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Abstract

Neurons in different layers of sensory cortex generally have different functional properties.

But what determines firing rates and tuning properties of neurons in different layers?

Orientation selectivity in primary visual cortex (V1) is an interesting case to study these

questions. Thalamic projections essentially determine the preferred orientation of neurons

that receive direct input. But how is this tuning propagated though layers, and how can

selective responses emerge in layers that do not have direct access to the thalamus? Here

we combine numerical simulations with mathematical analyses to address this problem. We

find that a large-scale network, which just accounts for experimentally measured layer and

cell-type specific connection probabilities, yields firing rates and orientation selectivities

matching electrophysiological recordings in rodent V1 surprisingly well. Further analysis,

however, is complicated by the fact that neuronal responses emerge in a dynamic fashion

and cannot be directly inferred from static neuroanatomy, as some connections tend to

have unintuitive effects due to recurrent interactions and strong feedback loops. These

emergent phenomena can be understood by linearizing and coarse-graining. In fact, we

were able to derive a low-dimensional linear dynamical system effectively describing stimu-

lus-driven activity layer by layer. This low-dimensional system explains layer-specific firing

rates and orientation tuning by accounting for the different gain factors of the aggregate sys-

tem. Our theory can also be used to design novel optogenetic stimulation experiments, thus

facilitating further exploration of the interplay between connectivity and function.

Author Summary

Understanding the precise roles of neuronal sub-populations in shaping the activity of

networks is a fundamental objective of neuroscience research. In complex neuronal net-

work structures like the neocortex, the relation between the connectome and the algo-

rithm implemented in it is often not self-explaining. To this end, our work makes three

important contributions. First, we show that the connectivity extracted by anatomical and

physiological experiments in visual cortex suffices to explain important properties of the

various sub-populations, including their selectivity to visual stimulation. Second, we
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introduce a novel system-level approach for the analysis of input-output relations of

recurrent networks, which leads to the observed activity patterns. Third, we present a

method for the design of future optogenetic experiments that can be used to devise spe-

cific stimuli resulting in a predictable change of neuronal activity. In summary, we intro-

duce a novel framework to determine the relevant features of neuronal microcircuit

function that can be applied to a wide range of neuronal systems.

Introduction

Understanding the complex computations performed by neural networks in the nervous sys-

tem is a central challenge in neuroscience. In recent years, research in rodent sensory systems

has provided access to many new facts, but has also raised new theoretical questions. In partic-

ular, the role of cortical layers [1, 2] and other distinct subpopulations [3, 4] has received

increasing attention. While the anatomical path of sensory input from the thalamus through

cortical layers has been particularly well characterized for the visual system, it provides little

explanation yet how the information is processed and transformed in transit. Here, we apply

computational neuroscience techniques to gain new insight into the various computational

steps within a highly recurrent neural network.

From a theoretical perspective, the cortical network constitutes a dynamical system, which

operates on different types of sensory input. To study basic properties of such networks, its

input has been assumed to be identical for all neurons [5, 6]. In a sensory system, however, the

input varies across neurons, as sensors extract different aspects of the stimulus. The primary

visual cortex (V1) represents an interesting example to study such systems [7, 8]. In this case,

non-homogeneous input for example carries information about the orientation of moving

gratings or light bars presented to the eye of an animal [9].

A major difference of rodent visual cortex compared to carnivores and primates is the

absence of orientation columns and maps [10]. Although the “salt-and-pepper” organization

of orientation preferences implies that lateral interactions are quite unspecific [11, 12], neu-

rons nevertheless exhibit responses that are strongly tuned with respect to oriented light bars

or gratings [1, 3, 13]. Interestingly, this output tuning is already present at eye opening in juve-

nile mice, where recurrent connectivity appears to be functionally random [14]. In recent the-

oretical studies, this phenomenon could be explained by a strong attenuation of the untuned

component of the distributed input, due to the dominance of inhibition in the recurrent net-

work [7, 8, 15–17]. While these previous works identified the mechanism underlying strong

output tuning in the primary visual cortex of rodents, they provide no explanation for the dif-

ferent degrees of orientation selectivity in different sub-populations, like cortical layers.

In the present work, we apply computational network modeling techniques to study the

emergence of orientation selectivity in a layered cortical network model, with a focus on the

differences between layers and neuronal subpopulations. As a starting point, we adopt the

anatomically and physiologically founded network model developed by Potjans and Diesmann

[2] and extend it by orientation selective input similar to Sadeh et al. [8]. We model an experi-

ment in which an animal is shown a sinusoidal grating as a visual stimulus. By this approach,

we can focus on the influence of synaptic connectivity on neuronal tuning as all other parame-

ters are chosen to be the same over all populations.

Without any adaptation or fine-tuning of parameters, the resulting model matches the dis-

tributions of orientation selectivity found in electrophysiological recordings, including the

weak tuning of inhibitory neurons as well as L5 pyramidal neurons. We then show that these
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specific properties cannot be attributed to any specific projection in the circuit. Rather, it is an

emergent network feature of the entire recurrent microcircuit. Furthermore, we suggest a con-

cept for the design of novel optogenetic stimulation experiments. Applying this concept to the

V1 cortical microcircuit, we can make specific predictions for the outcome of experiments to

manipulate the orientation selectivity of L5 principal cells. The analysis of such experiments

can eventually confirm or refute our analysis of the circuit.

Methods

A multiplayer model of primary visual cortex

The network model considered throughout our study is, in essence, the same as the recurrent

network model developed by Potjans and Diesmann [2], extended by thalamic input with a

weak orientation bias as described in Sadeh et al. [8]. Potjans and Diesmann [2] created a full-

scale neural network model, matching as close as possible the nervous tissue underneath 1

mm2 of neocortex. They incorporated a large set of experimental studies, most prominently

the ones by Thomson et al. [18] and Binzegger et al. [19]. They derived a generic connectivity

map between eight populations of neurons situated in four layers (L2/3, L4, L5, L6), one excit-

atory (e) and one inhibitory (i) population in each layer (see Fig 1A for an illustration of the

model). The model network consists of close to 80 000 leaky integrate-and-fire neurons, where

Fig 1. Model parameters. A Schematic of the model with eight populations in four layers, thalamic and other background input. Triangles and circles denote

excitatory and inhibitory populations, respectively. B Total number of synapses each neuron receives (in-degree) from any other neuronal population in the model,

including input. C Input rate variation over stimulus angles for single neurons in L4 and L6. The angle corresponding to the peak of the curve is the preferred

orientation of the thalamic input to that neuron. D Total number of neurons in each of the eight subpopulations. E-F Input in-degree for each neuron in each of

the eight populations. Numbers are identical to the two right-most columns of the matrix shown in B.

https://doi.org/10.1371/journal.pcbi.1007080.g001
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the respective size of individual subpopulations varies strongly across layers. While the two

largest populations (L4e and L2/3e) contain more than 20 000 neurons, L5e comprizes only

about 5 000 neurons (Fig 1D). Throughout all layers, inhibitory populations are considerably

smaller than the respective excitatory populations, by a factor of four on average. In our work,

the leaky integrate-and-fire neurons are all equipped with delta synapses, i.e. with each incom-

ing spike, the membrane potential is instantaneously deflected by a fixed voltage J, decaying

with the membrane time constant τ. The synaptic efficacy J varies depending on the source

and target population, respectively.

Our model has a fixed number of synapses for each projection, i.e. each neuron of the post-

synaptic population P receives the same number of synaptic inputs KPT from the presynaptic

population T. For any postsynaptic neuron in the target population, the presynaptic neurons

are drawn randomly from the source population. The numbers KPT, which are the essential

parameters of our model, were derived by Potjans and Diesmann [2] and are graphically repre-

sented in Fig 1B.

In addition to recurrent synaptic connections, neurons of the model network receive

external input from two different sources (Fig 1A). The first type of input, termed “back-

ground input” throughout this paper, is targeting all populations. It represents axons from

other cortical and subcortical regions, including gray matter and white matter projections

(Fig 1B/1E), but excludes those originating from the thalamus. These background inputs are

independent of the stimulus. In all simulations, they are modeled as Poisson processes with

rate νbg.
The second type of input is represented by thalamocortical projections that originate from

the lateral geniculate nucleus (LGN) (Fig 1B/1F). In primary visual cortex, these projections

are the main source of information about a stimulus. This is the component where we made

an important addition to the original model of Potjans and Diesmann [2]. We replaced the

unspecific thalamic input with an input that depends in a specific way on the stimulus.

Throughout this paper, the stimuli considered were oriented moving gratings, which are com-

monly used in visual neuroscience. Similar to Sadeh et al. [8], each neuron in one of the two

populations that receive input (i.e. L4 and L6) is randomly assigned a preferred orientation ŷ i
to represent the tuning of the effective compound input from all pre-synaptic thalamic neu-

rons. Specifically, the input to each neuron depends on the orientation θ of the stimulus and

varies according to

nthi ðyÞ ¼ K th
P n

th
0
½1þm cos ð2ðy � ŷ iÞÞ�: ð1Þ

Here, K th
P is the in-degree of this projection, and nth

0
is the mean rate of individual thalamic

neurons. We only require the compound input to be tuned and do not make any assumptions

about the origin of this tuning. An illustration of the input variation is provided in Fig 1C.

Note that orientations vary between 0˚ and 180˚ as we do not consider direction selectivity in

this study. Similar to the background input, the thalamic input was conceived as a homoge-

neous Poisson process.

It is instructive to analyze and compare two different modes of operation. The stimulation
condition is the situation described above, emphasizing the presentation of a structured visual

stimulus (here, a moving oriented grating) to the animal. In contrast, the spontaneous condi-

tion emulates the presentation of a homogeneous gray screen to the animal. In this case, the

intensity of thalamic inputs is the same as the rate of the background inputs. Moreover, the

angular modulation m is set to zero, removing any information about stimulus orientation

from the input.
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Implementations of the model

The results of this study are based on three different approximations of the network model.

Each of them makes additional assumptions about the network dynamics to achieve different

levels of abstraction and simplification. At the same time, all renderings are based on the same

connectivity parameters and the same single neuron model. In the following, the three models

will be briefly described.

Model A: Spiking neuronal network model. The starting point for our analysis is a spik-
ing neuronal network, very similar to the implementation by Potjans and Diesmann [2]. Here,

for each of the close to 80 000 neurons, the temporal evolution of the membrane potential

Vi(t) is simulated for each neuron i using standard numerical methods. The interaction among

neurons in the network is mediated by discrete spike events. Each spike emitted by a pre-syn-

aptic neuron depolarizes or hyperpolarizes the membrane potential of the post-synaptic neu-

ron. The output of the recurrent network is defined in terms of the spike trains of all neurons.

Like Potjans and Diesmann [2], we use the spiking network simulation tool NEST [20] to per-

form all the necessary numerical simulations.

Model B: Nonlinear firing rate model. Based on the spiking neural network model, we

also developed a neuron-by-neuron firing rate model, applying the theory developed by Brunel

[6] to single neurons [17, 21]. This approximation assumes that neuronal spike trains have

Poissonian statistics and that correlations among neurons are insignificant.

The network is characterized by the input-output transfer function Fi of each neuron, lead-

ing to the network-level self-consistency equation

ni ¼ Fiðn; nbg; nthÞ; ð2Þ

where i = 1, . . ., N is the neuron index and ν, νbg and νth are the vectors of recurrent neuronal

firing rates and input rates, respectively. Throughout this work, variables denoted by th and bg

refer to quantities originating from the thalamus or other external inputs, respectively. Conse-

quently, the model results in a high-dimensional system of nonlinear algebraic equations to be

solved numerically, yielding the firing rate νi of each individual neuron.

Model C: Linearized network model. Finally, based on Model B, we also derive a linear-
ized network model of the microcircuit. Fixing a point of linearization, for any input perturba-

tion Δνth, it predicts the perturbation of the single neuron firing rates Δν. In the linear model,

these can be explicitly calculated by

Dn ¼ ð1 � WÞ� 1 BDnth:

The matrices W and B are given by appropriate partial derivatives of the transfer function (Eq

2). As the linearization point, we choose the activity into which the network settles when tha-

lamic neurons are completely silenced. This choice provides the greatest flexibility in the fur-

ther analysis. Consequently, with this linearization point, we have Δνth = νth (Eq 1).

The perturbation Δνth has different values for the two simulated conditions. In the sponta-

neous condition, it is given by a homogeneous vector with the compound thalamic baseline

rate in all entries. In the stimulated condition, it contains the homogeneous (constant) as well

as the non-homogeneous (proportional to m) terms in Eq 1. The latter, therefore, also repre-

sents the specific, orientation dependent perturbation for each neuron.

While the spiking network model (Model A) is the most realistic version from a biological

perspective, accounting for irregular spike trains and activity fluctuations, it is at the same

time computationally expensive and analytically intractable. The firing rate model (Model B)

makes additional assumptions about the network activity, like negligible correlations, but it

has the advantage of being numerically tractable. Finally, while the linear network model
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(Model C) ignores non-linear effects by construction, it has the great benefit of allowing the

application of a powerful linear algebra toolbox and enabling an explicit solution of the system

[17].

Importantly, considering different implementations of the same model is only justified if

their predictions are consistent. Therefore, whenever possible throughout this work, we cross-

check the results of the different models.

Parameter variation. In addition to the standard parameter set adopted from Potjans and

Diesmann [2], we also performed simulations with crucial model parameters varied. Hereby,

we were able to evaluate the robustness of our results, and of the conclusions drawn from

them. In total, we used six different parameter sets:

• Standard: Default parameter set described below.

• High background: Background firing rate νbg increased by a factor of 2.

• Low background: Background firing rate νbg reduced by a factor of 2.

• Strong inhibition: Relative strength of inhibitory synapses increased by a factor of 2.

• Strong synapses: Strength of all recurrent synapses increased by a factor of 2.

• Low connectivity: Recurrent indegrees reduced by a factor of 2.

Data analysis

Measuring orientation selectivity. In order to quantify orientation selectivity, we adopt a

measure from circular statistics [22, 23]. If νk(θ) is the firing rate of neuron k for stimulation

angle θ, the orientation selectivity vector (OSV) is calculated by

OSVk ¼

P
y
nkðyÞei2yP
y
nkðyÞ

;

which yields a complex number, equivalent to a vector with two real components. Here, the

two sums are running over all stimulation angles θ, or a uniform sample of angles in a simula-

tion. The orientation selectivity index (OSI) is then defined as the length of the OSV

OSIk ¼ jOSVkj:

The preferred orientation (PO) of a single neuron can be calculated from the angle of the OSV

POk ¼ arg ðOSVkÞ:

Note that this definition of OSI is identical to

OSI ¼
F1

F0

where F0 and F1 are the zeroth and first Fourier components of the tuning curve, giving rise to

a more intuitive interpretation of the OSI. Here, F0 accounts for the average firing rate over all

stimulation angles, and F1 is to the amplitude of a cosine function accounting for the lowest-

order modulation over all angles. A perfect cosine tuning curve as assumed for the input pro-

vided by thalamic neurons yields OSI ¼ m
2
, where m is the modulation amplitude of the tuning

curve (Eq 1). The OSI as defined here provides a robust measure of tuning strength, in particu-

lar for neurons with low firing rates and noisy responses.
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An alternative measure for orientation selectivity also used in the literature is based on the

neuronal firing rates at the preferred and orthogonal orientation

OSI�k ¼
nkðPOkÞ � nkðPOk � 90

�

Þ:

nkðPOkÞ þ nkðPOk � 90
�

Þ

For noisy measurements, in particular for low firing rates, an estimation according to this rec-

ipe is problematic. Therefore, we fit a cosine function with offset to the tuning curve of each

individual neuron and extract the maximum and minimum firing rates from this fit.

Input currents. Our model uses a simple integrate-and-fire neuron model with delta-syn-

apses. In this model, the mean current received by neuron i through synaptic input from neu-

ron j is given by

Iij ¼ Cm Jij �n j; ð3Þ

where �n j is the mean rate of neuron j. In order to quantify the information about the stimulus

contained in the input current received from any neuron in the network, we also define a tun-

ing vector (TV) of each synaptic connection. For a given pre-synaptic neuron j and post-syn-

aptic neuron i, it is defined by

TVij ¼ Cm Jij �n j OSVj; ð4Þ

where �n j is the firing rate of neuron j averaged over all angles. Note that this is identical to the

first Fourier component (F1) of the tuning curve of the input current. The single neuron tun-

ing vectors TVij can then be used to quantify the combined tuning information each neuron in

the network receives from a given source population P by calculating

TViP ¼
X

j2P

Kij TVij;

where Kij = 1 if neuron j makes a synapse onto neuron i, and Kij = 0 otherwise.

Detailed model descriptions

In the following, the mathematical model implementations are described in detail. While this

documentation allows to fully reproduce the model, it is not essential for the comprehension

of the results of the study. In the main text of the manuscript we do not refer to these details,

and the reader may choose to directly jump to Results.

Model A: Spiking neural network model. We start by describing the spiking neural net-

work model in detail. To a large extent, it is identical to the original model introduced by Pot-

jans and Diesmann [2]. It consists of N = 77 169 neurons distributed over eight populations,

one excitatory and one inhibitory population in each out of four layers, respectively (Fig 1A).

The individual population sizes are summarized in Fig 1C and Table 1. We use the linear leaky

integrate-and-fire neuron model throughout this study. In this point neuron approximation,

the membrane potential Vi(t) of each individual neuron follows the differential equation

tm
_ViðtÞ ¼ � ½ViðtÞ � Vr� þ RIiðtÞ: ð5Þ

Table 1. Populations sizes.

population L2/3e L2/3i L4e L4i L5e L5i L6e L6i

size 20 683 5 834 21 915 5 479 4 850 1 065 14 395 2 948

https://doi.org/10.1371/journal.pcbi.1007080.t001
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Here, τm is the membrane time constant and Vr is the resting potential. The total input current

has three separate components IiðtÞ ¼ Ireci ðtÞ þ Ibgi ðtÞ þ Ithi ðtÞ. The recurrent input is given by

RIreci ðtÞ ¼ tm
XN

j¼1

X

k

Jij dðtjk þ dij � tÞ;

where tjk is the time of the k-th spike of neuron j, dij is the transmission delay of the connec-

tion, and Jij is the amplitude of the post-synaptic potential (synaptic “efficacy”) from neuron j
to neuron i. Each time the pre-synaptic neuron j fires a spike at time tjk, the membrane poten-

tial of neuron i is deflected by Jij at time tik + dij. If the membrane potential reaches the thresh-

old voltage Vthr, the neuron emits a spike that is transmitted to all its post-synaptic neurons.

Following each spike, the membrane potential is clamped at the reset potential Vi = Vr for a

refractory period τref. In our work, the synapse model slightly differs from the original model

of Potjans and Diesmann [2]. While they used exponential post-synaptic currents, in our

model all of the charge is delivered instantaneously, as expressed by the δ-function in Eq 5.

Numerical values for the single neuron parameters are summarized in Table 2.

The connectivity of the model was compiled in Potjans and Diesmann [2] based on a large

number of anatomical and electrophysiological measurements, most prominently by Thomson

et al. [18] and Binzegger et al. [19]. The connectivity map shown in Fig 1B and Table 3 summa-

rizes the result of an extended review of the literature. In our implementation, these numbers

describe the exact number of synapses each post-synaptic neuron receives from randomly cho-

sen pre-synaptic neurons in each of the eight populations. All connections are unitary, and

self-connections are excluded. This fixed in-degree connectivity deviates from the original

model, where a fixed number of synapses was distributed by randomly drawing both target

and source neurons, resulting in approximately binomially distributed in- and out-degrees.

Table 2. Single neuron parameter values.

parameter value unit

τm 10 ms

τref 2 ms

R 40 MO

Cm 250 pF

Vthr -50 mV

Vr -65 mV

Je 0.15 ± 0.015 mV

g 4

dexc 1.5 ± 0.75 ms

dinh 0.7 ± 0.35 ms

νbg 8 Hz

nth
0

30 Hz

m 0.3

θ 0, 15, . . ., 165 ˚

ŷ i
[0, 180) ˚

T 100 s

Δt 0.1 ms

Shown are variable names, numerical parameter values and, if applicable, the standard deviation of the Gaussian

distribution, as well as physical units.

https://doi.org/10.1371/journal.pcbi.1007080.t002
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Our modification results in a somewhat lower variability of rates and orientation selectivities

in the populations.

Synaptic efficacies Jij are drawn from a normal distribution with a mean that depends on

the type of connection, and a standard deviation corresponding to 10% of the mean. The mean

is Je for excitatory and Ji = −g Je for inhibitory connections. As in the model by Potjans and

Diesmann [2], the projection from L4e to L2/3e neurons is an exception, where a mean effi-

cacy of 2 Je is imposed. This modification is due to inconclusive data for this particular projec-

tion, see [2, 24] for details. For all unconnected pairs, we set Jij = 0. In order to obey Dale’s

principle, the normal distributions are clipped at zero. Similarly, delays dij are also drawn from

two normal distributions with fixed means and variances, dexc for excitatory and dinh for inhib-

itory connections, respectively. The delay distributions are clipped at the simulation time step

Δt. Numerical values for the distributions of connection strengths and delays can be found in

Table 2.

In addition to recurrent connections, neurons receive two types of external input. The con-

stant background input represents connections from other brain regions as well as from neu-

rons within V1, which are not part of the model network. It is realized as a homogeneous

Poisson input for each neuron. The resulting input current to each single neuron is

RIbgi ðtÞ ¼ tm
X

k

Jbg dðt � tikÞ:

In this case Jbg = Je is the connection strength of background synapses, and tik is the time of k-

th spike of the Poisson process of neuron i. The rate of each Poisson process depends on the

population P the neuron belongs to and is given by n
bg
P ¼ Kbg

P nbg. Here, Kbg
P is the number of

background synapses connecting to individual neurons in the respective target population (Fig

1B/1D and Table 3) and νbg is the rate of individual background neurons.

Similar to background input, the thalamocortical input is also conceived as a homogeneous

Poisson process. The current from the connections is given by

RIthi ðtÞ ¼ tm
X

k

Jth dðt � tikÞ

with Jth = Je. In contrast to the homogeneous background input to each individual neuron, the

rate of the thalamic input depends on the orientation θ of a grating that represents the visual

stimulus (Fig 1C). The resulting orientation-tuned input is given by

nthi ¼ K th
P n

th
0
½1þm cos ð2ðy � ŷ iÞÞ�; ð6Þ

Table 3. In-degrees for individual projections between pre- and postsynaptic populations.

pre

L2/3e L2/3i L4e L4i L5e L5i L6e L6i bg th

post L2/3e 2 199 1 079 979 467 159 0 109 0 1 600 0

L2/3i 2 990 860 703 289 380 0 60 0 1 500 0

L4e 159 34 1 117 794 32 0 667 0 2100 93

L4i 1 480 16 1 813 953 16 0 1 608 0 1 900 57

L5e 2 188 374 1 135 31 420 496 296 0 2 000 0

L5i 1 165 159 570 12 300 404 124 0 1 900 0

L6e 325 38 467 91 285 21 581 752 2 900 47

L6i 766 5 74 2 136 8 979 459 2 100 17

https://doi.org/10.1371/journal.pcbi.1007080.t003

Propagation of orientation selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007080 July 19, 2019 9 / 34

https://doi.org/10.1371/journal.pcbi.1007080.t003
https://doi.org/10.1371/journal.pcbi.1007080


where K th
P denotes the number of thalamocortical synapses per neuron in population P (Fig

1B/1E), nth
0

is the fixed mean rate of thalamic neurons, m is the modulation strength and ŷ i the

preferred orientation of the input to this neuron. The latter is drawn from a uniform distribu-

tion on [0˚, 180˚). The network is simulated for twelve stimulation angles θ from 0˚ to 165˚ in

steps of 15˚. Again, numerical values for all parameters can be found in Tables 2 and 3.

The non-homogeneous thalamic input is our most significant modification of the model by

Potjans and Diesmann [2] to account for visual stimulation of the network. The original

model used a population of 902 thalamic neurons. However, in order to include orientation

tuning into the projection, it would be necessary to make assumptions on how the input tun-

ing is generated by the thalamocortical afferents. Because our work concentrates on the corti-

cal processing of tuning information, we replaced the thalamic neurons by Poisson type tuned

input.

Stimulation by a grating with each of the twelve angles θ is simulated for a total of T = 100 s,

with a simulation time step of Δt = 0.1 ms. In addition, before the stimulation starts, the net-

work is simulated for a warm-up time of 200 ms to exclude onset transients from the analysis.

Spike times and the exact synaptic connectivity for all pairs of neurons are extracted and stored

for further analysis.

Model B: Nonlinear firing rate model. To derive a firing rate model for the system under

study, we apply the mean field approach put forward by Brunel [6] to each single neuron in all

eight populations. We assume that the total input to each neuron i amounts to a mean current

μi and additive current fluctuations (Gaussian white noise) η(t) with variance s2
i

RIiðtÞ ¼ mi þ si
ffiffiffiffiffi
tm
p

ZðtÞ:

This way, we can characterize the stationary state, in which μi and σi are fixed parameters that

depend on the thalamic input. Similar to the total input current, the mean and variance can be

separated into three sources

mi ¼ m
rec
i þ m

bg
i þ m

th
i

s2
i ¼ srec

i
2

þ s
bg
i

2

þ sth
i

2

:

For each source, the respective mean and variance are approximately given by

mrec
i ¼ tm

XN

j¼1

Jij nj; srec
i

2

¼ tm

XN

j¼1

J2

ij nj;

m
bg
i ¼ tm Jbg n

bg
i ; s

bg
i

2

¼ tm J2
bg n

bg
i ;

mth
i ¼ tm Jth nthi ; sth

i
2

¼ tm J2
th n

th
i ;

where independence of all input components has been assumed. As for the spiking model,

the in-degrees of the external input has been accounted for in n
bg
i and nthi . Furthermore, nthi

accounts for the non-homogeneous input each individual neuron receives due to the oriented

stimulus according to Eq 6. The self-consistent solutions of the associated first-passage time

problem [25] yield the steady-state firing rates of all neurons

ni ¼ Fiðn; nthi Þ; ð7Þ
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with the transfer function Fi being defined by

Fiðn; nthi Þ ¼
1

Fiðn; n
th
i Þ

where

Fiðn; n
th
i Þ ¼ tref þ tm

ffiffiffi
p
p
Z Vthr � mi

si

Vr � mi
si

ex2

ð1þ erfðxÞÞ dx;

where erf is the standard error function. Solving this non-linear algebraic set of equations

yields the desired estimates for the firing rate of each single neuron.

The challenge is now to actually solve this 77 169-dimensional system of highly non-linear

self-consistency equations. This can be achieved by reformulating the problem as a Wilson-

Cowan type model [26]. Since we are only interested in the fixed point describing the steady-

state of the system, and not in its exact temporal evolution, we choose a unit time constant and

introduce a pseudo-time s. This allows to write the problem as a system of ordinary differential

equations

dnðsÞ
ds
¼ � nðsÞ þ Fi nðsÞ; n

th
� �

:

Assuming stability, these differential equations converge to a steady-state rate vector ν� which

solves the system in Eq 7 characterized by
dnðsÞ
ds ¼ 0. For the numerical solution, we applied an

explicit Runge-Kutta method of order (4)5 including adaptive step size control [27].

Model C: Linearized network model. The linear model is derived from the rate coding

model described above using a standard linearization procedure. We start by calculating the

total derivative of the transfer function Eq 7

Dni ¼
XN

j¼1

@Fi
@nj

Dnj þ
@Fi
@nthi

Dnthi

�
�
�
�
n¼nOP

: ð8Þ

The partial derivatives of the transfer function are given by

@Fi
@nj

¼ �
1

F2

i

@Fi

@nj

@Fi

@nj
¼
@Fi

@mi

@mi
@nj
þ
@Fi

@si

@si
@nj

where the partial derivatives of Fi are

@Fi

@mj
¼ erfcx �

Vthr � mi
si

� �
� 1

si
� erfcx �

Vr � mi
si

� �
� 1

si

@Fi

@sj
¼ erfcx �

Vthr � mi
si

� �
Vthr � mi
s2
i

� erfcx �
Vr � mi
si

� �
Vr � mi
s2
i

:

Here, the Leibniz integral rule was used, and erfcxðxÞ ¼ ex2

ð1 � erfðxÞÞ is the scaled comple-

mentary error function. Finally, the partial derivatives of the mean and standard deviation of
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the input are given by

@mi
@nj

¼ tmJij

@si
@nj

¼
1

2si
tmJ

2

ij:

Note that in all partial derivatives above an explicit mention of the evaluation point ν = νOP

was omitted for the sake of a compact notation.

The operating point νOP at which the derivatives are evaluated can be chosen freely. How-

ever, the precision of the linear approximation depends on the nature of the non-linearity of

the activity of the network, and how far the linearization point is away from the regime of

interest. Here, it is chosen as the activity with zero thalamic input, νth = 0. This choice provides

the greatest flexibility in the predictions to be derived from the model. In this case, for both

conditions considered here, the thalamic input perturbation is identical to the thalamic input

rates, Dnthi ¼ n
th
i . Note that, while thalamic neurons do not fire at the linearization point, the

network does still receive background input from other sources, leading to non-zero network

activity at this point.

The derivatives of the transfer function are organized in a matrix W

Wij ¼
@Fi
@nj

�
�
�
�
n¼nOP

and the diagonal matrix

Bij ¼
@Fi
@nthj

�
�
�
�
n¼nOP

:

Eq 8 can then be compactly written as

0 ¼ ðW � 1ÞDnþ BDnth;

where we also summarized the input and output rate perturbations into the vectors Δν and

Δνth. Assuming that ðW � 1Þ is invertible, which is almost always the case for the large ran-

dom matrices considered here, and defining the scaled effective input Δβ = B Δνth, we obtain

the explicit expression for the output perturbation

Dn ¼ ð1 � WÞ� 1
Db: ð9Þ

In a next step, the effective input perturbation can be decomposed into

Db ¼ DbB þ DbM;

where ΔβB is the baseline and ΔβM is the modulation component, respectively [8]. The former

is defined by DbBi ¼ E½Dbi�, the vector of expected effective input rates. Note that the expecta-

tion values are identical across all neurons of each population. With this, we define ΔβM =

Δβ − ΔβB as the vector containing the deviations from the population means.

Along the same lines, the matrix W can also be decomposed into two matrices such that

W ¼ Qþ S

where Q is a block-wise constant matrix containing expectation values Qij ¼ E½Wij�, and S is

composed of the zero-mean deviances S = W − Q. Combining the decomposition of the input
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perturbation and the matrix, we can define two linear systems

DnB ¼ ð1 � QÞ� 1
DbB

DnM ¼ ð1 � SÞ� 1
DbM:

ð10Þ

In analogy to what was suggested by Sadeh et al. [8], these two systems can be interpreted as

two separate processing pathways of the network. In the baseline system, the matrix Q defines

the processing of the untuned baseline input, while in the modulation system, the matrix S is

responsible for the input modulation. However, this characterizes the system only if there is

no interference between the two pathways: The output ΔνB should not contain a modulation

component, and the output ΔνM should not contain a baseline component. Furthermore, it is

not obvious that the combination Δν = ΔνB + ΔνM solves the original W-system described in

Eq 9.

We start verifying these requirements by showing that ΔνB is constant across populations

and thus does not contain a modulation component. To this end, a symmetry argument can

be applied: Let ΔνBi = x and ΔνBj = y for two neurons i and j of the same population, then

ΔνBi = y, ΔνBj = x must also be a solution of the system, as Q is block-wise constant. As the

operator ð1 � QÞ� 1
is invertible and the system has only one solution, it follows that x = y and

ΔνB must be constant for all neurons from the same population.

In order to show that ΔνM does not have a baseline component, we look at the modulation

system (Eq 10) in its element-wise, implicit form

XN

j¼1

ðdij � SijÞDnMj ¼ DnMi �
XN

j¼1

Sij DnMj ¼ DbMi;

where δij is the Kronecker delta function. Changing to the expected value of the expression

and assuming independence of Sij and ΔνMj leads to

E½DnMi� �
XN

j¼1

E½Sij�E½DnMj� ¼ E½DbMi�:

Noting that E½Sij� ¼ 0 and E½DbMi� ¼ 0 by construction, this shows that

E½DnMi� ¼ 0 ð11Þ

and thus that ΔνM has no baseline component.

Finally, we show that Δν = ΔνB + ΔνM yields an approximate solution of the W-system. For

this, we substitute this ansatz and the decomposition W = Q + S into Eq 9

ð1 � WÞDn ¼ ð1 � Q � SÞ ðDnB þ DnMÞ ¼

¼ DnB þ DnM � QDnB � QDnM|fflffl{zfflffl}
ðaÞ

� SDnB|ffl{zffl}
ðbÞ

� SDnM: ð12Þ

We will now analyze the two interference terms (a) and (b) in more detail:

1. The matrix Q is block-wise constant with value Qij = qPT for neurons i and j in populations

P and T, respectively. For each element in the vector QΔνM, we then have

ðQDnMÞi ¼
X

T

X

j2T

Qij DnMj ¼
X

T

qPT
X

j2T

DnMj:

Using Eq 11, we know that ∑j2T ΔνM� 0 and therefore also QΔνM� 0.
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2. Similarly, for each element of the second interference term, we can write

ðSDnBÞi ¼
X

T

DnBT

X

j2T

Sij;

where now ΔνBj = ΔνBT are the values of the population-wise constant vector ΔνB. The

matrix S is defined as the zero-mean deviations between W and Q. Therefore, for suffi-

ciently large population sizes and small variances in the connectivity, we have ∑j2T Sij� 0

which leads to SΔνB� 0.

Combining these findings with Eq 12, the expression can be reduced to

ð1 � WÞDn � ð1 � QÞDnB þ ð1 � SÞDnM ¼ DbB þ DbM ¼ Db;

by definition of ΔνB and ΔνM (Eq 10), meaning that Δν = ΔνB + ΔνM indeed provides an

approximate solution to the system.

To summarize, we showed that instead of solving the linear model via the W-system

directly, it can also be studied in terms of the two pathways defined by Eq 10. Provided the two

interference terms in Eq 12 can indeed be neglected for the network at hand, this is approxi-

mately equivalent and potentially more informative than the direct solution.

External stimulation. In addition to the synaptic input provided by the background and

the thalamus, neurons can also receive additional external stimulation Istim in an experiment.

Such an input could, for example, model optogenetic microstimulation. In the single neuron

rate model (Model B), this can be accounted for by an additional term in the total mean input

μi given by mstim
i ¼ RIstim. As we consider here only constant stimulation, the variance sstim

i
2

of

this input is zero.

In the linear model (Model C), applying a current results in an additional input perturba-

tion and an extra term in the total derivative (Eq 8). In the explicit expression Eq 9, this can be

accounted for by

Dn ¼ ð1 � WÞ� 1
ðDbþ DgÞ:

The components of Δγ are defined in analogy to the thalamic perturbation by

Dgi ¼
@Fi
@Ii

DIi

�
�
�
�
n¼nOP

:

Results

Spiking neural network simulations

The results of the spiking neural network simulations performed in NEST and of the detailed

data analysis performed on the simulated data are summarized in Fig 2, both for the spontane-

ous (weak, untuned thalamic input) and stimulated (tuned thalamic input) condition. Note

that we do not subtract the spontaneous rates in the stimulated condition for our analysis.

As expected, the single neuron firing rates (Fig 2B/2C) match the values reported by Potjans

and Diesmann [2]. Fig 2D/2E compares the firing rates of the model with experimental values

obtained by Niell and Stryker [1] from adult mouse visual cortex. In the spontaneous condi-

tion (Fig 2D), the model firing rates are somewhat lower compared to experimental values, but

are otherwise in good qualitative agreement with them. We find very low activity in L2/3 and

higher rates in the granular and infragranular layers, with the exception of population L6e,

where rates are also low.
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For the stimulus condition, Fig 2E compares the evoked rates of the model with the results

of Niell and Stryker [1]. The evoked rates are defined as the maximal rate of the individual

neurons over all angles. Therefore, they differ from the median values shown in Fig 2C. In this

condition, the model rates vary more strongly across layers as compared to the experimental

values.

The mean and standard deviation (SD) of the pairwise spike-count correlations over all

populations are (0.2 ± 10.3) � 10−3 and (0.3 ± 10.4) � 10−3 for spontaneous and stimulated con-

ditions, respectively (10 ms bin size). The mean and SD of the coefficient of variation (CV) of

the inter-spike intervals are 0.9 ± 0.1 for both conditions. Both measures show only small vari-

ations over different populations (see S1 and S2 Figs for population-wise quantification). The

low correlation and Poisson-like irregularity indicate that the network indeed operates in the

asynchronous irregular regime [6, 28], as illustrated by the raster plot in Fig 2A.

The activity of the network is robust to changes in important parameters which are not well

constrained by experiments. Although average firing rates vary across parameter sets, their dis-

tribution remained qualitatively similar (S4A/S4B–S9A/S9B Figs). Only for very low back-

ground input, the network operates in a more synchronous regime with increased correlations

(S3B/S3C and S6D Figs). In this case, the network activity also changes qualitatively. Surpris-

ingly, this is only the case for reduced background input. For a two-fold increase, the activity

remains stable (S3B and S5D Figs).

Fig 2. Spiking neuronal network. A 250ms raster plot for both spontaneous and stimulated conditions, depicting 500 neurons of each of the eight

subpopulations. B-C Box plots of the firing rate distribution within each population, for spontaneous (B) and stimulated (C) conditions, respectively.

Shown are the median (central line), lower and upper quartiles (box) as well as 5% and 95% percentiles (whisker bars). D-E Comparison of median

spontaneous (D) and evoked (E) rates between model results and experimental values reported by [1]. Evoked rates are given by the maximal response

over all angles. The experimental results were obtained by summing the spontaneous and evoked rates from [1] for direct comparison. For the model

results, the inhibitory rates are averaged over all layers for better comparison with the data from experiments.

https://doi.org/10.1371/journal.pcbi.1007080.g002
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Our model extends the work of Potjans and Diesmann by giving the thalamic input a weak

orientation bias, as described previously [7, 8]. The macroscopic connectivity pattern of the

network (Fig 1A) already gives a rough idea of the signal flow through the network. Thalamic

afferents project mainly to L4 and to a smaller extent also to L6. From L4, the signal is trans-

mitted to L2/3, which is thought to be the central processing unit of the microcircuit. Signals

are then forwarded to higher brain areas as well as to L5, which is the major output unit for

projections to sub-cortical brain areas.

In order to dissect the computations performed by the network, we extract tuning curves of

all neurons in the model network. As expected from previous studies [7, 8, 16, 17], during

stimulation, the weak orientation bias of the thalamic input is amplified to strongly orientation

selective responses in the input population (Fig 3). Interestingly, L2/3e also shows strong tun-

ing although these neurons only receive input via random connections from L4 neurons. This

phenomenon was previously described by Hansel and van Vreeswijk [7], where projections

from L4e to L2/3 were studied independently of other parts of the network. The strong tuning

in L2/3e can be explained by a recurrent tuning amplification in inhibition dominated net-

works [7, 8]. This effect is enough to create strong output tuning from a small bias in the

input, which in turn is due to random sampling of preferred orientations in L4. In this context

it may seem even more surprising that orientation selectivity of L5 neurons appears to be

weaker compared to the other layers. This finding, which is a direct consequence of the under-

lying experimentally determined connectivity, is consistent with several measurements of ori-

entation selectivity performed in different rodent species [1, 3, 29–31] (Fig 4D). However, it

cannot be easily explained by visual inspection of the connectivity matrix. Even though synap-

tic connectivity is stronger for the projection to L2/3e, L5e neurons also receive a large fraction

of their input from L4e (Fig 1B, Table 3). Therefore, as the output tuning of L2/3e neurons is

essentially inherited from these neurons, one might expect a stronger tuning also in L5e.

Fig 3. Single neuron tuning curves. A Single neuron tuning curves are centered at their respective preferred

orientation and then binned over angles (bin size 10˚). 5%, 25%, 50% (median), 75% and 95% percentiles are then

calculated for each bin independently and plotted using different line styles. Gray lines indicate median firing rates in

the spontaneous condition. B Sample tuning curves from each population in polar representation. Gray lines indicate

rates of the same neuron in the spontaneous condition.

https://doi.org/10.1371/journal.pcbi.1007080.g003

Propagation of orientation selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007080 July 19, 2019 16 / 34

https://doi.org/10.1371/journal.pcbi.1007080.g003
https://doi.org/10.1371/journal.pcbi.1007080


In order to understand in more detail the differences in orientation selectivity between lay-

ers, we extracted the orientation selectivity index (OSI) of all neurons in the model network

(Fig 4B/4C). We employ a measure based on the circular variance to quantify orientation selec-

tivity (see Methods for details). For each neuron, the OSI is calculated as the ratio of first (F1)

and zeroth (F0) Fourier component of the tuning curve (Fig 4A). A stronger modulation of

the firing rate over angles (higher F1), leads to a higher OSI, while a higher mean rate (higher

F0) reduces the OSI. Experimental studies often use a different measure for orientation selec-

tivity based on the activity at the preferred and orthogonal orientation. To allow direct com-

parison with these works, we also calculated this alternative quantity (S10 Fig). While the

absolute numbers are generally higher for this measure, the qualitative results are identical.

Note that also the distribution of orientation tuning is quite robust against variations in

parameters (S4C–S9C Figs).

Consistent with experimental findings and throughout all layers, inhibitory neurons have a

lower OSI than the corresponding excitatory neurons [1, 3, 32] (Fig 4D). While this might be

expected for L4 and L6 due to the lower number of thalamic afferents, it is not at all obvious

for L2/3. In this population, it is a consequence of the recurrent network connectivity, as our

analysis will show.

Note that during spontaneous activity, neurons also exhibit weak apparent orientation

selectivity (Fig 4B). This is essentially due to fluctuations in the spiking process. Neurons may

randomly fire a few action potentials more for one orientation as compared to another, which

results in weak but nonzero orientation selectivity. The magnitudes found here are consistent

with a Poisson process with the same rate and recording time.

The orientation selectivity is measured as the ratio of first and zeroth Fourier component of

the tuning curves (Fig 4A). Analyzing the tuning curves in Fig 3A in more detail, we see that

Fig 4. Orientation selectivity in the spiking neural network. A Every single neuron integrates its thalamic input with

a large number of differently tuned inputs from various cortical populations (right) and generates tuned output from it

(left). The orientation selectivity index (OSI) of the neuron is measured by the relative strength of the first (F1) as

compared to the zeroth (F0) Fourier component of the output tuning curve (circular variance). B-C OSI quantified for

neurons in all layers, measured both under spontaneous and stimulated conditions. Percentiles are the same as in Fig

2. D Comparison of mean orientation selectivities in the model with experimental values from [1].

https://doi.org/10.1371/journal.pcbi.1007080.g004
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although the F1 component in L5e is stronger than in L2/3e, this is overcompensated by the

high F0 component of this population, leading to weaker tuning in L5e.

This raises two questions: First, which projections onto L2/3e and L5e lead to the observed

difference in activity? Second, why is the tuned (F1) component of L5e not as strongly ampli-

fied as the mean rate (F0), similar to the situation in L2/3? In the following, we will address

these questions, employing suitable mathematical and computational methods. While the first

question can be answered by analyzing the input currents received by the different popula-

tions, the second question requires an approach which takes the strongly recurrent nature of

the circuit across layers into consideration.

Operating point of the network

Each neuron in the eight populations of the network receives inputs from several pre-synaptic

populations, possibly all with different tuning curves, and forms its own output tuning from

those (Fig 4A). It has been shown in experiments that this scenario also reflects the situation in

rodents [11]. Which projections are most potent for driving the the target neuron is not imme-

diately obvious from the anatomical connectivity between neurons (Fig 1B). The activity of

pre-synaptic neurons is of course also relevant for the total input current to a given neuron.

In Fig 5A, the mean input current (Eq 3) for each projection between populations is shown.

While the difference between inputs to L2/3e and L5e seems insignificant when looking at the

underlying connectivity (Fig 1B), the picture changes completely if the activity of pre-synaptic

Fig 5. Neuronal input analysis. A Mean input currents for all projections between all the involved neuronal populations. B Mean projection tuning vector length

for all recurrent projections (see text for explanation). C-E Output firing rates (F0 of tuning curves), output modulations (F1 of tuning curves) and resulting OSI,

averaged over each population. F Illustration of single neuron input tuning vector addition. Each small arrow represents the tuning vector of a single pre-synaptic

neuron. Linearly adding the vectors of all pre-synaptic neurons of one population results in the tuning vector that characterizes the projection to one post-synaptic

neuron.

https://doi.org/10.1371/journal.pcbi.1007080.g005
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neurons is taken into consideration (Fig 5A). The input to L2/3e neurons is mostly determined

by L2/3i, both L4 populations and the constant background. Input to L5e, on the other hand,

is dominated by L5i and background input, but only to a lesser extent by inputs from L2/3i,

L4e and L5e. As a result, due to the different excitation-inhibition (EI) balance, the net cur-

rents imply a higher mean input to L5e compared to L2/3e (Fig 5C).

The marked difference between anatomically defined connectivity (Fig 1B) and the total

input current in the stationary balanced state (Fig 5A) highlights the contribution of activity

dynamics in recurrent networks [6, 33, 34]. While the situation for L5e and L2/3e is very simi-

lar when counting the number of excitatory and inhibitory synapses that terminate in each

population, the actual current drive they receive is quite different. Since the activity of the

whole network autonomously settles in an operating point where the EI balance is dynamically

maintained, this can have very different consequences for the various populations, irrespective

of the anatomical connectivity.

Having demonstrated how the dynamic equilibrium and the resulting operating point of

the layered network explains the high firing rate of L5 neurons, we can now ask the same ques-

tion with regard to orientation tuning in each neuronal population. In combination, these two

aspects fully determine the orientation selectivity index (OSI) of all neurons. To achieve this,

we calculate for each neuron a tuning vector summarizing the information about the stimulus

conveyed by the input currents to that neuron. Its magnitude measures the tuning strength of

the combined input to the post-synaptic neuron, whereas its direction indicates its preferred

orientation (Fig 5F inset, Eq 4). The total tuning input from one specific source population to

a single neuron can then be calculated as the sum of all tuning vectors of neurons in the pre-

synaptic population which connect to the post-synaptic neuron. If all tuning curves are cosine-

like, this concept exactly corresponds to linear summation of inputs. The magnitudes of the

tuning vectors are identical to the first Fourier component (F1) of the tuning curves for the

current input.

Fig 5B summarizes the mean lengths of all projection tuning vectors, summarizing the

information flow in the system. The tuning information enters the cortical network in L4 and

L6 and then spreads to the other populations. Although both L4 and L6 neurons show signifi-

cant tuning to stimulus orientation, due to the low firing rates of L6e neurons it is mostly L4

which provides tuning information to the other populations. In contrast to what would be

expected from the connectivity alone (Fig 1B), also L5e neurons receive most of the tuned cur-

rent from L4. Comparing the input to L2/3e and L5e neurons in more detail reveals that L2/3e

neurons mostly integrate tuned input from both populations in L4, while L5e neurons receive

less tuned input almost exclusively from L4e.

Considering only the output modulation of the different populations (Fig 5D), which is

defined as the first Fourier component of the tuning curves (Fig 4A), it surprises that despite

the less tuned input to L5e, these neurons still show a stronger output modulation than L2/3e.

This highlights that, besides the input strength, the input sensitivity of neurons is relevant as

well. However, the large modulation component of the output of L5e neurons cannot compen-

sate their high firing rates, leading to a lower OSI (Fig 5C–5E). Comparing the distribution of

firing rates and output modulations over the eight populations (Fig 5C/5D), it is evident that

these two components are subject to different gain factors. In the following, these dependen-

cies will be studied in more detail.

Two processing pathways: Baseline and modulation

Our analyses so far disentangled the input to neurons in different populations, which explains

the observed features of neuronal output. However, the multi-population model is highly

Propagation of orientation selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007080 July 19, 2019 19 / 34

https://doi.org/10.1371/journal.pcbi.1007080


recurrent. Therefore, it is not yet clear why the input to all neurons settles in the observed

operating point. We face a chicken-and-egg problem here, as in the recurrent network, the

output of all populations is simultaneously the input to the same populations, eventually set-

tling in the dynamical operating point. In order to tackle this problem, we now change our

perspective from analyzing the input-output relation of single neurons to input-output behav-

ior of the entire network. The idea is to manage the problem by considering the network as a

distributed system, which can perform its function only as a whole.

This approach is best realized by linearizing the network dynamics about its operating

point. We obtain our close to 80000-dimensional linearized network model (Model C) by first

formulating a single neuron firing rate model based on the single neuron transfer function

Fi(ν, νth) (Model B). The firing rate model is then linearized about its dynamical operating

point, leading to the explicit input-output relation

Dn ¼ ð1 � WÞ� 1
Db: ð13Þ

Here, Δν is a vector summarizing all single neuron rate changes due to a change in the effective

input Δβ, which in turn is the change in thalamic input rate scaled by the input sensitivities of

the different populations. These sensitivities can also be understood as the feed-forward gains

of the system [8], see Methods for details. Furthermore, the behavior of the recurrent model is

governed by the matrix W, which is the matrix of effective recurrent connections, which are a

product of the anatomically and physiologically defined synaptic weights and the input-output

sensitivities (gains) of individual post-synaptic neurons at their operating point. In combina-

tion with the activity at the operating point ν0, the rate change Δν results in the output activity

ν = ν0 + Δν of the linear network model.

The explicit form of Eq 13 also supports the idea of considering the network as an inte-

grated system with one single vector-valued input-output relation. Importantly, this relation is

governed by the inverse of the effective connectivity 1 � W. Because the entries in Wij are a

function of Kij, this inversion potentially distributes the influence of each single connectivity

parameter Kij over the entire network. This observation also explains why the effects of indi-

vidual connectivity parameters can be counterintuitive [35].

The firing rate model (Model B) as well as the linear network model (Model C) can be con-

sidered as simplifications of the spiking neural network (Model A), as they make additional

assumptions about its dynamics. Therefore, before analyzing these models in more detail, it is

important to establish the consistency of their respective behavior. S11 Fig compares the

results from a simulation of all three models, for matched network parameters. We found that

the single neuron firing rates of the three models are in good agreement. While the similarity

between the non-linear rate model (Model B) and the linear model (Model C) is quite high,

both exhibit mild discrepancies from the spiking network model (Model A). In particular, for

the larger firing rates of L5e, the non-linear rate model and the linear model tend to slightly

underestimate them. Generally, also the preferred orientations and orientation selectivities are

in good agreement between the different models. While the match is again excellent for the

non-linear firing rate model and linear network model, both slighly deviate from the spiking

network model. This can be explained by the role played by activity fluctuations in this model.

In particular, the observed orientation selectivities are somewhat higher here, reflecting the

same positive bias as the one observed during spontaneous activity.

The match between the three models is also very robust with respect to changes in parame-

ters (S4A/S4B/S4C–S9A/S9B/S9C Figs). In fact, even for reduced background input, when

there is substantial synchrony in the spiking activity, the non-linear rate and linear models still

provide reasonable approximations (S6A/S6B/S6C Fig).
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Now that the general consistency in the behavior of the different models is established, we

can analyze the linearized network and be confident that our conclusions are also valid for the

spiking network. In previous work, a separation into two separate, non-interfering pathways

were postulated, exploiting that the network can have different gains for different components

of its input [8] (Fig 6A). Specifically, the effective input perturbation is split into a baseline and

a modulation component such that Δβ = ΔβB + ΔβM. Here, we generalize this decomposition

to our present multi-population model. Furthermore, we present a novel analytical approach

for their analysis.

For each population, the baseline ΔβB is conceived as the mean input these neurons receive

during stimulation. Since the mean input is different for each population, this leads to a popu-

lation-wise constant input vector (Fig 6B, red curve). The modulation ΔβM, in contrast,

accounts for all neuron-by-neuron deviations from the population baseline, ΔβM≔ Δβ − ΔβB,

yielding a vector with zero mean in each of the eight populations (Fig 6B, inset). Most impor-

tantly, the modulation component includes the tuning information that each neurons receives,

based on the neuron-specific orientation bias of the stimulus. In other words, the deviation of

ΔβM from the baseline is determined by the orientation of the stimulus, as described by Eq 6.

Note that the baseline and modulation components are both only indirectly related to

mean rate (F0) and tuning strength (F1) discussed in the previous section. While the latter are

Fig 6. Separate amplification/attenuation of non-informative baseline and tuned modulation. A The input

perturbation Δβ can be decomposed into baseline and modulation, which are then amplified or attenuated by the

network with different gains. B Input perturbation for one particular orientation of the oriented stimulus. The effective

change in input rate is shown for each neuron in the eight populations of the layered network (blue). The baseline

(population mean) is depicted in red. The modulation, which is the entry-wise difference between the two, is plotted in

the inset (green). C Solutions for the baseline and modulation system. Shown are the baseline (green) and baseline plus

modulation (red) output rates. For comparison, also the solution of the full W system is shown (blue). The inset shows

a magnification for a small sample of neurons in population L4e.

https://doi.org/10.1371/journal.pcbi.1007080.g006
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calculated for the tuning curve of each single neuron independently, the baseline and

modulation of the input are calculated over all neurons in one population, for a single stimula-

tion angle.

Separation of baseline and modulation pathway means that the two input components ΔβB
and ΔβM are processed by two independent mechanisms with possibly distinct gains γB and

γM. As shown in Methods, the two pathways are governed by

DnB ¼ ð1 � QÞ� 1
DbB

DnM ¼ ð1 � SÞ� 1
DbM;

where the decomposition W = Q + S was used. Thereby, Q contains population-wise expecta-

tion values, resulting in an 8 × 8 block structure, and S are the individual modulations S = W −
Q of single connections in the network. Importantly, there is no cross-talk between the two

pathways. A change in the input baseline ΔβB does not lead to change in the output modula-

tion ΔνM, and vice versa.

Solving these two systems independently yields two output rate changes ΔνB and ΔνM. If the

cross-terms in the calculations are indeed negligible, the solution Δν = ΔνB + ΔνM provides a

good approximation to the network behavior (see Eq 12ff). For the network under study here,

the mean magnitudes μ of the cross-terms are μ[|QΔνM|] = 0.02 and μ[|SΔνB|] = 0.09 as com-

pared to μ[|Δβ|] = 3.63, implying that the system can indeed be studied by treating the baseline

and the modulation pathway separately. Similar numbers are also obtained for the other

parameter sets (S3E Fig).

The solutions of the baseline and modulation systems, ΔνB and ΔνM, are shown in Fig 6C in

comparison to the solution of the W-system. Throughout all populations, the separation solu-

tion is in excellent agreement with the direct solution. The modulation part, which conveys

the tuning information of the neurons, matches almost perfectly (Fig 6C inset). The good

agreement is further confirmed by the high coefficient of determination (“variance explained”)

of R2 = 99.1%. For the different parameter sets, the lowest R2 is obtained for increased back-

ground input with R2 = 98.0% (S3D, S4E–S9E Figs). This demonstrates the robustness of the

baseline and modulation decomposition also with respect to changes in parameters.

In previous sections, we identified the high baseline rate of L5e as the main cause for the

low orientation selectivity of its neurons. This becomes manifest in a high baseline output rate

ΔνB for this particular population (Fig 6C). While this observation still does not fully reveal the

underlying reason for the high rates, it hints at the effective mean connectivity represented by

Q. In the following, we will therefore study the baseline pathway in more detail.

Mode decomposition

We start by summarizing the results of Sadeh et al. [8, 36], where a similar scenario for a two

population EI network was studied. In analogy to the present model, the two population sys-

tem can also be described by a linear system of the form

Dn ¼ ð1 � WÞ� 1
Db;

where the dimensionality of the system equals the total number of neurons. In order to study

the network behavior, it is instrumental to inspect the eigenvalue spectrum of the matrix W. In

the two population case, when both populations receive the same input, the eigenvalue spec-

trum consists of a bulk of known radius localized at the origin and a single exceptional eigen-

value λ [37]. For inhibition dominated networks, this exceptional eigenvalue is real and

negative (Fig 7A). Furthermore, the eigenvector C corresponding to that exceptional
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eigenvalue is the uniform vector, with all entries identical. In this two-population network

model, the baseline component of the input perturbation is also proportional to the uniform

vector
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Therefore, exploiting the eigenvector property of a baseline perturbation, the exceptional

eigenvalue can be transformed into the gain factor of the baseline

DnB ¼ ð1 � WÞ� 1
DbB ¼ ð1 � lÞ

� 1
DbB ¼

~l DbB:

For inhibition dominated networks, this gain factor ~l has a small magnitude and thus results

in a strong attenuation of the baseline component. This, in turn, amplifies the orientation

selectivity of the network.

Generalizing the two-population scenario to the eight-population network considered here,

two major differences in terms of the eigenvalue spectrum of W become apparent. First,

instead of a single exceptional eigenvalue, the spectrum of the effective connectivity is more

complex (Fig 7B). In addition to the bulk of eigenvalues (diameter indicated in green in Fig

7B), there are seven eigenvalues with a significantly larger magnitude (blue dots in Fig 7B).

Fig 7. Eigenmode analysis of input-output relations. A Eigenvalue spectrum of the linearized model of Brunel

[6]. The exceptional eigenvalue is shown in red, the bulk spectrum in green. B Eigenvalues of the close to

80000-dimensional linear system. Blue and green dots indicate the exceptional and bulk eigenvalues of W, respectively.

Crosses mark eigenvalues of Q. C Eigenvalues of the matrix ð1 � QÞ� 1
. D The eight output modes of the Q system.

Shown are the change in output rate for each single neuron, due to each mode. Inset: Input perturbation decomposed

into the eight modes, which are also the right eigenvectors of Q.

https://doi.org/10.1371/journal.pcbi.1007080.g007
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In a random matrix theory context, it was previously shown that the exceptional and bulk

eigenvalues are due to the expectation values and variances of the distribution of the elements

of W. Therefore, the exceptional eigenvalues are asymptotically identical to the eigenvalues of

Q [38]. Indeed, the first seven eigenvalues are in good agreement with the numerical calcula-

tions on W (crosses in Fig 7B). Furthermore, an eighth exceptional eigenvalue is identified,

which lies in the middle of the bulk and could therefore not be distinguished from bulk eigen-

values in numerical calculations on W.

The second difference compared to the two-population scenario is the fact that the constant

vector is not any more an eigenvector of an exceptional eigenvalue. Instead, the eigenvectors

of the baseline system Q are only population-wise constant (cf. Fig 7D inset). However, also

the input perturbation is not proportional to the constant vector in this case. For each popula-

tion, it depends on the sensitivity to thalamic input, also resulting in a population-wise con-

stant function. In order to study the input-output behavior, the input can therefore be

decomposed into the eight eigenvectors (cf. Fig 8 left)

DbB ¼
X8

i¼1

xiCi:

Here, Ci are the eigenvectors of Q and ξi are the coefficients of the modes. The weighted com-

ponents ξiCi can be considered as the input modes of the input perturbation ΔβB. The eight

modes which represent the perturbation of the stimulation are shown in the inset of Fig 7D.

Note that the sum over these modes is identical to ΔβB in Fig 6B. Applying the decomposition

to the linear baseline system of Eq 14 results in a decomposition of the output rates of the net-

work, where the eight exceptional eigenvalues define the gain factors of the individual modes

by (Fig 8 right)

DnB ¼
X8

i¼1

~l ixiCi: ð14Þ

The transformed gain factors ~l i are shown in Fig 7C. The individual parts of this decomposi-

tion can be considered as output modes of the system, with a direct one-to-one relation to the

input modes. The effect of the exceptional eigenvalues λ is quite similar to the two-population

scenario described previously, where the single exceptional eigenvalue defined the gain of the

homogeneous common mode. In the multi-population case, each input mode is amplified

Fig 8. Eigenmode decomposition of input and output. Left: The baseline component of the input perturbation ΔβB is

decomposed into the eight input modes ξiCi. Center: By the network action, each mode is amplified or attenuated by

its individual gain factor ~l i. Right: The sum of all scaled output modes ~l ixiCi results in the baseline component of the

output perturbation ΔνB.

https://doi.org/10.1371/journal.pcbi.1007080.g008
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with the respective gain ~li to form the output perturbation of the network. The eight output

modes are shown in Fig 7D. Note that, similar to the input perturbation ΔβB, the sum of the

modes is identical to the baseline component ΔνB shown in Fig 6C.

Studying the output modes in more detail, it is apparent that the high rates of L5e neurons,

and thus also their low orientation selectivity, are mostly due to one specific mode (orange line

in Fig 7D). On the other hand, the same mode has a similar strength as the other components

in the input space (orange line, Fig 7D inset). As the corresponding eigenvalue of W has a very

small magnitude, however, the gain factor ~l of that mode is much larger compared to the

other modes (Fig 7C, orange dot). Due to this gain, the mode is dominant in the output rate

change, resulting in high firing rates in L5e. The fact that only a single mode is responsible for

this strong amplification underlines our conclusion that this effect is a feature of the whole net-

work, which cannot be pinned down to one specific connection in a meaningful way. Impor-

tantly, although the eigenvalue spectrum and mode structure can change to some degree, the

observation that a single mode with a strong gain is responsible for the high rates of L5e is con-

sistent for all parameter sets considered (S4F/S4G/S4H–S9F/S9G/S9H Figs).

Predictions for new stimulation experiments

Having identified the large gain of a specific mode in the input as the source of the high firing

rates in L5e, we now apply our theory to predict the network behavior for a scenario, where

that particular mode is absent in the input. For two reasons the mode cannot be directly

removed from the input firing rates. First, that mode has non-zero coefficients for all popula-

tions, which leads to non-zero thalamic input also to L2/3 and L5. While it is technically possi-

ble to implement this in a computational model, it is infeasible as a biological experiment. The

second problem is more fundamental: Subtracting the mode from the input perturbation

would lead to negative firing rates, which cannot be realized. Therefore, instead of using

altered Poisson input to neurons, we designed an external current stimulation, which has an

equivalent effect on the neuronal output rates. It is conceivable to realize such an input, for

example by specific optogenetic stimulation. In the linear model (Model C), an external cur-

rent results in an additional input perturbation Δγ such that

Dn ¼ ð1 � WÞ� 1
ðDbþ DgÞ:

In order to delete a specific modeCk from the input, we can set Δγ = −ξkCk. As a consequence,

when the two inputs Δβ and Δγ are combined, the mode cancels out, resulting in altered out-

put perturbation.

The required input current for single neurons in each population are shown in Fig 9A.

They are not directly proportional to the deleted mode, due to the scaling by the individual

feed-forward gain of each population, as well as due to the highly recurrent processing of the

network. As expected, since the rate of L5e neurons should be suppressed, these neurons

receive a strongly negative current. More surprisingly, L2/3e requires a positive input current

of similar magnitude, although the desired change in rate of that population is much smaller.

When the current is applied with an intensity that exactly removes the mode from the

input, the change in output exactly matches the sum of the remaining modes (Fig 9B, relative

intensity 1). For stronger stimulation intensities, the input mode is overcompensated. The

mean population rates of the linearized network and spiking network model are in good agree-

ment. Also in the spiking neural network model, the mean rates change almost linearly, even if

the input mode is overcompensated by a factor of two.

As expected, the reduction of L5e firing rates leads to an increase in orientation selectivity

of 250% from 0.02 to 0.07 in the linearized network model (75% in the spiking network model,
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Fig 9C). Simultaneously, due to the increase in firing rate in L2/3e, the orientation selectivity

of this population decreases by 66% from 0.12 to 0.04 in the linearized network model (25% in

the spiking network model). The discrepancy between the OSI of the spiking and linearized

network model can be partially explained by the bias of random tuning due to the fluctuations

of the spiking process, which were also the reason for non-zero OSIs observed in the spontane-

ous, unstimulated condition in Fig 4B. Other contributions could come from a weak crosstalk

between the baseline and modulation pathways, or from deviations from the assumptions of

Poisson firing statistics and negligible correlations.

Effectively deleting the mode from the input is not the only option to reduce the activity of

L5e neurons. From our analytic calculations, all feed-forward and recurrent baseline gains are

known. Exploiting this knowledge, we can design yet another current stimulus that exclusively

affects L5e neurons, leaving the mean firing rates of all other populations unchanged (Meth-

ods). The desired change of rates for this stimulus can be conveniently summarized in a vector

ΔνL5e. This vector is zero for all populations except L5e. For this population, it contains the

negative of the mean rates in the stimulation condition such that the resulting rates vanish.

The required effective external perturbation can then be calculated by

Dg ¼ ð1 � WÞDnL5e;

which are the external currents scaled with the known neuron sensitivities.

The required stimulation currents are shown in Fig 9D. Surprisingly, in this case, the

input currents to L5e neurons all need to be positive, although the desired effect on the out-

put rates is negative, and the rates of these neurons are reduced. It is also interesting that

input currents to all neurons except L4 are of similar strength. It is clear that the other popu-

lations also require substantial stimulation to maintain their original rate, since the altered

rate of L5e neurons needs to be compensated. However, the magnitude of these currents

Fig 9. Predictions for future current stimulation experiments. A-C Current stimulus 1: Effective deletion of a

distinct mode from the input. D-F Current stimulus 2: Selective suppression of L5e activity. A,D Single neuron current

stimulation required to achieve the effect. B,E Change of the mean rate of excitatory populations upon current

stimulation. Inhibitory populations are omitted for simplicity. x-axis shows current intensity relative to values in A,D,

respectively. In all panels, lines represent the linear model (Model C), and dashed lines the spiking neural network

simulations (Model A). C,F Change of orientation selectivity in L2/3e and L5e due to the two different current

stimulations.

https://doi.org/10.1371/journal.pcbi.1007080.g009
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surprises as L5 does not serve as a major input to any other population within the network

(Figs 1B and 5A). This highlights again the strongly recurrent and often unintuitive nature of

such networks.

Fig 9E shows that the new current stimulus successfully reduces the rate of L5e neurons,

while keeping all other firing rates unchanged. Similar to the first current stimulus discussed

above, the two models match quite well. Only for strong stimulation intensities, when the rates

of L5e neurons approach zero, the two models show discrepancies. In this regime, the rates of

L5e begin to be rectified. Since this is a non-linear effect, it can of course not be captured by

the linearized version of the model.

Analogously to our first prediction for current stimulation, L5e neurons show a strong

increase in orientation selectivity (Fig 9F). In the linear model, the OSI rises very sharply for

large current intensities. This is an artifact of the neglected rectification of neuron rates, as

already observed above. In the more realistic spiking network model (Model A), the OSI also

increases strongly by about 150% (from 0.04 to 0.1). However, in contrast to the first current

stimulus discussed above, in this case orientation selectivity of L2/3e neurons is not compro-

mised by the additional input currents. The OSIs of the other excitatory and inhibitory popula-

tions also remain unchanged.

Discussion

Model

The goal of this work was to study signal propagation across layers in primary visual cortex of

rodents, with a particular focus on the emergence of orientation tuning in layers that have no

direct access to thalamic input. We decided to employ a model that was developed previously

by Potjans and Diesmann [2]. The synaptic connectivity defining this model was rigorously

derived from the results of anatomical and electrophysiological measurements. The parame-

ters describing neuronal connectivity depend on the pre-synaptic and post-synaptic popula-

tion, but they do not depend on the functional properties (tuning) of individual neurons.

Furthermore, in order to focus our analysis on the impact of neuronal connectivity on dynam-

ics, single-neuron parameters were chosen the same for all neurons, independently of the pop-

ulation they belong to.

Since not all required connectivity data are available, Potjans and Diesmann [2] combined

data from different species (cat and rat) into one single generic model circuit. In addition, the

measurements were performed in several different brain regions, so it is debatable whether

this model can account for information processing in mouse visual cortex at all. In view of

this, it may be surprising that the predictions of our study with regard to neuronal activity are

in very good agreement with direct electrophysiological measurements performed in mouse

visual cortex. This finding is in fact compatible with the idea of a universal cortical circuit

which is found in different species and in different cortical regions devoted to the processing

of sensory information. It will be interesting to see to which degree a neural network model

based on the full mouse/rat visual cortex connectome (when it becomes available) deviates

from the present model.

In our work, the model proposed by Potjans and Diesmann [2] was extended by adding

neuron-specific thalamic input, which is tuned to the orientation of a visual stimulus, i.e., a

moving grating. This input was provided to both the excitatory and inhibitory populations in

L4 and L6. From experiments, it is known that neurons modulate their firing rate with the

temporal frequency of the grating [1, 3]. However, in order to keep the already complex model

and analysis as simple as possible, we did not include this aspect of visual processing into our

considerations. In fact, our analysis showed that the cortical network operates in a quasi-linear
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regime. Therefore, we expect that the additional temporal modulation of firing rates would not

have a significant impact on the mean values studied and reported here.

Via random connections, the very weak orientation bias in the input was enough to induce

strong orientation tuning in L2/3; see Hansel and van Vreeswijk [7] and Sadeh et al. [8, 16, 17]

for an analysis of this generic effect. Note, however, that we did not make any assumptions

about the origin of the orientation bias in the input. It could be a consequence of the alignment

of the receptive fields of afferent neurons [39], or it could be inherited from already tuned tha-

lamic neurons [23, 40, 41]. While the input was assumed to convey information about a visual

stimulus throughout the present study, our analysis of the layered network does not rely on

this interpretation. Our approach could therefore also be applied to study feature selectivity in

other sensory modalities, like in somatosensory or auditory cortex.

The distributions of orientation selectivity that emerge in our model across the different

layers and neuronal populations are qualitatively very similar to experimental recordings [1, 3,

29–31] (see also [42] for some inconclusive results). This represents a remarkable result, as the

model is based on measured connectivity in different cortical regions in different species, and

it was not at all designed and tuned as a specific model of rodent visual cortex. Furthermore,

the recordings cited above were performed in adult mice, which are known to have some

degree of feature-specific connectivity. Our model, in contrast, entirely lacks specific connec-

tivity, resembling the situation at eye opening [14]. Our analysis demonstrates that well-tuned

neuronal responses can emerge in all cortical layers without feature-specific connections

between neurons. On the other hand, it is known that specific connectivity can work as a con-

current mechanism to improve orientation selectivity and yield the higher values observed

experimentally (see also [36]).

While the distribution of firing rates in spontaneous and evoked conditions are qualitatively

similar to experimental findings [1, 3], there are also discrepancies in several respects (Fig 2D/

2E). It is difficult to asses the impact of these differences for the findings of our work. However,

our results are generally robust to changes in central network parameters, despite considerable

rate changes. Therefore, we expect that the neuronal mechanisms described in our work still

apply when more precise and detailed models of the microcircuit are developed.

In the present model, the mouse which is subject to visual stimulation is assumed to be

non-moving. As shown in a recent study [3], neuronal responses in primary visual cortex of

rodents are very similar in awake and anesthetized animals. In contrast, the responses dramati-

cally change during locomotion behavior [43]. Different inhibitory neuronal subtypes play a

central role in this [4]. A future enhanced version of our model might account for such effects

as well.

Microcircuit perspective

While analyzing network activity in terms of firing rates and orientation tuning, it becomes

apparent that a direct interpretation of connectivity cannot fully explain all features of the

dynamics observed in network simulations. For example, although afferent connectivity origi-

nating from L4e is very similar, firing rates and orientation selectivity in L2/3e and L5e are

quite different. As the input is comprised of both excitatory and inhibitory projections that

partially cancel each other, a small difference in the input may have strong effects on the oper-

ating point the two populations eventually settle in [33, 34]. Such effects are not straight-for-

ward to predict, since in a highly recurrent network neuronal output simultaneously also

provides input to the same network. Sometimes this leads to non-intuitive effects like effective

inhibitory influence of excitatory neuron populations [35]. To master such difficulties in the

analysis, a system-level view of complex microcircuits is inevitable [44, 45].
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Baseline and modulation pathways

Previously, inhibition dominated recurrent networks were shown to exhibit two distinct pro-

cessing pathways [8]. While the untuned and uninformative component (baseline) of the

input is strongly attenuated by the recurrent network, the modulated component, which con-

veys all the information about the stimulus, has a much higher gain. This results in a net ampli-

fication of feature selectivity through the input-output transformation exerted by the network.

By separating the (linearized) layered model into two systems, we were able to analytically

calculate the feed-forward and recurrent gains of the baseline pathway also for a multi-popula-

tion system. In combination, these two gains describe how the input to one population affects

the output of any other population. In contrast to our model, neurons in the model of Potjans

and Diesmann [2] have binomially distributed in-degrees, leading to a certain degree of cross-

talk between the two pathways by non-vanishing interference terms in Eq 12. While this intro-

duces some discrepancies between the direct and separate solutions of the linear model, it does

not impair the described mechanism.

It should be emphasized that the separation between baseline and modulation pathways, its

different gains, and thus also tuning amplification are purely linear effects. This is possible, as

a linear transformation may impose different scaling factors to different input components.

Mode decomposition

Instead of analyzing the operation of a network from the viewpoint of neuronal populations,

we chose a basis that is more natural for the network in question. We decomposed the input

into eigenmodes of the system, where the eigenvalues of the effective connectivity correspond

to the gains of the individual input modes. Interestingly, the high gain of L5e can be attributed

to a single mode, which has a much higher gain than all the other modes. Due to this mode,

L5e neurons exhibit a high firing rate and a weak selectivity for stimulus orientation.

What is the functional significance of having a mode with this exceptionally high gain? For

a preliminary answer, it is important to take into consideration that the different populations

in the layered cortical network play different roles for information processing. For instance,

L2/3e neurons project to higher brain areas and need to transmit information in a reliable way

[46]. Therefore, it is desirable that this population has a strong attenuation of the baseline and,

thus, strong tuning amplification. L5e neurons, on the other hand, mainly project to sub-corti-

cal brain regions, including thalamus [47]. It is likely that this population is involved in feed-

back control mechanisms, where tuning information may be less relevant.

Predictions for optogenetic intervention

Using the theory developed in this work, we are in the position to devise external (e.g. opto-

genetically applied) stimuli which effectively manipulate the orientation tuning of L5e neu-

rons. We designed two different such stimuli which reduce the mean firing rates of these

neurons, thus increasing their tuning. Interestingly, although the effect on the rate of L5e is

identical, one stimulus requires a positive current, while the other utilizes a negative current.

This can be explained by the indirect effect of the stimulus on other populations, propagated

via the recurrent network.

Our calculations constitute strong predictions of our model, which can be tested with some

effort in experiments. Different subpopulations can be stimulated by a combination of chan-

nelrhodopsin and halorhodopsin with different wavelength sensitivities, as described by Kla-

poetke et al. [48], possibly in combination with locally confined optical stimulation.

Throughout our study, and in particular for the derived predictions, the consistency of

results between the spiking network and the linear model are remarkable. Only for very strong
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stimulation, when non-linear rectification sets in, some deviations become evident. This con-

firms previous findings that a network of highly nonlinear neurons can be effectively linearized

about its dynamical operating point, which corresponds to the balanced state of the excitatory-

inhibitory network [33, 34].

In our work, the newly developed mathematical tools were applied to design current stimuli

which effectively and selectively suppress L5e activity. In our model, all rate gains are known

from the decomposition into baseline and modulation pathways. Therefore, other types of

experiments can be performed as well, even for complex multi-population networks different

from the primary visual cortex. This makes the suggested method an ideal tool for the design

of external current stimuli in a large variety of experiments.

In summary, we presented a novel method for analyzing the dynamics of multi-population

networks in terms of their input-output relations. We applied the approach to the analysis of a

layered model of rodent visual cortex, revealing interesting and to some degree also unex-

pected and non-intuitive consequences of the underlying connectivity. In addition, we derived

predictions for future optogenetic experiments, which could be performed to test the power of

our computational analysis.

Supporting information

S1 Fig. Correlation and spike regularity in the spontaneous condition. A-B Mean and stan-

dard deviation of spike count correlations between neurons from different populations. A bin

size of 10 ms was used. C Distributions of the coefficient of variation of inter-spike-intervals

for neurons in different populations. Same quantiles as described in Fig 2 are shown.

(TIF)

S2 Fig. Correlation and spike regularity in the stimulated condition. A-B Mean and stan-

dard deviation of spike count correlations between neurons from different populations. A bin

size of 10 ms was used. C Distributions of the coefficient of variation of inter-spike-intervals

for neurons in different populations. Same quantiles as described in Fig 2 are shown.

(TIF)

S3 Fig. Characteristic quantities compared over parameter sets. A Abbreviations used in

other panels. B Mean and SD of correlation coefficient over all populations. C Mean and SD of

CV of inter-spike-intervals over all populations. D Coefficient of determination (R2) quantify-

ing the fit between a direct linear solution and a baseline and modulation decomposition. E

Magnitudes of interference terms in Eq 12 on logarithmic scale (blue: Δβ, red: QΔνM, green:

SΔνB).

(TIF)

S4 Fig. Central results summarized for standard parameter set. A/B Mean firing rates for

spontaneous and stimulated condition. For each population, the results of the spiking model

(Model A, top), nonlinear rate model (Model B, middle) and linear model (Model C, bottom)

are shown. C Mean orientation selectivities for stimulated condition for all three models. D

Raster plot for the stimulated condition for 250 ms of 500 neurons in each population. E Com-

parison of baseline and modulation solution with direct solution of the linear model (cf. Fig

6C). F Eigenvalue spectrum of the effective connectivity W (cf. Fig 7B). G Input perturbation

ΔβB (inset) and output perturbation ΔνB decomposed into input and output modes, respec-

tively (cf. Fig 7D).

(TIF)
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S5 Fig. Central results summarized for high background parameter set. A/B Mean firing

rates for spontaneous and stimulated condition. For each population, the results of the spiking

model (Model A, top), nonlinear rate model (Model B, middle) and linear model (Model C,

bottom) are shown. C Mean orientation selectivities for stimulated condition for all three

models. D Raster plot for the stimulated condition for 250 ms of 500 neurons in each popula-

tion. E Comparison of baseline and modulation solution with direct solution of the linear

model (cf. Fig 6C). F Eigenvalue spectrum of the effective connectivity W (cf. Fig 7B). G Input

perturbation ΔβB (inset) and output perturbation ΔνB decomposed into input and output

modes, respectively (cf. Fig 7D).

(TIF)

S6 Fig. Central results summarized for low background parameter set. A/B Mean firing

rates for spontaneous and stimulated condition. For each population, the results of the spiking

model (Model A, top), nonlinear rate model (Model B, middle) and linear model (Model C,

bottom) are shown. C Mean orientation selectivities for stimulated condition for all three

models. D Raster plot for the stimulated condition for 250 ms of 500 neurons in each popula-

tion. E Comparison of baseline and modulation solution with direct solution of the linear

model (cf. Fig 6C). F Eigenvalue spectrum of the effective connectivity W (cf. Fig 7B). G Input

perturbation ΔβB (inset) and output perturbation ΔνB decomposed into input and output

modes, respectively (cf. Fig 7D).

(TIF)

S7 Fig. Central results summarized for strong inhibition parameter set. A/B Mean firing

rates for spontaneous and stimulated condition. For each population, the results of the spiking

model (Model A, top), nonlinear rate model (Model B, middle) and linear model (Model C,

bottom) are shown. C Mean orientation selectivities for stimulated condition for all three

models. D Raster plot for the stimulated condition for 250 ms of 500 neurons in each popula-

tion. E Comparison of baseline and modulation solution with direct solution of the linear

model (cf. Fig 6C). F Eigenvalue spectrum of the effective connectivity W (cf. Fig 7B). G Input

perturbation ΔβB (inset) and output perturbation ΔνB decomposed into input and output

modes, respectively (cf. Fig 7D).

(TIF)

S8 Fig. Central results summarized for strong synapses parameter set. A/B Mean firing

rates for spontaneous and stimulated condition. For each population, the results of the spiking

model (Model A, top), nonlinear rate model (Model B, middle) and linear model (Model C,

bottom) are shown. C Mean orientation selectivities for stimulated condition for all three

models. D Raster plot for the stimulated condition for 250 ms of 500 neurons in each popula-

tion. E Comparison of baseline and modulation solution with direct solution of the linear

model (cf. Fig 6C). F Eigenvalue spectrum of the effective connectivity W (cf. Fig 7B). G Input

perturbation ΔβB (inset) and output perturbation ΔνB decomposed into input and output

modes, respectively (cf. Fig 7D).

(TIF)

S9 Fig. Central results summarized for low connectivity parameter set. A/B Mean firing

rates for spontaneous and stimulated condition. For each population, the results of the spiking

model (Model A, top), nonlinear rate model (Model B, middle) and linear model (Model C,

bottom) are shown. C Mean orientation selectivities for stimulated condition for all three

models. D Raster plot for the stimulated condition for 250 ms of 500 neurons in each popula-

tion. E Comparison of baseline and modulation solution with direct solution of the linear

model (cf. Fig 6C). F Eigenvalue spectrum of the effective connectivity W (cf. Fig 7B). G Input

Propagation of orientation selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007080 July 19, 2019 31 / 34

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007080.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007080.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007080.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007080.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007080.s009
https://doi.org/10.1371/journal.pcbi.1007080


perturbation ΔβB (inset) and output perturbation ΔνB decomposed into input and output

modes, respectively (cf. Fig 7D).

(TIF)

S10 Fig. Comparison of orientation selectivity measures. Left column: Distribution of orien-

tation selectivity measure based on circular statistics (OSI). Middle column: Orientation selec-

tivity measure based on cosine fit (OSI�). Right column: Comparison of the two orientation

selectivity measures. Each dot represents a single neuron in the respective population.

(TIF)

S11 Fig. Model comparison. Comparison of the three central observables of the different net-

work models. Top row: single neuron firing rates, middle row: preferred orientation (PO), bot-

tom row: orientation selectivity index (OSI). The first column compares the spiking network

model (Model A) with the firing rate model (Model B), the second column compares the firing

rate model with linearized network model (Model C) and the third column compares the spik-

ing network model with the linearized network model. Same color code is used as in previous

figures to indicate the eight different populations.

(TIF)
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