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Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and

gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations

occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism

and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumu-

lation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive

review, we highlight the profound impact of adaptive and maladaptive responses regulating iron meta-

bolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron

homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and

ferroptosis may serve as potential strategies for kidney management in diabetes.
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D
iabetes mellitus affects approximately 10% of the
adult population worldwide (about 529 million

estimated in 2021).1 Although standard of care is
established, the chronic effects and long-term compli-
cations remain significant public health concerns.1

DKD, also known as diabetic nephropathy, is one of
the most frequently diagnosed complications.2,3

Approximately half of patients with type 2 diabetes
and one-third of patients with type 1 diabetes will
develop DKD.4-6 Moreover, patients with DKD consti-
tute 50% of the end-stage renal disease population,
which strongly contributes to the risk of morbidity and
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mortality.3 Therefore, the diagnosis and management of
DKD are crucial in mitigating the health burden within
the diabetes community.

The pathogenesis of DKD is complex, involving
glucose metabolism disorders, hemodynamic abnor-
malities, oxidative stress, genetic predispositions, and
inflammation. Recognized as a severe microvascular
complication of diabetes mellitus,4,7,8 DKD is charac-
terized by the activation of the renin-angiotensin-
aldosterone system, resulting in the constriction of
the efferent arterioles, disrupting self-regulation and
causing glomerular hypertension.9 This ultimately
leads to tubulointerstitial fibrosis,10 tubular atrophy,
and expansion of the mesangial cells.4 In addition, the
hyperglycemic and hyperlipidemic environment pro-
motes the production of reactive oxygen species,11

activation of protein kinase C,12 and expression of
transforming growth factor b-1,13 leading to oxidative
stress and initiating proinflammatory responses14,15

and oxidative stress.16,17

Themanagement strategies for DKDprimarily focus on
the control of blood glucose, blood pressure, and lipid
levels, in addition to diet and lifestyle interventions.3

Glucose-lowering agents such as metformin and
sodium-glucose cotransporter 2 inhibitors have been
demonstrating renal protective effects in DKD.18 In terms
of blood pressure control, angiotensin-converting
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enzyme inhibitors or angiotensin receptor blockers have
been proven to be renoprotective in DKD.19 The effects of
lipid-lowering agents on kidney function in DKD remain
unclear, and there is ongoing debate regarding their
mechanisms and outcomes in DKD.20,21 Antioxidants
such as, NADPH oxidases 1/4 inhibitor GKT137831 and
ascorbate peroxidase-115 showed potential in alleviating
the progress of DKD in several mouse models.22,23 Ne-
phrologists also recommend strategies beyond medica-
tions, including exercise,24 weight control, specific
dietary modification, and macronutrient restriction.25,26

Patients with DKD often face challenges from other dia-
betic complications, such as retinopathy, neuropathy,
cardiovascular diseases, and foot disease, adding further
complexity to DKD management.3

Apart from the aforementioned pathologic mecha-
nisms and potential treatments, ferroptosis has become
a potential mechanism in the pathogenesis of DKD.27 It
is a type of cell death that can be suppressed by both
iron depletion and lipophilic radical-trapping antioxi-
dants; direct detection of lipid peroxidation is also
required to validate the occurrence of ferroptosis.28,29

The evaluation of ferroptosis has been well-developed
in the recent decade,30 including the detection of
elevated lipid peroxidation by live cell probe or
byproducts, higher labile iron level by ferrous ion
(Fe2þ probe) staining, shrunken or dense mitochondria
morphology via electronic microscope, and specific
gene changes such as transferrin receptor 1 (TFR1), etc.
However, these methodologies are mostly intrusive,
and require extensive time and instruments to accom-
plish. Other in situ, fast, nonintrusive technologies for
the evaluation of ferroptosis would be of great interest
to basic and clinical research. A recent study high-
lighted the implication of magnetic resonance imaging
(MRI)31 in iron detection in the kidney of mouse
models and patients, which suggested the potential of
MRI in detecting iron driven ferroptosis.

Despite emerging research highlighting the signifi-
cance of ferroptosis in DKD,32-34 as well as the impact of
ferroptosis inhibitors in DKD animal models,33,35

rigorous assessments of ferroptosis within DKD—or
indeed any chronic kidney disease—remain absent,
failing to meet the heightened standards established
within the domain of ferroptosis research. This review
strives to provide a comprehensive analysis of the
current knowledge regarding the role of iron and fer-
roptosis in the pathogenesis of DKD. Our objective is to
delineate a clearer trajectory for future investigations
and ultimately, facilitate the advancement of the field.

Systemic and Renal Iron Homeostasis

Iron homeostasis is delicately maintained in mamma-
lians (Figure 1).36 Dietary iron is absorbed by
Kidney International Reports (2024) 9, 1972–1985
enterocytes in the small intestine.37,38 In the apical
membrane of small intestinal cells, Fe3þ is converted to
Fe2þ by duodenal cytochrome b and transported into
the cytoplasm by divalent metal transporter protein
1.39 Heme, an iron-containing porphyrin, is trans-
ported via heme carrier protein 140 and/or heme-
responsive gene protein 1,41,42 and then catabolized
by heme oxygenase 1 (HO1) to release Fe2þ.43 Cytosolic
iron is exported into the blood by the sole iron
exporter, ferroportin 1 (FPN1), located at the baso-
lateral membrane of enterocytes.44 The majority of
circulating iron (>90%) is recycled from splenic red
pulp macrophages and other tissue-resident macro-
phages, which phagocytize senescent red blood cells
and release iron from hemoglobin or heme, a process
known as iron recycling.45 Circulating iron binds to the
carrier protein transferrin (TF) and enters cells through
the TF-TFR1 endocytosis system.46 Recently, a glyco-
protein CD44 has been identified to mediate iron, and
other metal ion transportation through a hyaluronates-
dependent endocytosis system.47,48 The liver senses
fluctuations in iron levels and inflammatory status in
the circulation. In response, it synthesizes and secretes
hepcidin, a 25–amino acid hormone, to induce inter-
nalization and degradation of FPN1,49 thereby regu-
lating iron uptake and recycling.

Kidneys are known to detect hypoxic conditions and
secrete erythropoietin.50-53 This hormone promotes
erythropoiesis in the bone marrow and extramedullary
erythropoietic organs.54 Erythropoietic progenitors pro-
duce various erythropoietic factors,55 including eryth-
roferrone,56 which interfere with BMP/SMAD signaling
in the liver.57 This leads to suppression of hepcidin
expression and increased iron uptake and recycling,
adapting to the iron demand for erythropoiesis. In ho-
meostatic conditions,58 only about 0.1 mg/d of iron is
excreted by the kidneys,59-61 which is relatively low
compared to the daily dietary iron uptake from duo-
denum (approximately 0.95–2.42 mg/d, postulated by
0.95–2.42 mg/d iron loss).59 This is partly due to the
filtering in the glomerulus,62 whereas other studies
indicate that kidney tubules actively reabsorb iron (in the
form of TF-bound iron [TBI] and non-TBI) from the
filtrate.58,62,63 This leads to a low urinary iron level (62.4
� 4.1 mg/g creatinine) in healthy individuals.64 The
reabsorbed iron is likely exported back to interstitial
space or circulation, given that the kidney holds a rela-
tively small iron reservoir compared to the liver and
spleen.65 Nevertheless, the increase of urinary iron in
Hephaestin and Ceruloplasmin double knockout mice66

and patients with b-thalassaemia major60,67 suggests a
threshold for iron reabsorption and an iron regulatory
system in the kidney. This is further supported by the
finding that calcium channel blockers significantly
1973



Figure 1. Systemic and renal iron homeostasis. Dietary iron is absorbed at the apical membrane of enterocytes, Fe3þ is converted to Fe2þ by
DCYTB or other metal reductases and transported into the cytoplasm by DMT1. Heme is transported via HCP1 and/or HRG1, and then
catabolized by HO1 to release Fe2þ. Cytosolic iron is exported into the blood by FPN1 which is located at the basolateral membrane of
enterocytes. The majority of circulating iron (>90%) is recycled in macrophages, by engulfing senescent red blood cells. Circulating iron binds
to the carrier protein TF. The liver senses fluctuations in iron and inflammation, thereby synthesizes and secretes hepcidin to induce inter-
nalization and degradation of FPN1. BMP/SMAD and IL6/STAT3 signaling pathway are 2 of the major pathways maintaining hepcidin tran-
scription. Hypoxia stimulates the kidneys to produce EPO, which enables iron utilization for erythropoiesis in the bone marrow. The hormone
ERFE is produced by erythropoietic progenitor cells to inhibit hepcidin synthesis. Proximal and distal tubule epithelial cells reabsorb TBI via TFR1
from the tubular lumen, NTBI is transported into the cytosol by DMT1, zinc transporter ZIP8 and/or ZIP14. Proximal tubule epithelial cells also
take up heme and TBI through the megalin/cubilin complex. NGALR locates on distal tubule epithelial cells utilize to bind NGAL as a form of
NTBI. HO1 is expressed in proximal tubule epithelial cells driven by HIF1a, to catabolize heme. Proximal tubule epithelial cells expressed FPN1 is
more suggested to localize at the basolateral membrane, while some studies showed the apical localization of FPN1. Image was created with
BioRender.com. DCYTB, duodenal cytochrome b; DMT1, divalent metal transporter protein 1; EPO, erythropoietin; ERFE, erythroferrone; FPN1,
ferroportin 1; HCP1, heme carrier protein 1; HIF1a, hypoxia-inducible factor 1a; HO1, heme oxygenase 1; HRG1, heme-responsive gene protein 1;
NGAL, neutrophil gelatinase-associated lipocalin; NGALR, neutrophil gelatinase-associated lipocalin receptor; NTBI, nontransferrin-bound iron;
TBI, transferrin-bound iron; TF, transferrin.
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enhance urinary iron excretion in the hemochromatosis
(HH) mice model.68,69 Therefore, the kidney represents a
potential target for manipulating systemic iron
homeostasis.

Various components involved in iron metabolism
have been identified in different segments of the kidney.
Among these segments, the proximal tubules are
particularly equipped for iron reabsorption.65,70 At the
apical membrane of proximal tubules, the TFR1 and
megalin/cubilin work together to mediate the uptake of
TBI71,72 and heme iron.73 The HO1 catalyzes the break-
down of heme into Fe2þ, biliverdin, and carbon mon-
oxide.74-76 Labile iron (Fe2þ) undergoes oxidation into
Fe3þ and is stored within ferritin nanocages in a process
called mineralization.77 The iron exporter, FPN1, is
suggested bymore studies to be located at the basolateral
1974
membrane of proximal tubules,78-80 although some still
argue that the localizationmight be apical.70 Cellular iron
homeostasis is regulated by iron regulatory protein 181

and hypoxia-inducible factor 1 a82,83 in response to the
labile iron pool and hypoxic stress, respectively. Other
iron transporters such as neutrophil gelatinase-
associated lipocalin receptor, and non-TBI transporters
such as Zrt-/Irt-related protein, Zrt-/Irt-related protein 8
and divalent metal transporter protein 1, are also
detected in both proximal and distal tubules,84,85 sug-
gesting an alternative coping systemwhenTBI-mediated
iron absorption in the proximal tubules becomes
overwhelmed.

Another interesting phenomenon is that iron accu-
mulates in the tubules of the kidney in mouse models
of sickle cell diseases,86 phenylhydrazine-induced
Kidney International Reports (2024) 9, 1972–1985
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hemolysis,87 and malaria.65 This accumulation of iron
in the kidney is associated with acute kidney injury
and renal dysfunction. It was proposed that the HO1-
FTH-FPN1 axis acts as a resolution pathway in
response to hemolysis during malaria.65,88 Deletion of
either one among these genes specifically in the prox-
imal tubules of mice leads to exacerbated kidney injury
and increased susceptibility to malaria.65,88 Further-
more, the HO1-FTH-FPN pathway has also been found
to be induced in the kidneys from mouse models of
rhabdomyolysis70 and neonatal hemolysis,89 implying a
cytoprotective role of these genes in these conditions
involved in heme toxicity.

Several genetically modified animal models of ferro-
portin provide valuable insights for the working model
of renal iron handling. The deletion of Fpn1 specifically
in the distal nephrons and collecting ducts using Ksp-cre
does not significantly impact iron deposition in the
kidney. However, whole nephron deletion of Fpn1
driven by Nestin-cre leads to renal iron accumulation
specifically in the proximal tubules.79 This indicates that
Fpn1 is involved in the basolateral iron transport in
proximal tubule epithelial cells. Dietary iron deficiency
intervention further suggests Fpn1 localizes on the
basolateral membrane of proximal tubule epithelial
cells,79 because iron deficiency leads to a more severe
anemic phenotype and lower iron content in the liver of
Nestin-cre; Fpn1fl/fl mice compared to Fpn1fl/fl mice.79

This is in line with the iron phenotype from Pax8-
creErt2; Fpn1fl/fl mice and Pax8-creErt2; FpnC326Yfl/fl

mice, where Fpn1 is deleted or replaced with a gain-of-
function C326Y mutant in proximal and distal tubules
and in collecting ducts.90Moreover,we employed amore
specific model, Pepck-cre;Fpn1fl/fl mice, where Fpn1 is
deleted in the S3 segment of proximal tubule.65 Kidney
iron is higher at steady state as well as at the peak of
Plasmodium chabaudi infection in Pepck-cre; Fpn1fl/fl

mice versus Fpn1fl/fl mice. These genetic findings high-
light the unique role of proximal tubules in ferroportin-
mediated renal iron reabsorption and storage. Similar
protective role of Fpn1 in proximal tubule is validated in
folic acid nephrotoxicity.91

In summary, the kidney develops its own iron regu-
latory system to maintain local iron homeostasis and
actively participates in systemic iron metabolism,
particularly in hypoxic and hemolytic condi-
tions.58,87,89,92 Proximal tubules appear to be the core
segments where most iron components reside, suggest-
ing that they could be a potential target for therapeutic
intervention in manipulating kidney iron handling.

Iron in DKD

The established working model of renal iron handling
explains the iron dynamics at steady state and
Kidney International Reports (2024) 9, 1972–1985
hemolytic conditions very well. However, it is crucial
to acknowledge that iron redistribution also takes place
in various other kidney diseases, including DKD.31,93

Although the detailed mechanism and clinical signifi-
cance have not been fully elucidated,94 numerous
studies have indicated a strong correlation between
iron accumulation and the development of DKD. As
early as the 1990s, nephrologists proposed that iron
secretion into urine occurs in patients with DKD.95 This
phenomenon is proposed to be a simultaneous effect of
proteinuria. Remarkably, the level of urinary TF
excretion positively correlates with tubular iron con-
tent, indicating the possibility of its reabsorption
through pathways involving TF-TFR1 or megalin/
cubilin-mediated endocytosis.71,72 Consequently, the
"leaked" iron may serve as a significant source for
intrarenal iron storage and can potentially trigger
oxidative damage within the tubules. This is supported
by the accumulation of iron in the tubules of diabetic
animal models73,96 and patients with DKD.93

However, the exact source of the deposited iron is
still in debate. This is because the urinary iron content
in patients with DKD is much higher than the amount
of urinary TF,95 suggesting the presence of a non–TF-
bound source of iron in the tubular fluid. Potential
explanations for this phenomenon include the
involvement of heme oxygenase, which releases iron
from heme molecules,43 or the local inflammation and
leukocyte infiltration that brings extracellular fluid
into the tubules, allowing non-TBI to access tubular
cells possibly via transporters such as Zrt-/Irt-related
protein/Zrt-/Irt-related protein 8, or divalent metal
transporter protein 1.85,97,98 However, these possibil-
ities have not been thoroughly investigated thus far.

The accumulation of free iron ions promotes the Fen-
ton reaction, leading to excess production of reactive
oxygen species and ultimately resulting in iron
toxicity.99 The idea of iron involvement in tissue damage
in DKD is supported by findings from human genetics
studies. For instance, patients with b-thalassemia have
early development and accelerated progress of DKD; this
is attributed to their iron loading in parenchyma tissues,
including the kidney.100 A similar situation is reported in
patients with HH, who have iron overload in most or-
gans.101 Up to 60% of patients with HH will develop
diabetes,102,103 which can be corrected for 30% to 40%
by phlebotomy or iron chelation.103,104 Patientswith type
I HH who carry H63D allelic variant in HFE gene have a
preference to develop DKD over the healthy population
(odds ratio¼ 1.8).105 Conversely, treatment with the iron
chelator deferiprone or a refined diet (low in iron avail-
ability, enriched with polyphenols, and restricted in
carbohydrates), has shown improvements in glomerular
damage and disease parameters in DKD.106,107
1975



Figure 2. Ferroptosis in diabetic kidney disease. Catalytic iron promotes ROS formation via the Fenton reaction, increasing lipid peroxidation in
mesangial cells, podocytes, and especially proximal tubular epithelial cells. This is associated with renal fibrosis. PUFAs are catalyzed by
enzymes such as ACSL4, LPCAT3, and LOX, thereby generate oxidized lipids. PRDX6 mitigates lipid peroxidation via suppressing iron accu-
mulation and boosting Gpx4 and Slc7a11 expression. HMGB1 protein blunts DNA repair and antagonizes NRF2. NRF2 sequestered by KEAP1, is
activated upon oxidative stress, it potentiates antistress program including NQO1, HO1, and FTH, etc. HIF drives expression of HO1 to catabolize
heme, thereby releasing labile iron. Nuclear receptor coactivator 4 and HO1 are the main forces that increase intracellular labile iron. Excessive
labile iron (Fe2þ) is exported through FPN1 and oxidized into Fe3þ by ferroxidases. SLC7A11 and SLC3A2 mediate cystine import; the latter is a
substrate of the antioxidant GSH. The rate limiting step of GSH synthesis is catalyzed by GCL, which is composed of GCLC and GCLM subunits,
whose expression is promoted by NRF2. GPX4. Image was created with BioRender.com. ACSL4, acyl-CoA synthetase long chain family member
4; FPN1, ferroportin 1; GCL, glutamate cysteine ligase; GPX4, glutathione peroxidase 4; GSH, glutathione; HIF, hypoxia-inducible factor; HMGB1,
high-mobility group box 1; HO1, heme oxygenase 1; LOX, lipoxygenases; LPCAT3, lysophosphatidylcholine acyltransferase 3; NRF2, nuclear
factor E2 related factor 2; PRDX6, peroxiredoxin 6; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; SLC3A2, solute carrier
family 3, member 2; SLC7A11, solute carrier family 7 member 11.
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Experimental evidence in animal models has demon-
strated thatmice supplementedwith iron108 ormicewith
HH109 exhibit exacerbated oxidative stress and acceler-
ated progression of DKD. When rats were subjected to
enforced iron treatment through iron dextran injection,
there was an increase in levels of malondialdehyde,
protein oxidation, and nitration in the kidney.108 In a
type I HH mouse model (Hfe-/- mice), the excessive
deposition of iron in the kidneymay stimulate the renin-
angiotensin system, which is associated with higher
levels of kidney injury markers such as kidney injury
molecule 1 and Periodic acid-Schiff staining.109

Conversely, the use of iron chelators or an iron-
deficient diet has been shown to alleviate symptoms in
animal models of DKD.96,109-111

Of note, the cause of DKD in iron overload patients or
animal models is still usually considered to be indirect,
because pancreatic b cells are hypersensitive to oxida-
tive stress.112 The iron burden in patients with HH leads
to apoptosis in pancreatic islets, which could be a major
trigger for insulin insufficiency in diabetes progres-
sion.113 Moreover, hepatic iron overload causes dysli-
pidemia114,115 and thereby contributes to nephropathy
in diabetes.116,117 Therefore, whether iron loading in the
1976
kidney directly acts on diabetic renal pathology war-
rants further elucidation. Another consideration is the
potential beneficial role of iron in mitigating kidney
fibrosis, as indicated by a list of clinical118,119 and animal
researches.120-124 These studies propose that iron might
exert different effects on the pathogenesis of kidney
diseases when introduced in a proper way. The cell type
in which iron deposits also seems important.124 Further
exploration of iron supplementation in DKD could
contribute to unraveling this puzzle.

Ferroptosis in DKD

Iron catalyzed reactive oxygen species formation also
drives lipid peroxidation, which leads to ferropto-
sis.125,126 In recent years, there has been a surge in
mechanistic and clinical studies investigating the rele-
vance of ferroptosis in kidney diseases. Proximal tubule
epithelial cells, in particular, are highly sensitive to
ferroptosis agonist.127-129 The well-known genetic fer-
roptosis model, glutathione peroxidase 4 knockout mice
exhibit severe kidney injury in addition to multiple or-
gan failure.130 In patients and animal models of acute
kidney injury129,131 and DKD,33,35,132 markers of fer-
roptosis such as malondialdehyde, 4-hydroxynonenal,
Kidney International Reports (2024) 9, 1972–1985
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and C11-BODIPY staining are elevated compared to
healthy individuals or sham groups. Renal fibrosis has
also been proposed as a typical outcome of ferroptosis.133

These findings suggest that the kidney is a sensitive
target for tissue damage mediated by ferroptosis
(Figure 2).

Given that iron is accumulated in the renal tubules
in patients with DKD93 animal models96 and the
heightened sensitivity to ferroptosis in the kidney,
there is a proposed involvement of ferroptosis as a
potential mechanism in the development of DKD.94

Although clinical evidence is limited due to the rela-
tively recent discovery of this concept, the machinery
required for ferroptosis is induced in the kidneys of
animal models with both type I and type II diabetes.
This is supported by the upregulation of the pro-
ferroptotic enzyme acyl-CoA synthetase long chain
family member 4 and the downregulation of the fer-
roptosis suppressors glutathione peroxidase 4, solute
carrier family7 member11, and solute carrier family3
member2 in mice exposed to streptozotocin or db/db
mice, in comparison to control groups.134 In vitro
studies have additionally demonstrated the develop-
ment of ferroptosis in mesangial cells when exposed to
erastin (a ferroptosis agonist), along with the increased
sensitivity of renal tubular cells to ferroptotic agonists
under high glucose conditions.135 These observations
collectively point toward a cellular mechanism of fer-
roptosis contributing to the pathology in DKD.

The precise initiating signal that triggers ferroptosis
in DKD has not been fully characterized. One hypothesis
proposes that in the ischemic environment of the dia-
betic kidney, the hypoxia-inducible factor pathway is
upregulated.136-138 Activation of the hypoxia-inducible
factor leads to increased expression of HO1,139 which
in turn enhances the labile iron pool through facilitating
the release of iron from hepatic and renal cells.76 Given
the critical role of labile iron in catalyzing lipid peroxi-
dation, this may contribute to tubular damage in DKD.
However, thus far, no direct evidence has shown
increased labile iron level in renal tubule cells of DKD;
however, it is reported that labile iron pool is depleted in
kidney macrophages, which contributes to renal fibrosis
in chronic kidneydisease.124 This entertains the idea that
iron redistribution and cell-cell communication may
contribute to ferroptotic damage in kidney diseases,
including DKD. Another potential pathway involves the
release of iron storage, where nuclear receptor coac-
tivator 4 mediates ferritinophagy and increases cellular
labile iron pool through ferritin degradation.94 Previous
studies have demonstrated that knockdown of nuclear
receptor coactivator 4 reversed the effect of oxalate-
induced ferroptosis in HK-2 cells,140 and nuclear recep-
tor coactivator 4 expression is elevated in the kidneys of
Kidney International Reports (2024) 9, 1972–1985
db/db mice.141 However, nuclear receptor coactivator 4
expression is decreased in most tubule cells frommurine
single cell transcriptomic analysis142 and single-nucleus
RNA datasets of patients with DKD143 compared to their
controls. Therefore, direct evidence such as tissue-
specific knockout model is required to demonstrate the
role of nuclear receptor coactivator 4 in DKD.

Aside from iron itself, other pathways have been
reported to interact with the ferroptosis cascade. For
example, high-mobility group box 1 protein disrupts
DNA repair and promotes ferroptosis by counter-
acting the function of nuclear factor E2 related factor
2,135 which is known as an important pathway for
antioxidation and protection against ferroptosis in
DKD.35,144,145 In addition, the specific protein
1-peroxiredoxin 6 axis has been shown to protect
against podocyte injury in DKD by suppressing
ferroptosis.34

Recent studies have proposed sulfide metabolism as
an inhibitory mechanism in controlling ferropto-
sis.146,147 This is supported by findings that hydrogen
sulfide (H2S) donors mitigate injury by inhibiting fer-
roptosis in mouse fibroblasts,147 acute lung injury, and
particulate matter-induced chronic obstructive pulmo-
nary disease.146 The ferroptosis agonist RSL3 ([1S,3R]-
RSL3) blunts cystathionine g-lyase/H2S pathway.
Conversely, cystathionine g-lyase expression is upre-
gulated in the presence of the ferroptosis inhibitor,
ferrostatin 1.147 Moreover, H2S reverses RSL3-induced
cell death by preserving mitochondrial structure and
lipid metabolism.147

Given the cytoprotective potential of sulfide meta-
bolism, it has been characterized to control DKD.148

The components of sulfide metabolism are widely
expressed in the kidneys, and the decrease of enzymes
involved in H2S production (such as cystathionine g-
lyase, cystathionine b-synthase, etc.) and plasma H2S
levels in chronic kidney disease and DKD appears to be
a metabolic maladaptation to the renal pathogen-
esis.148,149 H2S, the major product of sulfide meta-
bolism, mitigates DKD through various pathways,
including antioxidation, antiinflammation, and anti-
fibrosis.150 H2S donors inhibit glomerular basement
thickening, mesangial expansion, and interstitial
fibrosis in streptozotocin-induced diabetic mice. They
also prevent extracellular matrix deposition, preserve
vascular compliance, and demonstrate a broad spec-
trum of targets.148,151 Mechanistically, H2S activates
the stress-responsive nuclear factor E2 related factor 2
signaling pathway to mitigate oxidative stress induced
by high glucose levels.152,153 H2S acts by inhibiting
transforming growth factor b-1, thereby preventing
the accumulation of extracellular matrix, hypertrophy
mediated by mesangial cell proliferation, and
1977
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ultimately fibrosis by reducing a-smooth muscle actin,
fibronectin, and other fibrogenic genes.154 H2S also
exerts antifibrogenic effects through AMPK activation,
which antagonizes the mTOR pathway.146,155 Further-
more, H2S reverses the suppressive effect of the matrix
metalloproteinase family on fibrogenesis, possibly by
promoting miRNA expression.156 Studies have
demonstrated that H2S blunts nuclear factor kB, and
MAPK cascades to prevent the induction of proin-
flammatory cytokines and cell adhesion molecules in
DKD models.157 Therefore, H2S or sulfide metabolism
can serve as an additional pathway to counteract the
pathogenesis of DKD by inhibiting ferroptosis and
yielding beneficial effects on oxidative stress, inflam-
mation, and fibrosis.150,151

Taken together, iron collaborates with other com-
ponents in the ferroptosis cascade to trigger deleterious
consequences in the kidney. These mechanisms may
represent one of the central factors driving the patho-
genesis of DKD.

Nonintrusive Method for Renal Iron

Determination

Although iron determination is well-developed by
current technology, the intrusive procedure for kidney
biopsy renders the application of iron assessment a
potential early risk factor. Therefore, the development
of nonintrusive methods for iron detection or even
quantification is appealing. Several studies have
demonstrated the superiority of gradient echo T2*-
weighted imaging as a noninvasive method for diag-
nosing iron deposition in the liver, heart, and kid-
ney.158-162 Although MRI detected renal iron
deposition is more reported in hemolytic diseases,163

MRI has been recently used in detecting renal iron
distribution in folic acid–treated mice and kidney
transplant patients, this suggested a potential implica-
tion of iron-MRI in early diagnosis for kidney dis-
eases.31 Iron also accumulates in the development and
progression of DKD.31,93,96 Thus, MRI may serve as a
valuable clinical tool for identifying renal iron accu-
mulation in DKD.

Technically, in MRI, the paramagnetic nature of
hemosiderin and ferritin storage in the kidney leads to
a reduction in T2 relaxation time, resulting in signal
loss.164 This diminished signal can be quantified using
the parameter R2* (R2* ¼ 1/T2*). Various studies have
shown that R2* is proportional to the iron content in
the kidney, making it a reliable indicator of relative
iron concentration in this tissue.162,165 In cases of iron-
overloaded kidneys, T2-weighted image displays a
decrease in signal intensity in the renal cortex, along
with lower T2* values and elevated R2* values. Higher
R2* values or lower T2* values are indicative of greater
1978
iron deposition.166,167 Nevertheless, various MRI se-
quences and operating techniques exist, and the choice
of MRI examination technique can be tailored to spe-
cific clinical requirements.

Concerning kidney injury screening, current func-
tional MRI techniques can be roughly categorized as
follows:

1. Blood oxygen level dependent MRI is another T2*-
based technique that primarily reflects the renal
oxygenation level. It can indirectly indicate the
interplay between diabetic kidney injury and iron
overload.168

2. Susceptibility-weighted imaging leverages the
disparity in tissue magnetization rates to generate
contrast. As kidney tissue’s iron content increases,
there is a corresponding reduction in susceptibility-
weighted imaging signal intensity. Certain studies
propose that susceptibility-weighted imaging sur-
passes T2-weighted image in assessing susceptibility
to excessive irondeposition.Moreover, the amplitude-
to-noise ratio calculated from susceptibility-weighted
imaging phase images can quantitatively evaluate
excessive iron deposition.169,170

3. For the detection of mild iron deposition, gradient
echo T2*-weighted imaging on a 3.0 Tesla MRI system
exhibits greater sensitivity compared to a 1.5 Tesla
device. This enables easier differentiation between
renal parenchyma and renal sinus. Notably, kidney
iron deposition tends to be milder relative to the heart
and liver, and measurements conductedwith 3.0 Tesla
MRI devices yield more accurate information.171

4. Diffusion tensor imaging techniques offer quantita-
tive detection of early kidney injury by correlating
tissue contrast with T1 and T2 relaxation times and
proton density within each pixel. These techniques
examine the diffusion correlation of water molecules
within the tissue, complementing the effective
assessment of iron deposition by MRI.172

5. Multiecho Dixon imaging sequences can mitigate the
influence of R2* measurements in renal tissue
fibrosis or concurrent fat presence.173

Although MRI is a powerful tool for delineating iron
distribution in renal tissues, present methodologies are
unable to differentiate between labile iron pools and
the aggregate iron signal (mostly ferritin clusters and
hemosiderin iron aggregate) detected by MRI.160

Consequently, there is an urgent need for technolog-
ical refinements that enable MRI to specifically identify
labile iron, which is more closely associated with the
process of ferroptosis.126 This advancement in MRI
technology would significantly enhance its applica-
bility and precision in the context of ferroptosis-related
studies.
Kidney International Reports (2024) 9, 1972–1985
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DKD, as a major microvascular complication of diabetes
mellitus, presents a significant burden in terms of
morbidity and mortality. The pathophysiology of DKD
involves intricate interactions between genetic factors,
epigenetic factors, and the environment. However,
effectively diagnosing and treating DKD remains a chal-
lenge in the field. In this review, we proposed that iron
and ferroptosis play a crucial role in DKD pathogenesis,
supported by a list of clinical and animal-based studies.

Nevertheless, comprehensive and detailed research
is imperative to elucidate the role of ferroptosis in the
pathogenesis of DKD, with the ultimate goal of
unveiling novel therapeutic avenues for patients with
DKD. Moreover, we anticipate that MRI will emerge as
a pivotal methodology for advancing the understand-
ing of DKD mechanisms and for developing noninva-
sive diagnostic strategies. We posit that these scientific
advancements will reveal additional precise therapeutic
targets, thereby enhancing the treatment of this prev-
alent and complex condition.
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