots \mathrm{O}$ (carbon$\mathrm{yl})$ interactions assemble molecules in the $a b$ plane. The nature of the supramolecular assembly was also probed by a Hirshfeld surface analysis. Despite their weak nature, the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts are predominant on the Hirshfeld surface and, indeed, on those of related $\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right) L\right]$ structures.

1. Chemical context

The reaction between a secondary amine and carbon disulfide in the presence of an alkali metal hydroxide yields a class of ligands, the dithiocarbamates, ${ }^{(-)} \mathrm{S}_{2} \mathrm{CN} R R^{\prime}$. These ligands have long attracted the attention of coordination chemists owing to their high affinity for heavy-atom centres drawn from transition metals, main group elements as well as lanthanides and actinides. The motivation for their study ranges across various disciplines and in the present time focuses upon their development as drugs (Hogarth, 2012; Bertrand \& Casini, 2014), as chelating agents for the removal of toxic levels of metals in bio-remediation, etc. (Gallagher \& Vo, 2015), as imaging/ radio-pharmaceutical agents (Berry et al., 2012) and as synthetic precursors for metal sulfide nanoparticles (Lewis et al., 2015; Knapp \& Carmalt, 2016). In terms of crystal engineering endeavours, dithiocarbamates are not nearly as well studied as carboxylates. This partly arises as a result of the greater chelating ability of dithiocarbamate by virtue of the significant contribution of the ${ }^{(2-)} \mathrm{S}_{2}=\mathrm{CN}^{(+)} R R^{\prime}$ canonical form to the electronic structure of the anion, i.e. with formal negative charges on each of the sulfur atoms. This has the consequence of reducing the Lewis acidity of the metal atom, often precluding additional donor atoms from entering the coordination sphere. Main group element dithiocarbamate compounds are more likely to feature bridging ligands, often through secondary $M \cdots$ S interactions which may be mitigated by steric effects associated with the R, R^{\prime} groups or, in cases of
organometallic derivatives, metal-bound substituents (Tiekink, 2006; Tiekink \& Zukerman-Schpector, 2010). Another consequence of the tight chelating mode of the dithiocarbamate ligands is the formation of aromatic $M S_{2} \mathrm{C}$ chelate rings that can function as acceptors for $\mathrm{C}-\mathrm{H} \cdots$ interactions, i.e. $\mathrm{C}-\mathrm{H} \cdots \pi$ (chelate) interactions (Tiekink \& Zukerman-Schpector, 2011; Jotani et al., 2016). As a result of the above, a very large number of crystal structure determinations have been reported in the literature, with the last systematic reviews published over a decade ago (Heard, 2005; Hogarth, 2005).

Reflecting the wealth of structural information on metal dithiocarbamates, a search of the Cambridge Crystallographic Database (Groom et al., 2016) for rhenium dithiocarbamate structures reveals over 70 'hits'. One structure that attracted the attention of the authors was that of twofold symmetric, binuclear $\left[(\mathrm{CO})_{3} \operatorname{Re}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)\right]_{2}$, whereby each dithiocarbamate ligand is μ_{2}-tridentate, simultaneously chelating one Re^{I} atom while bridging a second (Flörke, 2014). The unusual feature of the structure is that the dithiocarbamate ligands lie to one side of the molecule and might be described as being syn. This arrangement is the same as that found in analogous, isoelectronic $\mathrm{Pt}^{\mathrm{IV}}$ complexes (Heard et al., 2000), but contradicts the observations seen in the overwhelming majority of the binary dithiocarbamates of the zinc triad elements, a focus of present research, whereby binuclear molecules with equal numbers of chelating and μ_{2}-tridentate ligands lead to binuclear molecules of the general formula, $\left\{M\left(\mathrm{~S}_{2} \mathrm{CNRR}\right)_{2}\right\}_{2}$ (Cox \& Tiekink, 2009; Tiekink, 2003; Tan et al., 2016; Jotani et al., 2016). This disparity lead to the attempted synthesis of the dimethyldithiocarbamate analogue of $\left[(\mathrm{CO})_{3} \operatorname{Re}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)\right]_{2}$, which when recrystallized from acetonitrile resulted in the isolation of mononuclear $(\mathrm{CO})_{3} \operatorname{Re}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{N} \equiv \mathrm{CMe})$, (I). Herein, the molecular and crystal structures of (I) are described along with a detailed analysis of the self-assembly via a Hirshfeld surface analysis.

2. Structural commentary

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are collected in Table 1. The Re ${ }^{\mathrm{I}}$ atom is

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Re}-\mathrm{S} 1$	$2.4956(6)$	$\mathrm{Re}-\mathrm{C} 5$	$1.924(2)$
$\mathrm{Re}-\mathrm{S} 2$	$2.5034(6)$	$\mathrm{C} 1-\mathrm{S} 1$	$1.722(2)$
$\mathrm{Re}-\mathrm{N} 2$	$2.153(2)$	$\mathrm{C} 1-\mathrm{S} 2$	$1.727(2)$
$\mathrm{Re}-\mathrm{C} 4$	$1.909(3)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.320(3)$
$\mathrm{Re}-\mathrm{C} 6$	$1.921(3)$		
			$175.53(9)$
$\mathrm{S} 1-\mathrm{Re}-\mathrm{C} 5$	$169.42(7)$	$\mathrm{N} 2-\mathrm{Re}-\mathrm{C} 4$	
$\mathrm{~S} 2-\mathrm{Re}-\mathrm{C} 6$	$168.98(7)$		

coordinated by three facially-orientated carbonyl ligands, two dithiocarbamate-S atoms and an acetonitrile-N atom. The dithiocarbamate ligand is chelating in a symmetric mode with the difference between the long and short $\mathrm{Re}-\mathrm{S}$ bond lengths being less than $0.01 \AA$. This mode of coordination is reflected in the equivalence of the associated $\mathrm{C}-\mathrm{S}$ bond lengths and a relatively short $\mathrm{C} 1-\mathrm{N} 1$ bond length, Table 1 , all pointing to a significant contribution of the ${ }^{(2-)} \mathrm{S}_{2} \mathrm{C}=\mathrm{N}^{(+)} \mathrm{Me}_{2}$ canonical form to the overall electronic structure of the dithiocarbamate ligand. From the geometric data collected in Table 1, there is evidence that the shortest $\mathrm{Re}-\mathrm{CO}$ bond length is formed by the carbonyl trans to the acetonitrile- N atom as opposed to those trans to the dithiocarbamate-S atoms. However, the experimental errors do not allow definitive conclusions to be made. This point is discussed further in Database survey below.

3. Supramolecular features

Based on the standard criteria in PLATON (Spek, 2009), the most specific directional interaction between molecules in (I) is a dithiocarbamate-methyl- $\mathrm{H} \cdots \mathrm{O}$ (carbonyl) interaction, Table 2. These lead to linear supramolecular chains along [361], Fig. 2a. Further searching for intermolecular interactions reveals that the two remaining carbonyl-O atoms participate in weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions just below the sum

Figure 1
The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.59	$3.260(3)$	126
$\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.69	$3.332(3)$	123
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.98	2.69	$3.244(3)$	116
$\mathrm{C} 2-\mathrm{H} 2 C \cdots \mathrm{~S} 1$	0.98	2.49	$3.030(2)$	114
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~S} 2$	0.98	2.64	$3.035(2)$	105

Symmetry codes: (i) $x+1, y+1, z$; (ii) $x, y+1, z$; (iii) $-x+1,-y+1,-z+2$.
of the van der Waals radii, each with an acetonitrile- $\mathrm{C}-\mathrm{H}$ atom, Table 2. The combination of these weak interactions leads to supramolecular layers in the $a b$ plane, Fig. $2 b$. The two other potentially basic sites, namely the dithiocarbamate-S atoms, form intramolecular interactions with dithiocarbamate-methyl-H atoms, Table 2. The layers stack along the c axis as shown in Fig. 2c, i.e. without directional interactions between them.

4. Hirshfeld surface analysis

The protocols for the Hirshfeld surface analysis were as described recently (Yeo et al., 2016). In general, the Hirshfeld surface of (I) features some close interaction contacts as evidenced from the intense-red spots, Fig. $3 a$, being indicative of $d_{\text {norm }}$ contact distances shorter than the sum of van der Waals radii (McKinnon et al., 2007). The combination of the d_{i} and d_{e}, in intervals of $0.01 \AA$, resulted in the sparrow-like twodimensional fingerprint plot. This has been decomposed into several close contacts as shown in Fig. 3b-f. Specifically, the intense-red spots resulting from $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ as well as $\mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}$ contacts give bat- and scarab-shaped fingerprint profiles with corresponding $d_{\mathrm{e}}+d_{\mathrm{i}}$ contact distances tipped at ca 2.5 and $3.0 \AA$, respectively; Fig. $3 b$ and f. These contact distances are approximately $0.25 \AA$ shorter than the sum of the respective van der Waals radii (Batsanov, 2001) and constitute about 33.8 and 5.7%, respectively, of the overall Hirshfeld surface contacts for the molecule. Other major contacts include $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}(14.8 \%), \mathrm{H} \cdots \mathrm{H}(14.7 \%)$ and $\mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}(12.6 \%)$ which result in the pincer, bust sculpture and pincer forms of the respective decomposed fingerprint plots, despite the fact their contact distance are very close or equivalent to the sum of van der Waals radii with $d_{\mathrm{e}}+d_{\mathrm{i}}$ values of $2.8,2.4$ and $2.9 \AA$, respectively; see Fig. $3 c-e$.

5. Database survey

A series of eight closely related structural analogues with the formula $\left[\mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) L\right]$, where $L=$ ammonia $\left(\mathrm{NH}_{3}\right)$ (1), pyridine (py) (2), imidazole (Im) (3), pyrazole (pz) (4), triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ (5), 1,3,5-triaza-7-phosphaadamantane (PTA) (6), t-butyl isocyanide (tBuNC) (7) and cyclohexyl isocyanide (CyNC) (8) have been reported previously (Herrick et al., 2009). The bond lengths about the Re^{I} atom in $1-8$ and (I) are collated in Table 3; the numbering schemes correspond to that shown in Fig. 1. There are a few

Figure 2
The molecular packing in (I): (a) supramolecular chain sustained by methyl-C-H. OO(carbonyl) interactions shown as orange dashed lines, (b) view of the supramolecular layers in the $a b$ plane with nonparticipating H atoms removed and (c) a view of the unit-cell contents in projection down the a axis.
general observations that can be noted. Firstly, neither $d(\mathrm{Re}-$ $\mathrm{S} 1)$ nor $d(\mathrm{Re}-\mathrm{S} 2)$ show major deviations in their respective bond lengths as evidenced from the mean difference of $0.005 \AA$ for each. Despite the small differences, a trend is observed in that $d(\mathrm{Re}-\mathrm{S} 2)$ is generally longer than $d(\mathrm{Re}-$ S1). A consistent pattern is observed in the related $d(\mathrm{Re}-$ $\mathrm{C} 5)$, i.e. trans to S 1 , and $d(\mathrm{Re}-\mathrm{C} 6)$, i.e. trans to S 2 , bond lengths for which the latter registers an average elongation of $0.005 \AA$. Secondly, the $d(\operatorname{Re}-L)$ bond lengths are found to consistently increase from C-donor ligands to N -donors, with a

research communications

Table 3
Selected bonding parameters (\AA) for (I) and literature analogues $\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) L\right]$. .
$L=$ ammonia $\left(\mathrm{NH}_{3}\right)(1)$, pyridine (py) (2), imidazole (Im) (3), pyrazole (pz) (4), triphenylphosphine $\left(\mathrm{PPh}_{3}\right)(5), 1,3,5$-triaza-7-phosphaadamantane (PTA) (6), t butyl isocyanide (tBuNC) (7) and cyclohexyl isocyanide (CyNC) (8) (Herrick et al., 2009).

L	Re-S1	$\mathrm{Re}-\mathrm{S} 2$	$\mathrm{Re}-\mathrm{C}$	$\mathrm{C} \equiv \mathrm{O}$	$\mathrm{Re}-\mathrm{C}$	$\mathrm{C} \equiv \mathrm{O}$	$\mathrm{Re}-\mathrm{C}$	$\mathrm{C} \equiv \mathrm{O}$	$\operatorname{Re}-L$
			(trans to S1)		(trans to S2)		(trans to L)		
(1)	2.497 (2)	2.506 (2)	1.915 (7)	1.164 (8)	1.912 (6)	1.161 (7)	1.916 (7)	1.153 (9)	2.228 (5)
(2)	2.505 (2)	2.498 (1)	1.925 (6)	1.147 (7)	1.929 (5)	1.137 (7)	1.926 (5)	1.141 (7)	2.219 (4)
(3)	2.501 (2)	2.518 (3)	1.937 (7)	1.135 (8)	1.914 (7)	1.157 (9)	1.918 (7)	1.166 (8)	2.189 (6)
(4)	2.489 (4)	2.501 (4)	1.906 (14)	1.147 (17)	1.900 (14)	1.153 (17)	1.912 (13)	1.133 (16)	2.173 (10)
(5)	2.513 (3)	2.506 (3)	1.910 (10)	1.169 (13)	1.895 (10)	1.179 (12)	1.931 (10)	1.152 (12)	2.474 (3)
(6)	2.527 (5)	2.529 (4)	1.925 (15)	1.147 (19)	1.898 (16)	1.160 (20)	1.983 (18)	1.110 (20)	2.437 (5)
(7)	2.512 (3)	2.521 (2)	1.906 (7)	1.176 (9)	1.941 (8)	1.137 (9)	1.955 (8)	1.152 (9)	2.102 (7)
(8)	2.502 (2)	2.512 (2)	1.914 (9)	1.142 (12)	1.908 (10)	1.168 (12)	1.953 (9)	1.125 (11)	2.082 (9)
(I)	2.496 (1)	2.503 (1)	1.924 (2)	1.150 (3)	1.921 (3)	1.145 (3)	1.909 (3)	1.155 (3)	2.153 (2)

ca $0.10 \AA$ or 5% increment, followed by P-donors with about a $0.26 \AA$ or 12% increase, $c f$. the N-donor ligands. However, the observed trend deviates from expectation in that the $d(M-L)$ bond length is anticipated to increase in the order $\mathrm{N}<\mathrm{C}<\mathrm{P}$ donor type ligand by approximately 2.6 and 27.4%, respectively, based on their calculated covalent bond radii. Further, it is observed that $d(\operatorname{Re}-\mathrm{C} 4)$, i.e. with C 4 trans to L, is
marginally longer than $d(\mathrm{Re}-\mathrm{C} 5)$ and $d(\mathrm{Re}-\mathrm{C} 6)$ by ca $0.01-$ 0.02 A. Finally, $d(\mathrm{C} 4 \equiv \mathrm{O} 1)$ is generally shorter, by about $0.01 \AA$ A $c f . d(\mathrm{C} 5 \equiv \mathrm{O} 2)$ and $d(\mathrm{C} 6 \equiv \mathrm{O} 3)$, i.e. with C 5 and C 6 trans to the S1 and S2 atoms, respectively. These observations show the presence of strong π-backbonding prevailing in the C -donor type ligands that result in shorter $\mathrm{Re}-L$ and longer $\mathrm{Re}-\mathrm{C} 4$ bonds as well as shorter $\mathrm{C} 4 \equiv \mathrm{O} 1$ bond lengths when

Figure 3
Hirshfeld $d_{\text {norm }}$ surface and two-dimensional fingerprint plots for (I): (a) full plot, and those decomposed into (b) $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O},(c) \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$, (d) $\mathrm{H} \cdots \mathrm{H},(e) \mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ and $(f) \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}$ contacts.

Figure 4

Percentage contributions of the different close contacts to the Hirshfeld surfaces of (I) and 1-8.
compared to the other structural analogues. Further, these trends are clearly reflected in the blue shift of the $\nu \mathrm{CO}$ vibrational band for $L=$ C-type donor ligands, with an average $\Delta v=180 \mathrm{~cm}^{-1}$, compared with those for N - and P-type donors (Herrick et al., 2009). In the present study, $\nu(\mathrm{CO})$ for (I) was observed at $1883 \mathrm{~cm}^{-1}$.

The molecular packing in each of $1-8$ was also studied through Hirshfeld surface analysis by calculating the relative composition of each intermolecular close contact present in the structure using Crystal Explorer (Wolff et al., 2012); Fig. 4. Generally, the intermolecular close contacts are dominated by $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}, \mathrm{H} \cdots \mathrm{H}$, followed by either $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ or $\mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ contacts, with the exceptional cases being for 5 and 6 , with hydrogen-rich P-donor ligands, for which the dominance is in the order $\mathrm{H} \cdots \mathrm{H}>\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}>\mathrm{C} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{C}>\mathrm{S} \cdots \mathrm{H} / \mathrm{S} \cdots \mathrm{H}$. These results highlight the relative importance of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts in these structures despite their relatively weak nature.

6. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification, and all reactions were carried out under ambient conditions. The melting point was determined using an Electrothermal digital melting point apparatus and was uncorrected. The IR spectra were obtained on a Perkin Elmer Spectrum 400 FT Mid-IR/Far-IR spectrophotometer from 4000 to $400 \mathrm{~cm}^{-1}$ (abbreviations: vs, very strong; s, strong). ${ }^{1} \mathrm{H}$ NMR spectra were recorded at room temperature in

DMSO- d_{6} solution on a Bruker AVANCE- 400 MHz instrument.

Bromopentacarbonylrhenium(I) ($0.25 \mathrm{mmol}, 0.102 \mathrm{~g}$) in acetone $(10 \mathrm{ml})$ was added to sodium dimethyldithiocarbamate hydrate ($0.25 \mathrm{mmol}, 0.036 \mathrm{~g}$) in acetone (10 ml). The resulting mixture was stirred and refluxed for 2 h . The filtrate was evaporated until a precipitate was obtained. The precipitate was recrystallized from its acetonitrile solution. Colourless blocks were obtained from the slow evaporation of the filtrate. Yield: $0.064 \mathrm{~g}, 60 \%$; M.p. $478-479 \mathrm{~K} . \mathrm{IR}\left(\mathrm{cm}^{-1}\right)$: $2009(s), 1883(v s) .{ }^{1} \mathrm{H}$ NMR (in DMSO- d_{6}): $\delta 3.21(s, 6 \mathrm{H}, \mathrm{N}-$ CH_{3}), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right)$.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. Carbon-bound H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.98 \AA)$ and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$. The maximum and minimum residual electron density peaks of 0.80 and $1.21 \mathrm{e}^{\AA^{-3}}$ were located 0.87 and $0.91 \AA$, respectively, from the Re atom.

Acknowledgements

We thank Sunway University for support of biological and crystal engineering studies of metal dithiocarbamates.

Table 4
Experimental details.

Crystal data
Chemical formula M_{r}
Crystal system, space group
Temperature (K)
a, b, c (\AA)
$\alpha, \beta_{2} \gamma\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer

Absorption correction

$T_{\text {min }}, T_{\text {max }}$

No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$

```
[Re(C3H6}\mp@subsup{\textrm{H}}{6}{}\mp@subsup{\textrm{NS}}{2}{})(\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{3}{}\textrm{N})(\textrm{CO}\mp@subsup{)}{3}{}
4 3 1 . 4 9
Triclinic, P\overline{1}
100
5.7442 (1), 7.5022 (1), 14.6644 (2)
91.496 (1), 95.517 (1), 102.371 (1)
613.71 (2)
2
Mo K\alpha
10.23
0.15\times0.11 }\times0.1
```

Agilent SuperNova Dual Source
diffractometer with an AtlasS2
detector
Gaussian (CrysAlis PRO; Rigaku
Oxford Diffraction, 2015)
0.371, 0.503
32146, 3244, 3153
0.033
0.698
$0.016,0.035,1.09$
3244
148
H-atom parameters constrained
$0.80,-1.21$
H -atom parameters constrained
$0.80,-1.21$

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

References

Batsanov, S. S. (2001). Inorg. Mater., 37, 1031-1046.
Berry, D. J., Torres Martin de Rosales, R., Charoenphun, P. \& Blower, P. J. (2012). Mini Rev. Med. Chem. 12, 1174-1183.

Bertrand, B. \& Casini, A. (2014). Dalton Trans. 43, 4209-4219.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Cox, M. J. \& Tiekink, E. R. T. (2009). Z. Kristallogr. 214, 184-190.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Flörke, U. (2014). Private communication (refcode KOGRIJ). CCDC, Cambridge, England.
Gallagher, W. P. \& Vo, A. (2015). Org. Process Res. Dev. 19, 13691373.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.
Heard, P. J., Kite, K., Nielsen, J. S. \& Tocher, D. A. (2000). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Herrick, R. S., Ziegler, C. J., Sripothongnak, S., Barone, N., Costa, R., Cupelo, W. \& Gambella, A. (2009). J. Organomet. Chem. 694, 39293934.

Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.
Hogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202-1215.
Jotani, M. M., Tan, Y. S. \& Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.
Knapp, C. E. \& Carmalt, C. J. (2016). Chem. Soc. Rev. 45, 1036-1064.
Lewis, E. A., McNaughter, P. D., Yin, Z. J., Chen, Y. Q., Brent, J. R., Saah, S. A., Raftery, J., Awudza, J. A. M., Malik, M. A., O'Brien, P. \& Haigh, S. J. (2015). Chem. Mater. 27, 2127-2136.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tan, Y. S., Halim, S. N. A. \& Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.
Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.
Tiekink, E. R. T. (2006). CrystEngComm, 8, 104-118.
Tiekink, E. R. T. \& Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46-76.
Tiekink, E. R. T. \& Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. \& Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
Yeo, C. I., Tan, S. L. \& Tiekink, E. R. T. (2016). Acta Cryst. E72, 14461452.

supporting information

Acta Cryst. (2017). E73, 213-218 [https://doi.org/10.1107/S2056989017000755]

fac-Acetonitriletricarbonyl(dimethylcarbamodithioato- $\kappa^{2} S, S^{\prime}$)rhenium(I): crystal structure and Hirshfeld surface analysis

Sang Loon Tan, See Mun Lee, Peter J. Heard, Nathan R. Halcovitch and Edward R. T. Tiekink

Computing details

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
fac-Acetonitriletricarbonyl(dimethylcarbamodithioato- $\kappa^{2} S, S^{\prime}$)rhenium(I)

Crystal data

$\left[\operatorname{Re}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)(\mathrm{CO})_{3}\right]$
$Z=2$
$M_{r}=431.49$
Triclinic, $P \overline{1}$
$a=5.7442$ (1) \AA
$b=7.5022$ (1) \AA
$c=14.6644(2) \AA$
$\alpha=91.496(1)^{\circ}$
$\beta=95.517(1)^{\circ}$
$\gamma=102.371(1)^{\circ}$
$V=613.71(2) \AA^{3}$

Data collection

Agilent SuperNova Dual Source diffractometer with an AtlasS2 detector
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source
Mirror monochromator
ω scans
Absorption correction: gaussian
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
$F(000)=404$
$D_{\mathrm{x}}=2.335 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 22533 reflections
$\theta=3.0-29.4^{\circ}$
$\mu=10.23 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.15 \times 0.11 \times 0.11 \mathrm{~mm}$
$T_{\text {min }}=0.371, T_{\text {max }}=0.503$
32146 measured reflections
3244 independent reflections
3153 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=29.7^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-7 \rightarrow 7$
$k=-10 \rightarrow 10$
$l=-20 \rightarrow 20$

148 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0185 P)^{2}+0.3859 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.80 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.21 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Re	$0.53372(2)$	$0.29366(2)$	$0.78801(2)$	$0.01195(4)$
S1	$0.40857(10)$	$0.56377(8)$	$0.71937(4)$	$0.01596(12)$
S2	$0.74400(10)$	$0.37175(8)$	$0.64780(4)$	$0.01389(11)$
O1	$0.1152(3)$	$0.0231(3)$	$0.68068(14)$	$0.0259(4)$
O2	$0.7673(3)$	$-0.0198(3)$	$0.85255(14)$	$0.0258(4)$
O3	$0.2514(3)$	$0.2703(3)$	$0.95601(13)$	$0.0267(4)$
N1	$0.6870(4)$	$0.6973(3)$	$0.58960(14)$	$0.0156(4)$
N2	$0.8304(4)$	$0.4965(3)$	$0.85327(14)$	$0.0151(4)$
C1	$0.6222(4)$	$0.5632(3)$	$0.64470(16)$	$0.0132(4)$
C2	$0.5732(5)$	$0.8540(3)$	$0.58562(18)$	$0.0203(5)$
H2A	0.4691	0.8457	0.5280	0.031^{*}
H2B	0.6968	0.9672	0.5888	0.031^{*}
H2C	0.4773	0.8542	0.6374	0.031^{*}
C3	$0.8671(4)$	$0.6924(3)$	$0.52607(17)$	$0.0190(5)$
H3A	0.9870	0.6289	0.5534	0.028^{*}
H3B	0.9456	0.8176	0.5137	0.028^{*}
H3C	0.7895	0.6277	0.4685	0.028^{*}
C4	$0.2721(4)$	$0.1247(3)$	$0.72181(17)$	$0.0174(5)$
C5	$0.6800(4)$	$0.0972(3)$	$0.82800(17)$	$0.0169(5)$
C6	$0.3585(4)$	$0.2794(3)$	$0.89373(17)$	$0.0176(5)$
C7	$0.9880(4)$	$0.6097(3)$	$0.88229(16)$	$0.0155(5)$
C8	$1.1894(5)$	$0.7539(4)$	$0.91890(18)$	$0.0211(5)$
H8A	1.3395	0.7194	0.9075	0.032^{*}
H8B	1.1849	0.7720	0.9851	0.032^{*}
H8C	1.1795	0.8676	0.8888	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re	$0.00998(5)$	$0.01241(5)$	$0.01239(5)$	$0.00051(4)$	$0.00076(3)$	$-0.00140(3)$
S1	$0.0137(3)$	$0.0178(3)$	$0.0177(3)$	$0.0058(2)$	$0.0031(2)$	$-0.0009(2)$
S2	$0.0137(3)$	$0.0131(3)$	$0.0157(3)$	$0.0040(2)$	$0.0036(2)$	$-0.0003(2)$
O1	$0.0174(9)$	$0.0261(10)$	$0.0292(10)$	$-0.0028(8)$	$-0.0038(8)$	$-0.0079(8)$
O2	$0.0241(10)$	$0.0208(9)$	$0.0329(11)$	$0.0067(8)$	$-0.0005(8)$	$0.0043(8)$
O3	$0.0248(10)$	$0.0359(11)$	$0.0200(9)$	$0.0058(9)$	$0.0078(8)$	$-0.0001(8)$
N1	$0.0167(10)$	$0.0138(9)$	$0.0162(10)$	$0.0040(8)$	$0.0001(8)$	$-0.0002(8)$

N2	$0.0146(10)$	$0.0153(10)$	$0.0152(10)$	$0.0027(8)$	$0.0023(8)$	$-0.0009(8)$
C1	$0.0119(10)$	$0.0130(10)$	$0.0133(11)$	$0.0020(9)$	$-0.0022(8)$	$-0.0030(8)$
C2	$0.0227(12)$	$0.0163(11)$	$0.0232(13)$	$0.0073(10)$	$0.0004(10)$	$0.0038(10)$
C3	$0.0194(12)$	$0.0175(12)$	$0.0190(12)$	$0.0008(10)$	$0.0037(10)$	$0.0020(10)$
C4	$0.0142(11)$	$0.0192(12)$	$0.0186(12)$	$0.0025(10)$	$0.0037(9)$	$-0.0006(10)$
C5	$0.0143(11)$	$0.0154(11)$	$0.0176(12)$	$-0.0034(9)$	$0.0010(9)$	$-0.0027(9)$
C6	$0.0164(11)$	$0.0170(11)$	$0.0189(12)$	$0.0043(10)$	$-0.0008(9)$	$-0.0014(9)$
C7	$0.0154(11)$	$0.0179(11)$	$0.0139(11)$	$0.0050(10)$	$0.0018(9)$	$0.0002(9)$
C8	$0.0171(12)$	$0.0202(12)$	$0.0228(13)$	$-0.0012(10)$	$-0.0004(10)$	$-0.0049(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Re}-\mathrm{S} 1$	2.4956 (6)	N1-C3	1.463 (3)
$\mathrm{Re}-\mathrm{S} 2$	2.5034 (6)	N2-C7	1.140 (3)
$\mathrm{Re}-\mathrm{N} 2$	2.153 (2)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{Re}-\mathrm{C} 4$	1.909 (3)	C2-H2B	0.9800
Re-C6	1.921 (3)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
Re-C5	1.924 (2)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
C1-S1	1.722 (2)	C3-H3B	0.9800
C1-S2	1.727 (2)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
O1-C4	1.155 (3)	C7-C8	1.453 (3)
O2-C5	1.150 (3)	C8-H8A	0.9800
O3-C6	1.145 (3)	C8-H8B	0.9800
C1-N1	1.320 (3)	C8-H8C	0.9800
N1-C2	1.462 (3)		
S1-Re-C5	169.42 (7)	S1-C1-S2	114.23 (13)
S2-Re-C6	168.98 (7)	N1-C2-H2A	109.5
$\mathrm{N} 2-\mathrm{Re}-\mathrm{C} 4$	175.53 (9)	N1-C2-H2B	109.5
C4-Re-C6	89.79 (10)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
C4-Re-C5	91.01 (10)	N1-C2-H2C	109.5
C6-Re-C5	91.30 (10)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C6-Re-N2	93.43 (9)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C5-Re-N2	92.03 (9)	N1-C3-H3A	109.5
$\mathrm{C} 4-\mathrm{Re}-\mathrm{S} 1$	92.99 (8)	N1-C3-H3B	109.5
C6-Re-S1	98.50 (7)	H3A-C3-H3B	109.5
N2-Re-S1	83.47 (6)	N1-C3-H3C	109.5
$\mathrm{C} 4-\mathrm{Re}-\mathrm{S} 2$	93.39 (7)	H3A-C3-H3C	109.5
C5-Re-S2	99.18 (7)	H3B-C3-H3C	109.5
N2-Re-S2	82.89 (5)	O1-C4-Re	179.1 (2)
$\mathrm{S} 1-\mathrm{Re}-\mathrm{S} 2$	70.812 (19)	O2-C5-Re	179.5 (2)
C1-S1-Re	87.05 (8)	O3-C6-Re	179.1 (2)
C1-S2-Re	86.69 (8)	N2-C7-C8	179.7 (3)
C1-N1-C2	121.6 (2)	C7-C8-H8A	109.5
C1-N1-C3	121.8 (2)	C7-C8-H8B	109.5
C2-N1-C3	116.5 (2)	H8A-C8-H8B	109.5
C7-N2-Re	175.3 (2)	C7-C8-H8C	109.5
N1-C1-S1	122.93 (18)	H8A-C8-H8C	109.5

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$122.84(18)$	$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$-2.5(3)$	$\mathrm{Re}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$-170.0(2)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$179.31(18)$	$\mathrm{Re}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$10.24(11)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$\mathrm{Re}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1$	$170.0(2)$	
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$0.5(3)$	$\mathrm{Re}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	$-10.21(11)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.98	2.59	$3.260(3)$	126
$\mathrm{C} 8 — \mathrm{H} 8 C \cdots 2^{\mathrm{ii}}$	0.98	2.69	$3.332(3)$	123
$\mathrm{C} 8 — \mathrm{H} 8 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.98	2.69	$3.244(3)$	116
$\mathrm{C} 2 — \mathrm{H} 2 C \cdots \mathrm{~S} 1$	0.98	2.49	$3.030(2)$	114
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{~S} 2$	0.98	2.64	$3.035(2)$	105

Symmetry codes: (i) $x+1, y+1, z$; (ii) $x, y+1, z$; (iii) $-x+1,-y+1,-z+2$.

