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Intracellular pH Regulates Cancer
and Stem Cell Behaviors: A Protein
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The International Society of Cancer Metabolism (ISCaM) meeting on Cancer Metabolic

Rewiring, held in Braga Portugal in October 2019, provided an outstanding forum

for investigators to present current findings and views, and discuss ideas and future

directions on fundamental biology as well as clinical translations. The first session on

Cancer pH Dynamics was preceded by the opening keynote presentation from our

group entitled Intracellular pH Regulation of Protein Dynamics: From Cancer to Stem

Cell Behaviors. In this review we introduce a brief background on intracellular pH (pHi)

dynamics, including how it is regulated as well as functional consequences, summarize

key findings included in our presentation, and conclude with perspectives on how

understanding the role of pHi dynamics in stem cells can be relevant for understanding

how pHi dynamics enables cancer progression.
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INTRODUCTION

Intracellular pH (pHi) was previously thought to be mostly constant for cellular homeostasis and
possibly dysregulated in diseases. We now know, however, that pHi is dynamic in normal cells
and clearly dysregulated in a number of diseases. In normal cells, pHi changes during cell cycle
progression, increasing ∼0.3–0.4 pH units at the end of S phase and if this increase is blocked,
G2/M is delayed with increased inhibitory phosphorylation of Cdk1-Tyr15 and suppressed cyclin
B1 expression (1–3). Additionally, pHi dynamics regulates cell-substrate adhesion remodeling and
migration, with increased pHi enabling both behaviors (4–7). Emerging evidence also indicates
a critical role for increased pHi in epithelial plasticity, including epithelial to mesenchymal
transition (EMT) (8), and stem cell differentiation (9–12). Moreover, it is now well-established
that dysregulated pHi is seen with many diseases, most notably cancers, which often have a
constitutively increased pHi (13–18), and neurodegenerative disorders, which are associated with a
constitutively decreased pHi (19, 20). Our review focuses on dysregulated pHi dynamics in cancer;
however, another feature of cancers is a dysregulated extracellular pH that is lower (∼7.0) compared
with normal tissues (∼7.4).

Although many factors contribute to pHi dynamics, the major regulators in most mammalian
cells are plasma membrane ion exchangers, including the Na+-H+ exchanger NHE1, the Na+-
HCO−

3 transporter NBC, and the Na+-dependent Cl−-HCO−

3 transporter NDCBE, which are
acid-extruders, and Cl−-HCO−

3 exchangers of the anion exchanger (AE) family, which are
acid loaders (21–23). The BioParadigms Solute Carrier tables1 are an excellent resource on the
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classification, expression, and transport characteristics of these
ion exchangers. Additional plasma membrane ion transport
proteins that contribute to pHi dynamics, albeit to less of an
extent, include V-ATPases and monocarboxylate transporters of
the MCT family. The broad range of ion transport proteins
regulate pHi dynamics through changes in their expression
and activity, the latter mostly mediated by posttranslational
modifications as many are substrates of key signaling kinases,
including for NHE1, p90rsk (24), Akt (25, 26), the Rho
kinase ROCK (27), and the Ste20 kinase MAP4K4 (28),
previously termed NIK. Experimentally, these exchangers can be
pharmacologically or genetically targeted to understand how they
contribute to pHi dynamics and how pHi dynamics regulates
cell behaviors.

We have a relatively strong understanding of how changes
in pHi are generated and the effects of pHi changes on myriad
cell functions. However, a mechanistic understanding of how
pHi changes regulate cell behaviors remains understudied,
particularly effects on signaling networks and protein functions.
At the ISCaM meeting we presented our work on how changes
in pHi regulate protein dynamics to enable cancer and stem
cell behaviors, which we summarize in this review. Key to
pH-regulated protein structure and function is considering
protonation and deprotonation as a protein posttranslational
modification, analogous to posttranslational modification
by phosphorylation, acetylation, and methylation as we
previously described (29). However, studying protonation
and deprotonation as a posttranslational modification
is more difficult compared with other posttranslational
modifications because it is not catalyzed by an enzyme and
cannot be detected by mass spectrometry or antibodies.
Furthermore, many endogenous “pH sensors” or proteins
that are regulated by pH dynamics within the cellular range
are coincidence (AND-gate) detectors with their structural
conformations, activities, or binding affinities dependent on
multiple posttranslational modifications, most commonly
phosphorylation or dephosphorylation and protonation
or deprotonation.

INTRACELLULAR pH AND CANCER CELL
BEHAVIORS: FROM THE PROTEIN VIEW

Most cancer cells have a higher pHi compared with
untransformed cells, regardless of the mutational landscape
or tissue origin. This higher pHi enables many cancer behaviors,
including increased proliferation, directional migration,
tumorigenesis, and most recently recognized, the oncogenic and
tumor-suppressor functions of proteins with charge-changing
mutations (Figure 1). At the ISCaM meeting we presented
our findings on pH sensors regulating cell migration and
tumorigenesis as well as how pHi dynamics in cancer cells affect
the functions of proteins with somatic mutations encoding
arginine to histidine substitutions.

Cell migration is confirmed to be regulated by pHi in many
cell types and species (6, 30–34). An increased pHi of ∼0.3–
0.4 units is seen in migrating cells and preventing the increased

pHi inhibits migratory rate and directionality, and impairs cell
polarity. Our presentation described several pH sensors we
identified in atomistic detail that collectively regulate different
aspects of migration. These include guanine nucleotide exchange
factors for the low molecular weight GTPase Cdc42 involved
in cell polarity (35), talin binding to actin filaments (36), and
focal adhesion kinase (FAK) activity for cell-substrate adhesion
dynamics (5) as well as cofilin for actin polymerization (37).
The single histidine in cofilin, His133 (human), has an upshifted
pKa to ∼ 7.2 and must be neutral for increased cofilin activity
(Figure 1A). However, cofilin is a coincidence detector and full
activity also requires dephosphorylation of Ser3 (Figure 1A) by
one of several phosphatases, which releases an autoinhibited
interaction between phosphorylated serine and lysine 126 and
127 to allow binding to actin filaments. This AND-gate regulation
enables signaling mechanisms to increase cofilin activity in time
(with migratory cues) and space (at the leading edge of a
migrating cell), and highlights that for many pH sensors a change
in protonation state does not function as a binary switch.

Tumorigenesis and dysplasia are enabled by increased
pHi regulated by NHE1, NBCs, and MCTs, including
tumor cell proliferation, growth, and survival (38–40). Our
presentation included two of our recent key findings on pHi and
tumorigenesis. First, that increased pHi from ∼7.30 to ∼7.65 in
Drosophila eye epithelia by overexpressing Drosophila dnhe2, an
ortholog of mammalian NHE1, is sufficient to induce dysplasia
in the absence of an activated oncogene (41). Second, that β-
catenin, an adherens junction and Wnt pathway protein, is a pH
sensor, with pHi not regulating its activity but rather its stability,
which decreases at pHi > 7.5 (42). Using a phenotype screen,
we found that overexpressing β-catenin suppresses dysplasia
in Drosophila eye epithelia with constitutively increased pHi
induced by overexpression of dnhe2. These data suggested a
lower abundance of β-catenin at higher pHi, which we confirmed
in mammalian cells. We also resolved the pH sensing mechanism
of His36 (human) in the N-terminus of β-catenin, which when
neutral (at higher pHi) increases binding affinity for the E3
ligase β-TrCP1. However, like cofilin described above, β-catenin
is a coincidence detector requiring both a neutral His36 and
phosphorylated flanking Ser33 and Ser37 for binding β-TrCP1
(Figure 1B). The role of phosphorylated serines in enabling
proteasome-mediated degradation of β-catenin has long been
recognized (43). The importance of a neutral His36 for binding
β-TrCP1 is evident in the crystal structure of β-TrCP1in complex
with an N-terminal β-catenin peptide (44) (PDB: 1P22), which
shows the proximity of β-catenin-His36 and β-TrCP1-Lys365
(Figure 1B). This suggests that binding would be electrostatically
unfavorable with a protonated His36 at lower pHi. Importantly,
the DSxxHS motif is conserved in β-catenin across species
and occurs in a number of other β-TrCP1 target proteins
(45), including the transmembrane protein polycystin 2, the
tumor suppressor tensin 2, the centrosomal protein Cep97, the
hedgehog pathway protein Gli3, and myosin-XVIIIa, suggesting
these substrates may have similar pH sensitive binding to
β-TrCP1 and regulated protein stability. We also described
that a cancer-associated somatic mutation, β-catenin-H36R, is
insensitive to pHi-regulated degradation and, when expressed in
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FIGURE 1 | The higher pHi of cancer cells enables many behaviors, including directional migration and tumorigenesis as well as the tumorigenic functions of proteins

with charge-changing arginine to histidine mutations. (A) Cell migration is in part dependent on increased activity of cofilin with increased pHi. Cofilin is a

coincidence-regulated pH sensor that is activated by deprotonation of His133 (cyan) and dephosphorylation of Ser3 (magenta) for actin polymerization enabling cell

migration. (B) Dysplasia is associated with increased pHi, which decreases β-catenin stability. β-catenin is a coincidence-regulated pH sensor with deprotonation of

His36 (cyan) and phosphorylation of Ser33/37 by GSK3β enabling binding to the E3 ligase β-TrCP1 for targeting to the proteasome for degradation. Crystal structure

data show that β-catenin-His36 is in close proximity to β-TrCP1-Lys365, which suggest that binding would be electrostatically unfavorable with a protonated His36 at

lower pHi. (C) Charge changing somatic mutations can confer pH-regulated protein activity. Structure of wild-type p53 (left) and mutant p53-R273H (right) in complex

with DNA indicating an electrostatic interaction of Arg273 with the negatively charged phosphate-backbone of DNA that could be partially enabled by protonated, but

not neutral, His273.

Drosophila eye epithelia, enhances Wnt pathway activity, causes
tissue overgrowth growth, and induces ectopic tumors. With this
mutation, β-catenin stability could be retained at the higher pHi
of a cancer cell and enable tumorigenesis. As described in the
section below, this is an example of a charge-changing mutation
that confers a loss of pH sensing.

Charge-changing somatic mutations can confer a change in
pH sensing and enable cancer behaviors specifically at increased
pHi. We recently showed that recurrent arginine to histidine
mutations in p53 and EGFR can confer a gain in pH sensing
to the mutant proteins. Arginine, with a pKa of 12, will be
protonated regardless of pHi while histidine, with a pKa near
neutral, can titrate with cellular changes in pHi. We found that
a highly recurrent arginine to histidine mutation in the tumor
suppressor p53 (p53-R273H) could confer pH-dependent DNA
binding and transcription of p53 target genes, with decreased
transcription at a higher pHi of 7.6 compared with 7.2 (46). The
crystal structure of wild-type p53 (47) (PDB: 4HJE) and mutant
p53-R273H (48) (PDB: 4IBW) in complex with DNA suggests
that wild-type Arg273 forms an electrostatic interaction with
the negatively charged phosphate-backbone of DNA (Figure 1C).
At the lower pHi of a non-transformed cell, His273 is likely
protonated and retains some binding to the negatively-charged
DNA but, at the higher pHi of a cancer cell, His273 is
likely deprotonated, reducing DNA binding and expression of
p53 target genes (Figure 1C). Importantly, lowering pHi in
cancer cells expressing p53-R273H recovered p53 transcriptional

activity and p53-dependent cell death in response to double-
strand breaks (46). We also showed that a cancer-associated
arginine to histidine substitution in the epidermal growth factor
receptor (EGFR-R776H) that is recurrent in lung cancers confers
pH sensing to the mutant protein. Increasing pHi from 7.2 to 7.6
increases activity of EGFR-R776H but not wild-type receptor, and
increases cell proliferation and cellular transformation in cells
expressing the mutant but not wild-type receptor (46). These
results suggest that charge-changing mutations can confer a gain
in pH-sensing not seen with the wild-type protein. This work
also indicates that charge-changing somatic mutations can confer
dynamic function to mutant proteins, specifically inactivating a
tumor suppressor and specifically activating an oncogene at the
increased pHi of cancer.

INTRACELLULAR pH AND EPITHELIAL
PLASTICITY: FOCUS ON STEM CELL
DIFFERENTIATION

Recent findings indicate that pHi dynamics is a key regulator of
epithelial plasticity, with increased pHi enabling EMT (8) and
epithelial branchingmorphogenesis (49) as well as differentiation
of melanocytes (50), embryonic and adult stem cells (9, 11),
and mesenchymal (12) and cardiomyocyte (10) stem cells.
These findings raise questions on the role of pHi dynamics in
morphogenesis and animal development, which remain largely
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FIGURE 2 | (A) Schematic showing that clonal self-renewing mESC (Naïve), derived from the inner cell mass of the early blastocyst, have a lower pHi than

differentiated primed epiblast-like stem cells (EpiSC), which are analogous to cells in the late epiblast stage. (B) Schematic of Drosophila germarium showing an

increase in pHi from self-renewing follicle stem cell (Follicle SC) to differentiated prefollicle and follicle cell. (C) Image of lung cancer H1299 cells expressing the pHi

biosensor mCherry-pHluorin and grown in Matrigel as 3D spheroids shows intracellular pHi heterogeneity that might reflect phenotypic heterogeneity, such as cells

with a higher pHi undergoing EMT and cells with a lower pHi being self-renewing tumor initiating stem-like cells.

unresolved. New genetically-encoded tools to measure pHi
(51) and genetic and pharmacological approaches to selectively
change pHi temporally and spatially will enable new studies
necessary to resolve pHi-regulated developmental processes with
promise for new approaches to correct impaired morphogenesis.

Toward a goal of resolving the role of pHi dynamics in cell
fate decisions, at the ISCaM meeting we discussed our findings
on pHi-regulated embryonic and adult stem cell differentiation.
As we previously described (11), with differentiation of naïve

clonal mouse embryonic stem cells (mESC) to primed epiblast-
like cells there is an NHE1-dependent transient increase in pHi
of∼ 0.3 units (Figure 2A). Preventing this increase in pHi blocks
differentiation, as indicated by sustained expression of the mESC
markers Rex1, Stra8, and Nanog, and attenuated expression of
the epiblast markers Brachyury, fibroblast growth factor 5, and
Pax6. An increase in pHi is also necessary for differentiation of
adult follicle stem cells in the Drosophila ovary to prefollicle cells
and follicle cells (9, 11) (Figure 2B), the later necessary for germ
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cell maturation. Consistent with germ cells requiring enrichment
from differentiated follicle cells, preventing the increase in pHi
along the follicle stem cell lineage impairs ovary morphology and
adult oogenesis and substantially decreases fertility (9). These
findings were obtained by genetically silencingDrosophila dnhe2,
an acid extruder, or overexpressing a newly identified Drosophila
ae2, an ortholog of the mammalian acid loader AE2.

There are several important questions to resolve on the role
of pHi dynamics in stem cell differentiation. First is whether pHi
is a conserved regulator of stem cell differentiation in different
tissues, perhaps using established and well-characterized models
for intestinal epithelial (52) and skin epidermal (53) stem cell
lineages. Second is how pHi dynamics regulates activity of
pathways and functions of proteins with established roles in
stem cell behaviors. One possibility is a role for pH sensing
by β-catenin (as described above) in Wnt signaling, because
high Wnt pathway activity (54) at low pHi may retain self-
renewal of stem cells and inhibit differentiation. Third is whether
pHi-regulated stem cell differentiation can inform regenerative
medicine approaches to correct or restore impaired cell and
tissue functions.

INTEGRATING pHi DYNAMICS IN CANCER
AND STEM CELLS

To consider how pHi dynamics in stem cells and cancer might
be linked, we concluded our presentation by showing new data
on pHi heterogeneity in spheroids of clonal human lung cancer
cells (Figure 2C). Using H1299 cells expressing the previously
described (41) genetically encoded and ratiometric pH biosensor
mCherry-pHluorin, we observe distinct intercellular differences
in pHi when grown in 3D (Figure 2C). Distinct pH heterogeneity
(including intracellular and extracellular pH) is seen in cancer
spheroids (55–58) and a mouse model of breast ductal carcinoma
(59); however, whether this heterogeneity reflects differences
in mutational signatures, cell identity, phenotypes, or epithelial
or metabolic plasticity remains unresolved. For example, might
cells with a lower pHi be stem-like tumor initiating cells?
Could cells with a higher pHi have increased glycolysis to fuel

rapid proliferation or be undergoing EMT for metastasis? The
possibility that a lower pHi could enable tumor initiating cells
raises caution on the idea of lowering pHi to limit cancer
progression. Tumor heterogeneity, whether genetic, epigenetic,
or phenotypic, is increasingly being recognized as a challenge
for cancer therapies (60, 61), and improved understanding of
the determinants and consequences of pHi heterogeneity could
contribute to resolving these therapeutic challenges.

The field has taken a first important step in identifying a
number of normal and pathological cell behaviors regulated by
pHi dynamics. A second step in understanding how pHi regulates
the signaling pathways mediating these behaviors is now
emerging. A third step of improved mechanistic understanding
is an important future direction to resolve design principles
and functions of pH sensitive proteins mediating pHi-regulated
cell behaviors. This third step is experimentally challenging and
remains largely unexplored, but holds promise for identifying
new therapeutic targets and informing the design of therapeutics
for regenerative medicine and treating diseases with dysregulated
pHi dynamics, including cancer.
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