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Abstract

A focused theme in systems biology is to uncover design principles of biological networks, that is, how specific network
structures yield specific systems properties. For this purpose, we have previously developed a reverse engineering
procedure to identify network topologies with high likelihood in generating desired systems properties. Our method
searches the continuous parameter space of an assembly of network topologies, without enumerating individual network
topologies separately as traditionally done in other reverse engineering procedures. Here we tested this CPSS (continuous
parameter space search) method on a previously studied problem: the resettable bistability of an Rb-E2F gene network in
regulating the quiescence-to-proliferation transition of mammalian cells. From a simplified Rb-E2F gene network, we
identified network topologies responsible for generating resettable bistability. The CPSS-identified topologies are consistent
with those reported in the previous study based on individual topology search (ITS), demonstrating the effectiveness of the
CPSS approach. Since the CPSS and ITS searches are based on different mathematical formulations and different algorithms,
the consistency of the results also helps cross-validate both approaches. A unique advantage of the CPSS approach lies in its
applicability to biological networks with large numbers of nodes. To aid the application of the CPSS approach to the study
of other biological systems, we have developed a computer package that is available in Information S1.
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Introduction

Systems biology studies how a biological system evolves to

perform certain function(s), i.e., the design principles of the system

[1–3]. Reverse engineering is a computational approach to deduce

biological network structures responsible for given properties [4–

15]; it addresses situations that while certain dynamic properties of

a biological system have been observed, the underlying mecha-

nisms are unknown or incomplete. To reverse engineer, one can

perform a thorough in silico search to enumerate all possible

network topologies leading to the dynamic feature at question,

then identify the most plausible network topologies. To help

illustrate the basic strategy, let’s consider a simple three-node

network. There are 9 possible links in the full graph including self-

regulatory links. Each link has three possibilities: activation,

inhibition, or no presence. Consequently, there are a total of 39

possible network topologies. As a common reverse engineering

procedure, one can model each network topology against a

collection of random parameter sets, and evaluate the robustness

of each network topology (i.e., the proportion of the parameter sets

allowing each topology to produce the desired dynamic feature).

This procedure, which we name as ITS (individual topology

search), has been successfully adopted to analyze several important

biological processes including segment polarity [7], perfect

adaption [8], and bistability [13]. However, the ITS approach is

difficult to apply to systems with large numbers of nodes for two

reasons. First, the number of network topologies grows dramat-

ically with the number of nodes. For example, the total numbers of

network topologies for 4-node and 5-node systems are

316 = 4.36107 and 325 = 8.561011, respectively (compared to

39 = 2.06104 for a 3-node system). Second, since the number of

model parameters increases with the number of nodes, the fraction

of the parameter space leading to the desired feature (the ‘good’

region) decreases exponentially. For example, suppose that the

parameter-space dimension is N, and that for each parameter, half
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of the parameter range falls into the good region, the maximum

fraction of the good region with the parameter space is 1/2N.

Recently, we developed a computational approach to overcome

the above difficulties [4]. Instead of modeling individual network

topologies separately, our approach searches the continuous

parameter space that defines an assembly of individual topologies

derived from the full network (with the presence/absence and the

strength of each network link indicated by corresponding

parameter values). Applying this new CPSS (continuous parameter

space search) approach, we notice that the good regions are

typically sparse and isolated within the parameter space [4]. To

efficiently recover these good regions, we employed a two-stage

sampling procedure. In the first stage, techniques such as

importance sample [16] or genetic algorithm [17,18] are used to

locate isolated good regions with a small number of good

parameter sets (‘‘seeds’’) for each region. In the second stage, the

seeds are used to perform random walk (importance sampling)

constrained within each isolated good region. This two-stage

procedure is effective to recover the good regions, even when they

account for a tiny fraction (e.g., as low as 1027) of the whole

parameter space. The CPSS method can therefore effectively

search exponentially growing topological and parameter spaces

accompanied with larger networks. For example, we have recently

applied this CPSS approach to study a network with 10 nodes and

64 parameters [19].

How well do the results obtained from the two different

approaches, CPSS and ITS, agree with each other? The present

work aims to address this question. Here we first present a detailed

and improved CPSS procedure, we then test the CPSS procedure

on a previously analyzed problem based on ITS – the resettable

bistability of an Rb-E2F gene network that controls the

mammalian cell cycle entry [13]. We find that the CPSS and

ITS approaches, based on different mathematical formulations

and search algorithms, generate consistent search results. This

consistency demonstrates the overall effectiveness of reverse

engineering approaches (CPSS and ITS) in uncovering network

design principles. To aid the application of the CPSS approach,

we also develop a computer package that can be conveniently used

to reverse engineer other biological networks, especially those with

large numbers of nodes with which the ITS approach becomes

inefficient.

Figure 1. Flowchart describing the CPSS method to determine and analyze network topologies underlying a given dynamic
property.
doi:10.1371/journal.pone.0105833.g001
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Methods

(a) Problem setup and outline of the CPSS procedure
The steps below describe our CPSS procedure (with Figure 1

showing the flow chart).

(i) Set up a network (with a selected number of nodes)

associated with the concerned dynamical property, based

on experimental evidence and literature.

(ii) Construct mathematical equations to describe the interac-

tions among nodes in the network. We use the Wilson-

Cowan function [4,19–21] for its mathematical flexibility.

(iii) Define the search criteria for the dynamic property under

consideration (e.g., bistability).

(iv) Determine the dimension of the parameter space (N) and

perform a two-stage search to get ‘good’ parameter sets

that fulfill the criteria in (iii).

(v) Determine the optimal number of clusters formed by the

good parameter sets.

(vi) For each cluster, construct the mean value (MV) matrix

and the coefficient variation (CV) matrix (see detailed

discussions later) to determine ‘‘mean’’ network topology

and backbone motifs responsible for the desired dynamic

property.

(vii) Analyze the roles of individual network links in generating

the desired dynamic property.

In this work, the dynamic property we study is the resettable

bistability of an Rb-E2F gene network that controls the

mammalian cell cycle entry. Yao et al. demonstrated that the

Rb-E2F gene network functions as a bistable switch (Figure 2a)

[13,22]. The Rb-E2F bistable switch converts graded and

transient serum growth signals into an all-or-none E2F activation,

which controls the quiescence-to-proliferation transition of mam-

malian cells. This Rb-E2F bistable switch is resettable: that is, the

activated switch can be fully shut off when the strength of serum

signals is reduced below a threshold (point a in Figure 2a) [13,22].

The Rb-E2F gene network also exhibits other dynamic properties

such as the biphasic response of E2F to MYC stimulation [23],

and likely coordinates the implementation of different dynamic

properties by constraining associated network parameters [24].

To identify the network topology responsible for the emergent

resettable bistability in the Rb-E2F gene network, Yao et al. [13]

took a reverse-engineering approach. They coarse-grained the Rb-

E2F network into a 3-node circuit and examined what network

topologies among possible link combinations lead to robust

resettable bistability. Here we follow their setup of the coarse-

grained network, combining all E2F activators and CycE/cdk2

into one node EE, all Rb family proteins into another node RP,

with the third node MD representing the linear signaling cascade

consisting of Ras, Myc and CycD/cdk4, 6. In this 3-node network,

9 possible links exist (Figure 2b). We investigate two cases of the

network. First (Case I), to be consistent with the study of Yao et. al.
[13], which is based on known network links in the literature, we

do not consider the link from RP to MD (link 2) and self-regulatory

links of MD and RP (links 1 and 5, respectively; Figure 2b).

Second (Case II), we examine the full graph that contains all the 9

possible links (see Text S1).

(b) Mathematical description
We use the following mathematical formalism of ordinary

differential equations (ODEs) to describe the 3-node Rb-E2F

network:

d½MD�
dt

~cMD G sMD; WMDð Þ{½MD�ð Þ ð1aÞ

d½RP�
dt

~cRP(G(sRP; WRP){½RP�) ð1bÞ

d½EE�
dt

~cEE(G(sEE ; WEE){½EE�) ð1cÞ

Where G(sj ; Wj)~
1

1e{sjWj
and

Wj~vj 0z
X 3

i~1
vj i½xi�zvjs½s� ð1dÞ

Here, G(sj; Wj) is a generic ‘sigmoidal’ function with steepness

(slope at Wj = 0) that increases with sj for the jth species. For

present study, both i and j can be any one of the three nodes, MD,

RP, or EE. We set a range for sj between 1–10. Wj denotes the

overall influence of the network on node j. The coefficient vji

measures the strength and direction of the influence of the ith

species on the jth. The term vjS specifies whether a species j is

affected by the input signal (serum concentration), and assumes a

value of 1 for node MD and 0 otherwise. Each vji is a real number

between [21, 1], with a positive value for activation and negative

value for inhibition. Thus, the sign pattern (2, 0, +) of the ‘weight’

matrix vji defines the topology of the network. The term vj0

determines whether the jth node is ‘on’ or ‘off’ when all other input

signals are at 0. The parameter cj determines how quickly each

species approaches its steady state value. The value of cj does not

affect the steady-state behavior of the network but controls the

non-stationary network dynamics. We denote the concentration of

a species x by [x]. We construct the ODEs for the 3-node network

in a formulation similar to previous models [4,20,25,26]. We refer

[10,27–29] for more detailed discussions and applications of the

formalism.

For case I, the model described by Eq. 1a–d contains 15

parameters: 6 vji, 3 cj, 3 sj and 3 vj0. In the following studies we

fix 7 parameters constant: we set cEE = cMD = cRP = 1.0 since they

have no effect on the steady state behavior; we set

vMD0 = vEE0 = 20.5 and vRP0 = 0.5 so that [EE]ss,0 in absence

of input signals (to be consistent with the experimental observa-

tion); we also set sEE = 5.0 as a moderate value for the sigmoidicity

of the output response of node EE. Therefore, our search is in an

8-dimensional parameter space. For Case II, we consider three

additional parameters (vMDRP, vMDMD, and vRPRP) and perform

the search in an 11-dimensional parameter space.

(c) Determination of condition for resettable bistability
For each given parameter set, we calculate the steady state

concentrations of EE node ([EE]ss) under a set of input serum

concentrations uniformly distributed between 0 and 10. At each

input signal level, we use two different sets of initial conditions,

corresponding to the quiescence state (EEOFF:

[EE] = [MD] = 0.001, [RP] = 1.0 and the proliferation state

(EEON: [EE] = [MD] = 1.0, [RP] = 0.001). Temporal evolution of

each node is simulated using the deterministic improved Euler

method [30], with sufficiently long simulation time to ensure that

Systematic Reverse Engineering of Network Topologies
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the system reaches steady state. To determine whether a network

topology creates resettable bistability with a given parameter set,

we follow the same three criteria used in Yao et al. (that yielded

top candidate topologies consistent with further experimental tests)

[13]:

(i) Being a switch: [EE]ss-max -[EE]ss-min.l. Here, [EE]ss-max

and [EE]ss-min denote the maximum and minimum values of

the steady-state EE concentration, respectively, simulated

with the EEOFF initial condition for the entire serum input

range; the threshold l is set to 0.1.

(ii) Being bistable: D[EE]ss = [EE]ss
ON-[EE]ss

OFF.0.16([EE]ss-

max - [EE]ss-min) for at least two of the input levels tested

(except for the saturation level [S]max = 10, where the system

should be monostable). Here, [EE]ss
ON and [EE]ss

OFF

denote the steady-state EE concentrations obtained with

the EEON and EEOFF initial conditions under a given input

level, respectively.

(iii) Being resettable: D [EE]ssR0, when [S]R0.

If all three criteria are met, we refer the associated parameter set

as a ‘good’ parameter set. We define a binary score function for

the kth parameter set: Wk = 21 if all the criteria i–iii for resettable

bistability are fulfilled; Wk = 0 otherwise.

In addition, to address the concern that the identified candidate

topologies may be sensitive to the chosen threshold values in the

above criteria i–iii, we also perform searches with another

constraint following Yao et al. [13] and others [31]. This extra

independent constraint, R0, is defined as R0 = [Soff]
max/[Son]min,

with [Soff]
max and [Son]min correspond to the right and left

boundaries of the bistable region (b and a, Figure 2a), respectively.

Thus, R0 is positively correlated with the width of the bistable

region. The comparison of the identified candidate topologies with

or without this extra constraint R0 helps evaluate the ‘‘robustness’’

of our model predictions. We consider a network topology with

R0$3.0 as a topology that fulfills the criterion iv; correspondingly,

we use a score function to define good parameter sets,

Wc = 3.06Wk. For convenience of discussion, we refer the searches

with the criteria i–iii as ‘‘Normal’’, and those with criteria i–iv as

‘‘Constrained’’. Also, all following discussions refer to Case I (see

subsection a and b of Methods section for definition) unless

otherwise noted.

(d) Metropolis sampling algorithm
Our goal is to sample an 8-dimensional parameter space that is

bounded and continuous. The sampling algorithm needs to search

the parameter space thoroughly and generate sample parameter

sets that are statistically unbiased and significant. Our strategy is a

random walk method based on the Metropolis Algorithm [32]

using the following scheme:

(i) Choose an arbitrary initial 8-dimensional parameter set h0

and determine its score: W0 = 21.0 for ‘good’ set and

W0 = 0.0 otherwise.

(ii) Generate parameter set hk+1 from hk by hk+1 = hk+lf; l
( = 0.025 in this work) specifies the maximum displacement

per step, and f is a vector of random numbers with uniform

distribution between 21.0 and 1.0.

(iii) Compute Wk+1. If Wk$Wk+1, accept the step from k to k+
1. If Wk,Wk+1, accept the step from k to k+1 with

probabilityr.

(iv) Update hk. If k is larger than a maximum step number

(Nmax), stop. Otherwise, return to step (ii).

We implement this strategy in two stages. In Stage I, we set

r= 0.01, so that the random walk has a tendency to stay in ‘good’

regions of parameter space, but it can also jump out of a good

region and searches randomly until it falls into another good

region (or back into the previous region). A random walk with up

to 107 (Nmax) steps is performed in Stage I until a good parameter

set is identified (Wk = 21 for the ‘Normal’ parameter search, and

Wc = 23.0 for ‘constrained’ parameter search). Under either

situation (Normal or Constrained), we repeat the Stage I from

Figure 2. Schematic representation of Rb-E2F network. (a) Resettable bistability of the Rb-E2F network. Points on the x-axis (a and b) define
the left and right boundaries of the bistable region. (b) A coarse-grained 3-node Rb-E2F network following the setup of Yao et. al. [13,22]. S: serum
input; MD: linear signaling cascade consisting of Ras, Myc and CycD/cdk4,6; RP: Rb family proteins; EE: E2F activators and CycE/cdk2.
doi:10.1371/journal.pone.0105833.g002
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Figure 3. CPSS software implementation. The major functional modules (above the gray box) are application-independent objects and will not
need to be changed for a new application. The modules within the gray box are application-specific objects; they inherit all properties of their
‘‘parent’’ objects, which help minimize the amount of new coding needed. For example, the present study uses a bistability evaluator (under
‘‘network feature evaluator’’) and a 3-node system (under ‘‘ODE solver’’). A different feature evaluator (e.g. adaptation) and a network with larger
number of nodes can be similarly implemented for a new study.
doi:10.1371/journal.pone.0105833.g003

Figure 4. Mean network topology underlying the resettable bistability. (a) Mean value matrix consisting all six network links. (b) Topology
matrix after discretization of Mean value matrix. (c) Mean network topology obtained from the topology matrix.
doi:10.1371/journal.pone.0105833.g004
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different starting points until 30–50 ‘good’ parameter sets are

found.

In Stage II, each ‘good’ parameter set obtained from Stage I

serves as a ‘‘seed’’ for performing random walk within the ‘good’

parameter region (with r= 0 to constrain the random walk to the

same good region). The purpose of Stage II is to generate a large

sample of good parameter sets that occupy each of the different

good regions within the parameter space. We set Nmax = 107 for

each run and the random walks are sampled every 100 steps,

generating ,103–105 ‘good’ parameter sets from each seed.

We note that the introduction of the two-stage Metropolis

sampling algorithm described above strengthens the efficiency of

the CPSS method. Stage I sampling helps find seeds for ‘good

parameter regions’ following random walks. After the detection of

good seeds in Stage I, Stage II sampling only explores the volume

element of a ‘good region’ of each seed in the N-dimensional

parameter space. This two-stage method directs the search to the

‘‘functional’’ (or ‘‘good’’) regions, without spending much time on

regions not giving rise to the desired properties (resettable

bistability in this case). Therefore, the computational efficiency

of the CPSS method would be significantly improved over the ITS

method, especially in high-dimensional systems.

(e) Clustering of the good parameter sets
The good parameter sets obtained from the two-stage search

may form either a single cluster or several different clusters. The

parameter sets within each cluster correspond to network

topologies sharing certain common features. Similar to our

previously developed CPSS method [4], we apply the K-means

clustering algorithm [33,34] (K = 2 to 12) to identify possible

clusters of good parameter sets. In addition, here we perform an

extra procedure to determine the optimal number of K. That is,

we calculate the mean silhouette coefficient values [35,36] for each

K; the largest mean silhouette coefficient value suggests the

optimal K number. If it happens that the optimal K equals 2, we

would manually check whether the parameter sets are indeed

distributed in two distinct clusters or they correspond to a single

cluster (see Text S1 for details).

(f) Discretization of continuous parameter matrix into
topology matrix

In order to identify the topological feature underlying the

resettable bistable mechanism, we coarse grain the continuous

interaction coefficient vji (Eq. 1d) into a discretized topological

matrix tji. In the topological space, tji is only described by (2, 0, +),

representing inhibition, no interaction, and activation, respectively.

A cut-off value (0.1) is used to perform the discretization, following

the rules below:

(i) If 20.1#vji#0.1, tji is considered as 0 (no interaction).

(ii) If vji.0.1, tji is considered as ‘+’ (activation).

(iii) If vji,20.1, tji is considered as ‘2’ (inhibition).

(g) Statistical method to identify the mean motif and a
backbone motif

For each cluster identified in step e, we perform the following

procedure to get a mean motif:

Figure 5. Backbone motif underlying resettable bistability. (a) Coefficient Variation matrix. (b) The backbone motif obtained from the
Coefficient Variation matrix.
doi:10.1371/journal.pone.0105833.g005
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(i) Calculate the mean of each interaction coefficient vji among

all good parameter sets.

(ii) Map the mean value (MV) matrix into a topological matrix

tji using parameter discretization (step f).

We also define a backbone motif as the motif with the fewest

number of non-zero

vji that is shared by the maximum number of resettable bistable

network topologies within a single cluster, and that by itself is

sufficient to generate resettable bistability. Identification of

backbone motifs helps to define the core mechanism of resettable

bistability. To identify a backbone motif, we first calculate the CV

matrix for each cluster. As the CV matrix measures the dispersion

of the data along the range of each parameter vji, a large CV

value of a given vji suggests that the dispersion around the mean

interaction strength of the corresponding link is large and thus the

said link is not essential to be part of a backbone motif. Only links

with CV , Cut-off should be part of a backbone motif. For CV .

Cut-off, we set tji = 0 in the backbone motif. To determine an

optimal value of Cut-off we follow a strategy described as follows.

As Cut-off decreases, the corresponding motif becomes simpler

and therefore more network topologies contain this motif; yet, this

motif cannot be too simple to lose resettable bistability. Therefore,

there exists an optimal Cut-off value so that the corresponding

motif has the minimal topology that is sufficient to generate

resettable bistability, and that the fraction of network topologies

containing this backbone motif within a cluster is the highest.

Table 1. Robust minimum motifs underlying resettable bistability for Normal situation.

Nature of the Link Occurrence Probability Present as Minimal model in [13]?

7----- 9 98.9 Yes (as 7----9a)

3 ----- 7 98.1 Yes (as 2----7)

3---4---8 66.0 Yes (as 2---5---6)

4---8---9 66.6 Yes (as 3---6---9)

4---6---8 55.4 Yes (as 3---5---6)

6---7---8 68.6 Yes (as 5---6---7)

4---6---8---7 55.4 Yes (as 3---5---6—7)

4---9---8---7 66.6 Yes (as 3---6 --- 7---9)

4---8---3---7 65.9 Yes (as 2---3---6---7)

doi:10.1371/journal.pone.0105833.t001

Figure 6. Pairwise correlation between links 3 and 9: 2D correlation heat map. The x axis denotes the link from EE to MD (link 3); the y axis
denotes the link from EE to itself (link 9). The value on each axis denotes the link strength, with the positive and negative segments indicating
activation and repression links, respectively. Color bar on the right: the fraction of ‘good’ parameter sets (supporting resettable bistability).
doi:10.1371/journal.pone.0105833.g006
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(h) Software implementation
To help automate our previously developed CPSS procedure

and improve its computational efficiency, as well as to aid the

application of CPSS to study a broad range of biological networks,

we construct an integrated software package with the following

features. (1) High flexibility: by implementing the CPSS procedure

in several independent and interchangeable functional modules

(Figure 3), the need for recoding is minimized to perform CPSS in

applications involving different network topologies, dynamic

properties, and different mathematical formulations. (2) User

friendly: the software is implemented with minimal required

human-in-the-loop interaction. (3) Computational efficiency: we

use the C++ programming language to implement the search

algorithm to minimize execution time, which can perform billions

of CPSS iteration steps within few days to weeks depending on the

dimensionality of the problem. An assembled package consisting

the entire CPSS program is included in Information S1.

Results

At stage I, we first search the Rb-E2F ODE system (Eq 1a–d)

with 35 arbitrary initial parameter sets, and identify 35 ‘good’

parameter sets. For each of these 35 ‘seeds’, we then perform the

stage II search with 107 Metropolis steps. We obtain a total of

,2.06105 good parameter sets. We perform the K-means

clustering (see subsection e in Methods section) and find that all

good parameter sets form a single cluster in the parameter space

(See section T1 in the Text S1).

(a) Structure of the mean motifs and backbone motifs
Figure 4a gives the mean value (MV) weight matrix denoting

different link strengths. From the MV matrix we construct discrete

topology matrix (Figure 4b) following the discretization principle

(subsection f in Methods section). Figure 4c depicts the mean

network topology underlying the resettable bistability, which

contains three positive feedback loops: a positive feedback between

MD and EE (links 3–7), a double negative feedback between RP

and EE (links 6–8), and an EE Self-activation (link 9). This mean

Figure 7. Pairwise correlation between links 3 and 9: Diagrams of link combinations that correspond to the heat map in Figure 6.
doi:10.1371/journal.pone.0105833.g007
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network topology (Figure 4c) is consistent with the most robust

topology in generating a Rb-E2F bistable switch as identified in

the study of Yao et al. [13].

To determine backbone motifs underlying the resettable

bistability, we construct the CV matrix from the good parameter

sets (Figure 5a) and set a CV cut-off value 0.36 corresponding to a

high (more than 0.95) sample ratio. A sample ratio of a given link

is a fraction of good parameter sets which contain the said link in

network topologies within a cluster. The identified backbone motif

(Figure 5b) contains links 7 and 9. That is, this 7–9 motif is a

minimum circuit that is shared by most resettable bistable network

topologies; this motif is also sufficient to generate resettable

bistability by itself. This backbone motif is one of the minimum

motifs discovered by Yao et al. using a different approach, ITS

[13]. In addition, we identify several robust minimum motifs,

which are defined as topologies with high occurrence probability

in the entire good parameter sets. We determine the fraction of

good parameter sets corresponding to individual minimum motifs

within the cluster. Table 1 gives a few top minimum motifs with 2,

3, or 4 links. These top minimal motifs are also present amongst

the top minimum topology list in the study of Yao et al. [13],

which signifies the consistency of present results.

(b) Functional role of the link 3
Positive feedback regulation is required for generating bistability

[1]. The mean network topology underlying resettable bistability

identified in this work (Figure 4c) contains three positive feedback

loops. Link 3, which is part of the double-positive feedback loop of

links 3-7, is present in the most robust topology for bistability but

not in the most robust topology for resettable bistability in Yao et.

al. [13]. To analyze this discrepancy, we examine the correlation

between link 3 and other links in the mean topology. We found

within certain parameter ranges, the presence of link 3 (and thus

the positive feedback loop 3-7) facilitates resettable bistability. For

example, the heat map in Figure 6 shows that the ‘‘good’’ data

points are in the upper right quadrant, indicating both links 3 and

9 should be activation links to support resettable bistability

(Figure 7). Furthermore, there exists a negative correlation

between the strengths of links 3 and 9 among the good data

points; meanwhile, an intermediate strength link 3 (.0.2, ,0.6) is

favorable. These results suggest that the strength of link 3, when

properly constrained, helps maximize the creation of bistability

while maintaining its resettability.

(c) ‘‘Lumped parameter’’ effects
We note that the above mentioned negative correlation between

links 3 and 9 to create good data points (Figure 6) provides an

example of lumped parameter effects. That is, sometimes a

combinatorial effect of two or more parameters, instead of

individual parameter values, dictates network dynamics. The

lumped parameter effects can be explained by the nature of the

modeling equations (Eq. 1(a-d)). Eq. 1d explains that the activation

of the jth species is dependent on the overall net input Wj. As Wj

combines inputs from all three regulating nodes, any change in

one parameter, say vjMD, can be compensated by a change in the

other two parameters (vjEE or vjRB, or both). Such parameter

compensation expands the region of parameter space that supports

Figure 8. Mean network motif for resettable bistability under the Constrained situation. (a) Mean value matrix consisting all six network
links. (b) Topology Matrix after discretization of the Mean value matrix. (c) Mean network topology, which is responsible for resettable bistability
under the Constrained situation.
doi:10.1371/journal.pone.0105833.g008
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resettable bistability, and thus enhances the robustness of the

model.

(d) Consistent results from the ‘‘Constrained’’ and
‘‘Normal’’ situations

We also perform the CPSS search with the bistable region

constraint R0 (see subsection c in Methods section) on the

resettable bistability. The mean network topology identified

(Figure 8) shows that the additional constraint (R0$3) does not

change the mean motif structure obtained in the ‘Normal’
situation. This is also consistent with the observation in [13]. A

comparison of the MV matrix between the ‘Normal’ and

‘Constrained’ situations suggests that most link strengths in the

mean network topology under the Constrained situation are

increased (compared to those under the Normal situation).

Meanwhile, the backbone motif and the robust minimum motifs

in the Constrained situation are consistent with those found in the

Normal situation (Figure 9; Table 2). This consistency suggests

that the CPSS-identified candidate topologies are not sensitive to

the chosen threshold values in the search criteria (i-iii, subsection c

in Methods section).

Figure 9. Backbone motif underlying resettable bistability under the Constrained situation. (a) Coefficient Variation matrix. (b) Backbone
motifs obtained from the Coefficient Variation matrix. See text for details.
doi:10.1371/journal.pone.0105833.g009

Table 2. Robust minimum motifs underlying resettable bistability for Constrained situation.

Nature of the Link Occurrence Probability Present as Minimal model in [13]?

7----- 9 99.6 Yes (as 7----9a)

3 ----- 7 99.0 Yes (as 2----7)

3---4---8 87.3 Yes (as 2---5---6)

4---8---9 87.4 Yes (as 3---6---9)

4---6---8 85.5 Yes (as 3---5---6)

6---7---8 89.2 Yes (as 5---6---7)

4---6---8---7 85.5 Yes (as 3---5---6—7)

4---9---8---7 87.4 Yes (as 3---6 --- 7---9)

4---8---3---7 87.3 Yes (as 2---3---6---7)

doi:10.1371/journal.pone.0105833.t002
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(e) CPSS with all possible links in the Rb-E2F network
(Case II)

In Text S1, we also present analysis of Case II, which allows the

presence of link 1, 2 and 5 (Figure 2b). Notably, results from our

CPSS analysis posteriori reveal that links 1 and 5 (self-interaction

links of MD and RP nodes, respectively) are not favorable,

indicating a functional selection pressure against evolving these

two links in the Rb-E2F network. On the other hand, the

additional link 2 (inhibition link from RP to MD) is included in the

identified mean motif, while the backbone motif obtained from

CV matrix analysis is unaltered (see section T2 in Text S1). Thus,

an inhibition from RP to MD (forming a double negative feedback

loop with link 4, Figure 2b), if evolved in the Rb-E2F network, can

facilitate the resettable bistability. The link 2, however, is not

essential for the generation of resettable bistability, as it is not

present in the backbone motif obtained from the CV matrix

analysis.

Discussion

In this work we present a thorough comparison of two different

reverse engineering approaches, CPSS and ITS. The ITS

approach used by Yao et al. [13] examines each possible network

topologies individually, and adopts the Hill-type function form.

The present one, CPSS, explores the continuous parameter space,

and adopts the Wilson-Cowan type function form. Our analysis

shows that the two approaches give consistent results on the mean

network topology and the backbone motifs underlying resettable

bistability in the Rb-E2F network.

There exist a few quantitative discrepancies between results

obtained from these two methods, such as the relative ranks (based

on occurrence probabilities) of the minimum motifs. These

discrepancies can be accounted by mathematical formalisms.

Yao et al. use different formalisms to describe multiplicative and

additive relations among links; we employ a single form (Wilson-

Cowan) but use variations of parameter values to reflect different

regulation modes. Also, in their ITS study Yao et al. allow the

coexistence of two links of opposite signs from one node to another

node (e.g., link 4 and 5 coexisting from EE to RP, Figure 1 of

[13]). Unlike the ITS method, the Wilson-Cowan formalism used

in this work does not treat multiple links between two nodes

individually. Instead, we consider one effectively ‘‘lumped’’ link

from one node to another node. We also note that the CPSS

method can be implemented using other mathematical formal-

isms, such as the mass-action type function form. Some of these

formalisms may not allow the use of a single expression to describe

both activation and inhibition, and thus separate function forms

are needed.

In summary, the present work and the earlier one of Yao et al.
[13] study the key network structures underlying resettable

bistability in the Rb-E2F gene network using different mathemat-

ical formalisms and search algorithms. The overall agreement on

the results of these two studies suggests the effectiveness of the

common reverse engineering principle they use. That is, by

performing a comprehensive computer search of topology and

parameter spaces, key robust network structures underlying given

systems properties can be identified, largely independent of the

exact mathematical formalisms. Such reverse engineering princi-

ple has been successfully used to identify key network topologies

responsible for various biological properties (e.g., polarity [7],

adaptation [8], and bistability [13]). The CPSS approach, by

avoiding the enumeration of individual topologies for the search,

further extends the application of this reverse engineering principle

to biological networks containing large numbers of nodes. The

CPSS software package developed in this work will aid such

applications and it is freely available to researchers of interest.

Supporting Information

Information S1 Computer package for the CPSS program.

(ZIP)

Text S1 Further explanations and results of CPSS algorithm,

modeling methods and statistical analysis of motifs.

(PDF)
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