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Abstract

As a noninvasive technique, transcranial sonography (TCS) of substantia nigra (SN) has gradually showed its effectiveness not
only in diagnosis but also in understanding clinical features of Parkinson’s Disease (PD). This study aimed to further evaluate
TCS for clinical diagnosis of PD, and to explore the association between sonographic manifestations and visual hallucinations
(VH). A total of 226 subjects including 141 PD patients and 85 controls were recruited. All participants received TCS. A series of
rating scales to evaluate motor and non-motor symptoms were performed in PD patients. Results showed that 172 subjects were
successfully assessed by TCS. The area of SN was greater in PD patients than that in controls (P < 0.001). As receiver-operating
characteristic (ROC) curve analysis showed, the best cutoff value for the larger SN echogenicity size was 23.5 mm? (sensitivity
70.3%, specificity 77.0%). Patients with VH had larger SN area (P = 0.019), as well as higher Non-Motor Symptoms Scale
(NMSS) scores (P = 0.018). Moreover, binary logistic regression analysis indicated that SN hyperechogenicity (odds ratio =
4.227, P =0.012) and NMSS scores (odds ratio = 0.027, P = 0.042) could be the independent predictors for VH. In conclusion,
TCS can be used as an auxiliary diagnostic tool for Parkinson’s disease. Increased SN echogenicity is correlated with VH in
Parkinson’s disease, possibly because the brain stem is involved in the mechanism in the onset of VH. Further studies are needed
to confirm these findings.
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Introduction

Parkinson’s disease (PD) is one of the most common neuro-
degenerative diseases. Though dopamine transporter positron
emission computed tomography (DAT-PET) is proved to be
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an effective diagnostic technique [1], it has not been widely
used due to high expense and radio action. The diagnosis of
PD mainly relies on clinical manifestations [2]. As a noninva-
sive technique, transcranial sonography (TCS) is potentially
useful for the diagnosis of PD by showing the structural
changes in substantia nigra (SN). Even though previous stud-
ies have proved that the specificity was 88.2-85% and the
sensitivity was 84-94.9% in diagnostic accuracy of TCS in
PD patients [3, 4], and the concordance rate between TCS
patterns and PD diagnosis increased from 87 to 95% in a 4-
year follow-up [5]. Still, the data based on Chinese population
need to be supplemented.

It is still unclear whether the extent of SN
hyperechogenicity correlates with only motor symptoms or
other clinical status, more precise quantification of the damage
is required in order to improve extensive and in-depth under-
standing in PD. There were studies exploring the correlation
between SN echogenicity and clinical features, and found that
patients with larger hyperechogenic SN area tended to have
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severer motor and non-motor symptoms [6—8]; however, vi-
sual hallucinations (VH), one of the most common psychotic
symptoms, which was reported to affect 9.8 to 82.7% of PD
population in different stages [9-11], in relation to SN, have
not been reported before.

Our objective is to evaluate the validity of TCS for the diag-
nosis of PD in Chinese population, and to investigate the corre-
lation of sonographic manifestations with clinical features, espe-
cially in VH.

Subjects and methods
Subjects

From May 2015 to March 2018, 141 participants with PD
were recruited after giving their informed consent at the
Department of Neurology, Dongzhimen Hospital. These 141
participants all met the criteria of the UK Parkinson’s Disease
Society Brain Bank [2], and had enough audio-visual func-
tions to complete motor and non-motor symptom evaluation
test. Participants were excluded if they had possible dementia
with Lewy bodies (DLB) according to 2005 DLB diagnostic
criteria (DLBC-3) [12]. From May 2015 to January 2018, 85
volunteers without parkinsonism consented to participate as
control subjects from the Department of Neurology,
Dongzhimen Hospital and Poster recruitment. All volunteers
were assessed by neurology specialists and were excluded if
they had positive family history of PD or the possibility of
parkinsonism.

This study had been approved by the ethics committee of
Dongzhimen Hospital, the First Affiliated Hospital of Beijing
University of Chinese Medicine.

Transcranial sonography operation and diagnosis
standard

Through the preauricular acoustic bone window, a qualified
operator, who was blind to the clinical information of the
subjects, examined the echogenicity of the SN using a
1.82 MHz sonographic device (ACUSON Anteres,
SIEMENS) with a depth of 15-18 cm and a dynamic range
of 26 dB. The SN was scanned through both temporal bone
windows in the axial plane. After identifying the butterfly-
shaped hypoechogenic midbrain surrounded by the
hyperechogenic of basal cistern, the clearest image of the
hyperechogenic signal in the SN region was stored (Fig. 1).
The areas of SN hyperechogenicity in the midbrain were mea-
sured manually by the same operator.

The SN hyperechogenicity were obtained from right and
left temporal windows. Some of the patients were measured
from only one temporal window if it was impossible to obtain
images from both sides. The larger SN echogenic area (SNp)
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was used to perform receiver-operating characteristic (ROC)
curve analysis.

Clinical features assessment

We recorded the clinical parameters including age, gender,
disease duration, and symptoms of onset. To assess the disease
severity, the PD patients received evaluation of the Unified
Parkinson’s Disease Rating Scale (UPDRS) [13], and their
Hoehn and Yahr Stage (H-Y stage) was graded during the
12-h medication “off” phase. Participants received a series
of tests to evaluate their non-motor symptoms (NMS). The
Non-Motor Symptoms Scale (NMSS) [14] was used to test
the overall status. The PDSS [15], CSI [16], and PFS [17]
were used to evaluate the participants’ sleep disorder, consti-
pation, and fatigue symptom respectively. Mini-Mental State
Examination (MMSE) [18] was used to evaluate the cognitive
function. The degree of depression and anxiety was assessed
by Hamilton Depression Scale (HAMD) [19] and Hamilton
Anxiety Scale (HAMA) [20]. And the living quality was eval-
uated by PDQ-39 [21]. The presence of VH was defined ac-
cording to item 13 from NMSS scale.

Statistical analysis

The data were analyzed by using SPSS 22.0. The descriptive
statistics were given as mean value + standard deviation. The
categorical statistics were recorded as count and percentage
data. Descriptive statistics received normality test, and further
variation analysis was performed by two-sample # test and
Mann-Whitney U test. The statistical difference of categorical
data was calculated by chi-square test. Correlations of the
scale scores and SN were performed by Pearson correlation
coefficients. Statistical significance was set at P < 0.05. The
ROC curve analysis was applied to acquire the cutoff value to
distinguish PD patients from normal controls. The classifier
for ROC curve analysis was defined as The UK Brain Bank
Criteria [2]. For each point in the curve, sensitivity and 1-
specificity were shown for a certain cutoff value. And the best
cutoff value was defined as where the sum of sensitivity and
specificity was highest.

A binary logistic regression analysis was used to determine
the most significant variables which were independently cor-
related with VH. As a dependent variable, the presence of VH
was defined as a binary variable. Age, duration, SNy, UPDRS
total scores, NMSS scores, and MMSE scores were included
as covariates.

Results

Among the 226 subjects, TCS was successfully performed in
172 subjects (76.10%, 111 PD patients, 72 men and 39
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Fig. 1 Sonographic images of the
mesencephalic brainstem in a
healthy control (a) and a patient
with Parkinson’s disease (b). The
butterfly-shaped mesencephalic
brainstem was surrounded by the
hyperechogenic basal cisterns.
The patient with Parkinson’s
disease exhibited hyperechogenic
signals encircled by lines at both
sides of SN, which were not seen
in the control

women, and 61 normal controls, 38 men and 23 women).
Fifty-four subjects (23.90%) failed to acquire sonographic im-
age due to poor penetration of ultrasound through both bony
windows, and were excluded from further analysis.

SN echogenicity in the participants

Table 1 shows the basic characteristics, scale evaluations, and
SN echogenicity data among PD and control. There was no
difference in gender and age between two groups. For PD pa-
tients, the mean SN hyperechogenic area was 21.61 = 18.00 mm®
on the right side and 25.44 + 20.24 mm? on the left. For normal
controls, the mean SN hyperechogenic area was 8.28 + 14.58

Table 1 Data of SN in the normal controls and PD patients
PD patients Controls P value
(N=111) (N=61)
Age (years) 66.35+9.10 63.10 £ 11.44 0.059
Sex , male , n (%) 72 (64.86%) 38 (62.30%) 0.737
SN-right (mm?) 21.61 + 18.00 8.28 +14.58 0.000*
SN-left (mm?) 25.44 +£20.24 12.44 £15.97 0.000*
SNy, (mm?) 32.30 +18.42 14.61 + 17.55 0.000%
UPDRS 3433 £12.65 / /
NMSS 49.73 £23.16 / /
MMSE 27.28 +3.98 / /
PDSS 115.21 +£19.88 / /
CSI 21.69 + 11.67 / /
PFS 47.58 £11.01 / /
HAMA 11.26 +6.35 / /
HAMD 8.68 +£4.34 / /
PDQ-39 32.52+£21.25 / /

SN substantia nigra, SN-right right SN echogenic area, SN-lefi left SN
echogenic area, SN; the larger SN echogenic area, UPDRS Unified
Parkinson’s Disease Rating Scale, NMSS The Non-Motor Symptoms
Scale, PDSS The Parkinson’s Disease Sleep Scale, CSI The
Constipation Severity Instrument, PF'S Parkinson Fatigue Scale, HAMA
Hamilton Anxiety Scale, HAMD Hamilton Depression Scale, PDQ-39 39
item Parkinson’s Disease Questionnaire

*P<0.05

(b)

mm? on the right side and 12.44 + 15.97 mm? on the left, both
were statistically smaller than PD group (P < 0.001, right side; P
< 0.001, left side). The mean size of SNy in PD group was 32.30
+ 18.42 mm?, which was significantly greater than the control
group (14.61 + 17.55 mm?, P < 0.001).

Discriminative power of SN echogenicity for PD

A ROC curve for the discrimination of PD patients and control
subjects is shown in Fig 2. The larger SN echogenic areas (SN}
were taken to plot the ROC curve. The ideal diagnostic threshold
should yield the highest sum of sensitivity and specificity.
Therefore, the point situated in the top left corner of the curve
would be the best diagnostic cutoff value. We marked the point in
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Fig. 2 ROC curve for the differentiation of PD vs. control subjects. The
larger SN echogenic areas (SNy ) were taken for the plotting of the ROC
curve in the entire cohort. Asterisk marks the point in the SNL curve for
the cutoff of 23.5 mm? (area under the curve = 0.775). The sensitivity
value was 70.3%, and the specificity value was 77.0%
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the SN;_curve for the cutoff value of 23.5 mm?. At this point, the
sensitivity was 70.3%, and the specificity was 77.0%. The area
under the curve was 0.775. Based on this cutoff value, 78 PD
patients (70.27%) were classified SNy > 23.5 mm?; 14 control
subjects (22.95%) were classified SNy > 23.5 mm?.

Correlation between clinical features and SN
echogenicity

We analyzed the correlation between age, H-Y stage, disease
duration, UPDRS scores, UPDRS sub domain scores, NMSS
scores, PDSS scores, CSI scores, PFS scores, HAMA scores,
HAMD scores, MMSE scores, PDQ-39 scores, and SNy with
the Pearson correlation analysis. The UPDRS-II scores were sig-
nificantly correlated with SN (» = 0.196, P = 0.039). Other
scales did not show the correlation.

Correlation of variables in PD with VH

In PD group, 18 (16.2%) of 111 patients had VH, including 4
possible dementia associated with Parkinson’s disease (PDD)
and 14 cases with normal cognitive function [22]. We found that
sonographic image and clinical features had special connection
with VH; thus, we grouped the 111 patients according to with or
without VH. As Table 2 shows, the mean age of VH group was
much older than the non-VH group, and the difference had sta-
tistical significance (P = 0.008). The mean area of SN in PD
patients with VH was larger than patients without VH in statistics
(P = 0.018). The NMSS and UPDRS-II scores had statistical
significance (P = 0.027, NMSS; P = 0.036, UPDRS-II) between
VH group and non-VH group. The VH was not significantly

Table 2 Clinical data of PD patients grouped according to VH

associated with UPDRS total (UPDRS-T) and MMSE scores,
although VH group had a higher level in UPDRS-T and a lower
level in MMSE.

Further binary logistic regression analysis was used to identify
the correlation between VH and other clinical features. Among
age, duration, SN, UPDRS total scores, NMSS scores and
MMSE scores, SN, and NMSS scores were the only two vari-
ables included in the final model. This demonstrated that there
was a significant correlation between the VH and SNy (odds ratio
=4.227, P=0.012) and NMSS total scores (odds ratio = 0.027, P
=0.042).

Discussion

This study explored the correlation between SN echogenicity and
clinical characteristics in Chinese PD patients. We found that the
SN echogenicity area in PD patients with VH was significantly
higher than those without VH, which to our knowledge, had not
been reported before.

As the results showed, 18 (16.2%) of 111 PD patients had
VH, similar to another study in China (14.06%) [23]. Previous
studies demonstrated that the impairment of visual input and
central visual processing, as well as the impairment of brainstem
regulation of the sleep-wake cycle may be the possible mecha-
nisms [24, 25]. The exact pathogenesis of VH in PD patients is
not clearly understood. Current studies concerning VH in PD and
neuroimaging mainly used the technology of functional magnetic
resonance imaging (fMRI), positron emission tomography
(PET), and single photon emission computerized tomography
(SPECT). Based on imaging studies, there was evidence which

Total With visual hallucination Without visual hallucination P value

(n=111) (n=18) (n=93)
Age (years) 66.35+9.10 70.67 +£8.85 65.52 +£8.96 0.008*
Sex , male , n (%) 72 (64.86%) 15 (83.33%) 57 (61.29%) 0.073
SN-right 21.61 +18.00 31.06 =20.09 19.74 £ 17.06 0.028*
SN-left 2544 +20.24 29.17 £23.65 24.72 £19.58 0.528
SN 3230+ 18.42 41.67 +£20.75 3048 £17.48 0.018*
UPDRS-I 225+1.72 2.94+£229 2.11 +£1.57 0.201
UPDRS-II 1241 +£5.18 14.22 £5.56 12.06 + 5.06 0.036*
UPDRS-IIT 18.20 £ 6.77 19.28 + 6.62 17.99 + 6.82 0.260
UPDRS-IV 147+£1.73 1224148 1.52+1.77 0.344
UPDRS-Total 3433 £12.65 37.67 £ 12.87 33.69 £ 12.57 0.064
MMSE 27.28 +3.98 26.56 +3.52 2742 +4.06 0.121
NMSS 49.73 £23.16 61.50 +28.48 4742 +21.40 0.027*
Disease duration (years) 597 +5.57 6.17 £5.69 5.94 +5.58 0.939

SN substantia nigra, SN-right right SN echogenic area, SN-lefi left SN echogenic area, SN, the larger SN echogenic area, UPDRS Unified Parkinson’s
Disease Rating Scale, MMSE Mini-Mental State Examination, NMSS The Non-Motor Symptoms Scale

*P<0.05
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supported the hypothesis that abnormality and dysfunction in
visual cortex and cholinergic structures such as the SN and
pedunculopontine nucleus were to blame for VH [26].
However, the interaction between SN echogenicity and VH in
PD was rarely investigated before.

Transcranial sonography can detect trace metal accumulation
in deep brain structures with higher sensitivity than conventional
MRI. In PD, particularly, the accumulation of iron has been
suggested as an important substrate of extended SN echogenicity
[27]. Berg reported close connections between SN echogenicity
and elevated iron content of the SN in both animal and human
studies [28, 29]. However, only a few cases of parkinsonism with
VH have been reported with significant midbrain iron accumu-
lation [30]. There was no direct evidence of correlation between
iron accumulation in the SN and VH in PD. Another mechanism
of enhanced SN echogenicity in PD might be microglial activa-
tion [31], which was demonstrated in midbrain specimens from
postmortem PD patients [31, 32] and PD rat model [33]. A case
report of PD with VH and delusions showed that neuronal loss
with gliosis was noteworthy in the substantia nigra, locus
ceruleus, dorsal vagal nucleus, nucleus basalis of Meynert, and
intermediate lateral nuclei, and cholinergic projections from the
nucleus basalis of Meynert could be responsible for generation of
hallucinations and delusions [34]. However, there was also no
direct evidence of correlation between microglial activation in
the SN and VH in PD.

Among assessment of SN echogenicity, PD with VH had
larger echogenic areas compared to those without. The corre-
lation was further confirmed by binary logistic regression
analysis. Together with these findings, we preliminarily in-
ferred that the impairment of cholinergic structure in SN might
contribute to VH in PD. Future studies may combine multiple
imaging modalities to identify the main nerve damage in SN
from iron accumulation, microglial activation, and other path-
ological processes.

Previous studies [35, 36] showed that VH in PD were as-
sociated with disease duration, dopamine agonist use, sleep
quality, and cognition. In our study, there was significant dif-
ference between PD with VH and those without VH in age,
NMSS, and UPDRS-II scores, while no statistic difference
was found in disease duration, MMSE, and UPDRS-III
scores. Moreover, there is no correlation between

echogenicity and age, H-Y stage, NMSS scores, UPDRS-III,
or disease duration. These results indicated that the correlation
between VH and SN echogenicity was independent from
NMSS scores, UPDRS-III scores, and disease duration.
Considering there was no correlation between age and SN
echogenicity in our study, similar conclusion was drew out
in another Asian population-based study [8] (no difference
in age between SN > 18 mm? group and SN < 18 mm? group).
We could initially speculate that the correlation between VH
and SN echogenicity was also independent from age.
However, PD with VH had higher UPDRS-II scores, and the
UPDRS-II scores were associated with SN;. Therefore, we
can not currently rule out the impact of UPDRS-II on the
result that PD with VH had larger echogenic area.

There have been some studies concerning the relationship
between SN echogenicity and clinical features of PD. Results
showed that depression, urinary incontinence, UPDRS-II,
SCOPA-AUT, and postural instability gait difficulty were re-
lated to SN hyperechogenicity [8, 37]. In our cohort, only
UPDRS-II scores were associated with SN, consistent with
the result of Zhou’s study [8] based on Chinese patients. Yet,
the underlying mechanism remains unclear. PD patients with
VH had higher UPDRS-II scores might be a possible reason.

There has not been a well-accepted diagnostic value of
hyperechogenic area to differentiate PD [8, 37]. Our study
applied ROC curve analysis to investigate the cutoff value
for SN+. The cutoff value in our study is higher compared
with other researches [8, 38, 39]. To investigate the reason
for this phenomenon, Table 3 demonstrates the clinical fea-
tures of our study and 5 other studies [7, 8, 38—40]. The mean
age was calculated using the information from all the partici-
pants, while the disease duration and H-Y stage were from
only the PD patients. There seems to be a trend that as age
and disease duration grow, the cutoff value also grows.
Similar conclusion was carried out in a TCS
hyperechogenicity area study [41] among healthy infants,
children, as well as healthy adults. The result indicated an
age-related increase of the hyperechogenic area of SN; thus,
older age in our study might lead to an enlarged echogenic size
level.

The TCS penetration rate was an important issue and might
affect the study result to some extent, because some

Table 3 Clinical characteristic comparison among different studies

Cutoff value (mm?) Mean age (years) Disease duration (years) H-Y stage
Our study 235 64.85+11.23 5.97 +£5.57 246 +0.70
Zhou H-Y [7] 18 60.77 = 10.26 5.59 +4.21 2.02+0.81
Berg D [28] 19 63 6 2
Kim J-Y [29] 20 56.9+12.9 3.5+32 2.06
Luo S-F [30] 20 58.7+6.8 5.06 £3.11 -
Bartova P [6] 25 68.59 = 10.37 6.8+43 2
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participants were excluded due to bad penetration of ultra-
sound through both bony windows. Among the 226 partici-
pants, 172 acquired adequate SN sonographic image; the in-
sufficient penetration rate was 23.9% (21.3% in PD group,
28.2% in control group). In studies among Caucasian popula-
tion, the insufficient penetration rate was in a level of 6.9—
15.5% [7, 42, 43], while several Asian studies reported a
higher temporal insufficiency rate varied from 20.5 to 30.2%
[8, 39]. The Asian and Caucasian temporal bone structure
diversity may cause the difference. Moreover, hyperostosis
frontalis interna occurs as age grows, especially in female
[44]. This might be another reason why the insufficient pene-
tration rate was higher in our study.

In conclusion, enlarged SN hyperechogenic area signifi-
cantly correlates with the presence of VH in a Chinese popu-
lation with PD. This finding may provide evidence for brain
stem involvement mechanism in the onset of VH. However,
with a relatively small sample size of VH group, further stud-
ies are needed to confirm our findings.
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