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Abstract: A multiview clustering (MVC) has been a significant technique to dispose data mining
issues. Most of the existing studies on this topic adopt a fixed number of neighbors when con-
structing the similarity matrix of each view, like single-view clustering. However, this may reduce
the clustering effect due to the diversity of multiview data sources. Moreover, most MVC utilizes
iterative optimization to obtain clustering results, which consumes a significant amount of time.
Therefore, this paper proposes a multiview clustering of adaptive sparse representation based on
coupled P system (MVCS-CP) without iteration. The whole algorithm flow runs in the coupled P
system. Firstly, the natural neighbor search algorithm without parameters automatically determines
the number of neighbors of each view. In turn, manifold learning and sparse representation are
employed to construct the similarity matrix, which preserves the internal geometry of the views.
Next, a soft thresholding operator is introduced to form the unified graph to gain the clustering
results. The experimental results on nine real datasets indicate that the MVCS-CP outperforms other
state-of-the-art comparison algorithms.

Keywords: multiview clustering (MVC); manifold learning; sparse representation; P system

1. Introduction

At present, many fields have accumulated a large amount of data from which cluster
analysis can mine useful knowledge. Cluster analysis has been effectively applied to text
mining [1], information retrieval [2], pattern recognition [3], molecular biology [4], etc.
With the rapid growth of multimedia technology and the widespread deployment of the
Internet of Things, multiview data has become more common and public [5]. Due to the
limitations of traditional clustering algorithms, multiview clustering has become a research
hotspot. Multiview clustering essentially utilizes the input of multiple characteristic views
of the data. It merges these feature views to acquire an optimized model, which is more
efficient than traditional single-view clustering. Then, the instance is divided into different
clusters [6,7]. There are two important principles of the multiview clustering algorithm,
namely, the principle of complementarity and consensus. The former can describe instances
more comprehensively, and multiple views can complement each other. The latter is
designed to maximize consistency between multiple different views.

In recent years, multiview clustering has developed rapidly. In theory, most existing
multiview clustering methods can be divided into four categories: graph-based techniques,
non-negative matrix factorization, multikernel clustering, and deep multiview cluster-
ing. The multiview spectral clustering method and the subspace clustering method are
graph-based multiview clustering methods. The former commonly applies spectral em-
bedding [8], tensor learning [9,10] and relaxation matrix methods [11]. The latter is more
effective in processing high-dimensional data. Methods such as sparse representation and
low-rank representation are usually adopted to gain subspace self-representation [12–15].
The non-negative matrix factorization method adopts multiple normalizations, double reg-
ularization, and graph regularization strategies of non-negative matrix factorization factors

Entropy 2022, 24, 568. https://doi.org/10.3390/e24040568 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040568
https://doi.org/10.3390/e24040568
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4976-9227
https://doi.org/10.3390/e24040568
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040568?type=check_update&version=2


Entropy 2022, 24, 568 2 of 23

to improve the performance of multiview clustering [16–18]. Multikernel clustering fuses
linear kernels, polynomial kernels, Gaussian kernels and other kernel functions as base
kernels. Meanwhile, it combines kernel norm minimization [19], tensor kernel norm [20],
non-convex norm [21], extreme learning machine [22] and other methods to realize the
clustering process.

Deep multiview clustering is another development direction of current multiview
clustering. Constructing category-level correspondences of unaligned data with the la-
tent space learned by neural networks in partial-view-aligned clustering [23,24]. Robust
multiview clustering with incomplete information addresses the partially view-unaligned
problem and the partially sample-missing problem under a unified framework combined
with neural networks [25]. Moreover, the concepts of intelligent algorithms such as par-
ticle swarm optimization (PSO) [26–28], the Boltzmann machine [29], encoder [30], and
convolutional neural network (CNN) [31] are introduced into multiview clustering to solve
practical application problems. Since the graph-based clustering methods have advantages
in terms of accuracy, this paper will focus on them.

In multiview clustering, the construction of a single-view similarity matrix and the
formation of a unified graph matrix are important issues. Zhan et al. [32] put forward an
unsupervised multi-feature learning method based on graph construction and dimensional-
ity reduction (MVGL) to maximize the use of the correlation between different features. The
weights of the affinity matrix are learned through well-designed optimization problems
rather than fixed functions. In addition, a rank constraint is imposed on the Laplacian
matrix of the global graph to achieve an ideal neighbor assignment. Maria and Ivica [12]
learned the joint subspace representation by constructing an affinity matrix shared by all
views while encouraging the sparsity and low rank of the solution. The proposed multi-
view low-rank sparse subspace clustering (MLRSSC) algorithm strengthens the consistency
between affinity matrices of the pairs of views. Wang et al. [33] presented a graph-based
system for multiview clustering.

The working principle of GBS is to employ the nearest neighbor method to effectively
construct the similarity matrix after extracting the data feature matrix of each view. Then, an
iterative optimization algorithm is adopted to automatically weight each similarity matrix
to learn a unified affinity matrix. It can directly gain the final cluster labels in the unified
graph. Peng et al. [34] set the neighbor size to 10 and used the cosine distance as a metric to
construct a similarity matrix, and then updated it iteratively with an objective function that
includes geometric consistency. GMC [35] automatically weights and merges the similarity
matrix of each view to generate a unified graph matrix. The two improve each other
by means of iterative optimization algorithms and give the final cluster directly without
additional algorithms. Tan et al. [7] proposed a two-step multiview clustering method that
exploits sparse representation and adaptive graph learning to optimize the similarity matrix
of a single view, and retains the internal structural characteristics of each view. Further,
the global optimal matrix is obtained through adaptive weighted cooperative learning for
each view. Huang et al. [36] merged the consistency and diversity of multiple views into a
unified framework to form a “consistent and divergent multiview graph” (CDMGC). At
the same time, an alternating iterative algorithm combines the consistency part with the
automatically learned weights, and the consistency part is further integrated into the target
affinity matrix. Finally, the clustering label of each instance is directly assigned.

Membrane computing (also known as a P system) is a distributed parallel computing
model that Professor Păun proposed in 1998 inspired by the structure and function of
biological cells [37]. Since it was put forward, its calculation model has been proved to
have the computing power equivalent to the Turing machine [38]. The neural P system
is the third-generation neural membrane computing model inspired by discrete neurons
whose information is encoded by neurons’ spike number and spike time. In addition,
there are currently cell-like P systems and tissue-like P systems [39]. The development of
membrane computing (P system) is mainly in theoretical research and application research.
In theoretical research, the research on the parallel computing capabilities of various P
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systems and solving NP problems are flooding in [40–43]. In terms of application research,
membrane computing has been widely used in spectral clustering [44,45] and density peak
clustering [46].

Most of the above algorithms adopt the concept of neighbors when initially construct-
ing the similarity matrix, but most of them used a fixed number of neighbors manually
determined. However, multiview data is usually collected from different measurement
methods, such as images, videos, etc. The noise, damage, and even view-specific attributes
of different data sources will be different, so the number of neighbors should be differ-
ent when the similarity matrix of each view is constructed. Simultaneously, most of the
existing multiview clustering algorithms utilize iterative optimization algorithms when
merging into a unified graph matrix and decomposing it into subproblems for disposing
of. Although higher accuracy can be achieved, the calculation time is increased. There-
fore, regarding the issue above, this paper proposes a multiview clustering of adaptive
sparse representation based on a coupled P system (MVCS-CP) and verifies the clustering
performance. The main contributions of this paper are as follows:

(1) A new coupled P system is proposed, which integrates the construction of a single
view matrix and the formation of a unified graph into the P system to perform
clustering tasks.

(2) To construct the similarity matrix of each view, this paper introduces a natural neigh-
bor search algorithm without parameters, which can automatically determine the
number of neighbors in each view. After that, sparse representation and various learn-
ing methods are imported to construct the similarity matrix to preserve the internal
geometry of the views.

(3) In forming a unified graph, this paper adopts a soft thresholding operator to learn
a consistent sparse structure affinity matrix from the similarity matrix of each view
and then obtain the clustering result. Iterative optimization is not required, and better
clustering results can be captured and obtained quickly.

(4) Nine multiview data sets are employed to simulate and verify the clustering perfor-
mances of MVCS-CP.

The remaining parts of this paper are arranged as follows: Section 2 introduces the
related concepts of the P system and graph learning and other related works. The proposed
multiview clustering of adaptive sparse representation based on a coupled P system (MVCS-
CP) is outlined in Section 3. Section 4 details the experimental results and analysis the
performance of the algorithm. The summary of this paper and the perspective for future
work are given in Section 5.

2. Related Work
2.1. Notations

In this paper, vectors, matrices, and scalars are represented by bold lowercase letters
(x), bold uppercase letters (X), and lowercase letters (x), respectively. X =

{
X1, X2, · · · , Xm}

denotes a dataset with m views, where Xv ∈ Rdv×n. Its jth column vector is represented as
xj, and the (i, j) instance is xij. I represents the identity matrix and 1 represents a column
vector with entries as one. Tr(X) and ||X||F is the trace and Fresenius norm of X. For a
vector x, its `p norm is ||x||p. L denotes the Laplacian matrix constructed by the similar
matrix Sn×n.

2.2. Graph-Based Clustering and Graph Learning

Supposing that all elements in the similarity matrix Sn×n are non-negative, the relevant
properties of the Laplacian matrix L can be obtained [47,48].

Theorem 1. The multiplicity c of the eigenvalue 0 of the Laplacian matrix L is equal to the number
of connected components of the similarity matrix S.
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That is, when the constraint condition of rank (L) = n − c is fulfilled, then the
similarity matrix S is the most suitable neighbor allocation and the data points have been
divided into c clusters [49]. If the sum of the first c smallest eigenvalues of the Laplacian
matrix L is equal to 0 and satisfies the constraint of rank (L) = n− c, ∑c

i=1 λi = 0, where λi
refers to the i-th smallest eigenvalue of L. Hence, according to Fan’s theorem [50], it has:

c
∑

i=1
λi = min

F
tr
(
FTLF

)
s.t.F ∈ Rn×n, FTLF = I

(1)

where FT = (f1, f2, . . . , fn) is the eigenvector matrix of L = D −
[(

ST + S
)

/2
]
, D =

∑m
i=1

(
ST + S

)
ii

/2 is a diagonal matrix.

2.3. Natural Neighbours

On the basis of previous studies, Zhu et al. [51,52] systematically summarized and de-
fined the concept of natural neighbors. For data objects in Xv ∈ Rdv×n, its natural neighbor-
hood stable structure can be expressed as (∀xi)

(
∃xj
)
(k ∈ N) ∧ (i 6= j)→

(
xi ∈ NNk

(
xj
))
∧

(xj ∈ NNk(xi) , where NNk(xi) =
{

xj ∈ X
∣∣d(xi, xj

)
≤ d(xi, kn)

}
is the kth nearest neighbor

of xi, d(xi, kn) is the distance of the kth nearest neighbor of xi.

Definition 1. (The Natural Characteristic Value Ncv) Ncv is equivalent to the number of
natural neighbors (That is, k) of the data point x.

Ncv = min

{
k

∣∣∣∣∣ n

∑
i=1

f (Nbk(xi)) = 0 or
n

∑
i=1

f (Nbk(xi)) =
n

∑
i=1

f (Nbk−1(xi))

}
(2)

where Nbk(xi) is the number of reverse neighbors (RNN(xi) = {x ∈ X|xi ∈ NNk(x)}) of

xi in the kth iteration. Furthermore, f (x) =
{

0, otherwise
1, i f x == 0

.

Definition 2. (The Natural Neighbors) The natural neighbors of the object x in the data set are
the k nearest neighbors, expressed as NaN (x).

2.4. P System

The cell-like P system is the first generation of the membrane computing model. The
structure is shown in Figure 1. It is divided into basic membranes (such as 2, 3, 5, 7, 8
and 9) and non-basic membranes (such as 1, 4 and 6). Membrane 1 is also called the skin
membrane, isolating the P system from the external environment.

The tissue-like P system is composed of multiple single membrane cells, which rely on
designated channels for communication. The basic membrane structure of the tissue-like P
system is shown in Figure 2. The initial object is in the input cell (membrane 0), using rules
and communication mechanisms to correspond between cell 1 and cell n. Cell n + 1 is the
output cell stored in the obtained results.
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3. Multi-View Clustering of Adaptive Sparse Representation Based on Coupled
P Systems

This section puts forward the multiview clustering method of adaptive sparse graph
learning based on a coupled P system. At first, we elaborated on the general framework
of the defined coupled P system. After that, different evolution rules and manipulation,
including the construction of a similarity matrix of each view after the number of neighbors
is determined, the formation of the unified graph, and clustering are discussed in turn. In
addition, it explains the communication rules between different subsystems if there is a
synapse between cells. The flow chart of the MVCS-CP algorithm is shown in Figure 3.

3.1. The General Framework of the Proposed Coupled P System

The proposed coupled P system (MVCS-CP) is formed based on the tissue P system
by adding the relevant knowledge of the cell P system. As shown in Figure 4, it is the basic
structure of the coupled P system (MVCS-CP), showing part of the basic information in the
algorithm system.
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Definition 3. The formal definition of the MVCS-CP system is

∏ = (Γ, ε, syn, σ0, · · · , σt, R, in, out)

where

• Γ =
{

X1, X2, . . . , Xm, S1, S2, . . . , Sm, NaN(x), Ncv, Nb(x), W, D, L, para, c,
}

. Xi, Si rep-
resent the original data of m views and the similarity matrix corresponding to each view,
respectively. NaN(x) is the natural neighbor of the data point x in the view. Ncv refers to the
characteristic natural value, and the number of reverse neighbors of x is denoted as Nb(x). W
represents the learned uniform unified graph matrix. D and L indicate the degree matrix and
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Laplacian matrix, respectively. The parameters para and c respectively refer to the parameters
required for the experiment and the number of clusters.

• ε =
{

X1, X2, . . . , Xm, para, c
}
⊆ Γ is the initial objects in the coupled systems.

• syn = {{0, 1}, {0, 3}, {1, 2}, {2, 3}, {3, 4}} signifies the synapse between cells, whose main
function is to connect cells and make them communicate with each other.

• σ0, · · · , σt denotes the cells (membrane) in the system. t depends on the number of views and
the number of clusters in the data set, that is, the total number of cells in the system.

• R represents a collection of communication rules and evolution rules in the system. The role
of evolution rules is to modify objects and communication rules are used to transfer objects
between cells (membranes).

• in is cell 0, which is the input membrane. out is cell 5, output membrane, used to store the
final clustering results.

3.2. The Evolution Rules

The input cell 0 initializes the data object. It transmits the data and corresponding
parameters of the multiview to cell 1 to determine the Natural Characteristic Value and
construct the similarity matrix of each view. At the same time, the number of clusters c is
transported from cell 0 to cell 2 to form a new cluster sample for k-means. The rule R0 can
be described in detail as:

• R01 =
{

X1, X2, . . . , Xm, para→ X1, X2, . . . ,go[]1

}
• R02 =

{
c, para→ c, para,go[]2

}
The output cell 4 stores the clustering results obtained by the algorithm. R4 6= ∅.

3.2.1. The Evolution Rules of Determining Ncv and Constructing Similarity Matrix in Cell 1

In practice, when constructing the similarity matrix, it prefers data objects having
similarities with neighbors. Then the choice of the number of neighbors is an important
influencing factor. Most of the traditional algorithms are manual input obtained from
experience, such as 10, 15. However, the source channel of each view in the multiview
data is different, and the number of neighbors should be different. Therefore, in order to
promote the accuracy of the algorithm, a non-parameter natural neighbor search algorithm
is adopted in this paper to automatically determine the number of neighbors in each view.

In summary, the detailed evolution rules for determining natural characteristics in
cell 1 are shown in rule R1:

• R11 (Iterative search rules): At the kth iteration, for each data point xi in the single
view Xv, we search for its rth neighbor xj using a KD tree. After that, Nb

(
xj
)
=

Nb(xi) + 1, NaNk(xi) = NaNk−1(xi) ∪ xj correspond to the concepts in Section 2.3.
NaN(x) will be transported to the related subcell to construct the similarity matrix Sν.

• R12 (Iterative stop rules): If the number of reverse neighbors Nb(x) of data point x
does not change or Nb(x) == 0, the evolution rules stop.

• R13 (Determine the Ncv rule): The natural characteristic value Ncv is calculated
by Equation (2), which is equivalent to the number of neighbors k, and then k is
transmitted to the relevant subunits to prepare for the construction of Sν.

Manifold learning is finding a low-dimensional manifold in a high-dimensional space
and exploring the corresponding embedding mapping to achieve dimensionality reduction
or data visualization [53,54]. The general explanation is that if two data objects are close,
they are also close in the embedding graph. Noise and outliers have always been factors that
affect the final clustering results. Research [55] has found that sparse representation is robust
to them. Therefore, this paper introduces manifold learning and sparse representation
to construct the similarity matrix. In detail, the similarity matrix Sv of each view Xv is
obtained by solving the following problems:
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min
Sv

n
∑

i,j=1
||xv

i − xv
j ||22sv

ij + α
n
∑
i
||sv

i ||1

s.t.sv
ii = 0, sv

ij ≥ 0.
(3)

When sv
i is normalized with 1Tsv

i = 1, the second term of Equation (3) becomes a
constant. Namely, the normalization and the sparse representation on sv

i are equivalent.
Then, problem (3) can change into:

min
Sv

n
∑

i,j=1
||xv

i − xv
j ||22sv

ij

s.t.sv
ii = 0, sv

ij ≥ 0, 1Tsv
i = 1.

(4)

Suppose that problem (4) has a trivial solution. The value of the only data point with
the smallest distance to xv

i is 1, while the value of all other data points is 0. Now, adding a
before question (2), its expression is

min
Sv

n
∑

i,j=1
||xv

i − xv
j ||22sv

ij + β
n
∑
i
||sv

i ||22

s.t.sv
ii = 0, sv

ij ≥ 0, 1Tsv
i = 1.

(5)

If we only pay attention to the second item of Equation (5), the prior can be regarded
as the similarity value of each data point to xv

i , that is, 1/n. As can be seen from the above
problem, Equation (5) is independent in terms of each data object i. Therefore, the following
problems can be solved separately for each data object i:

min
sv

i

n
∑

j=1
||xv

i − xv
j ||22sv

ij + β
n
∑
i
||sv

i ||22

s.t.sv
ii = 0, sv

ij ≥ 0, 1Tsv
i = 1.

(6)

We adopt dij to represent ||xv
i − xv

j ||22 and di is its vector. Afterward, it can depict
problem (6) in vector form:

min
sv

i

∣∣∣∣∣∣∣∣sv
i +

di
2β

∣∣∣∣∣∣∣∣2
2

(7)

Problem (7) can be solved by a closed-form solution, as shown in [56]. As mentioned
at the beginning of this section, it has been said that the construction of the similarity matrix
requires the number of neighbors k. k has been gained in the front, which is equivalent to
the natural characteristic value Ncv.

To sum up, the evolution rules for constructing the similarity matrix of each view in
cell 1 are as follows:

• R14 (Lagrange function rule): The Lagrange function of Equation (17) is L
(
sv

i , ε, ζ
)
=∣∣∣∣∣∣sv

i +
di
2β

∣∣∣∣∣∣2
2
− ε
(
1Tsv

i − 1
)
− ζTsv

i

• R15 (Constraint rule): Based on the Karush–Kuhn–Tucker constraint, the optimal

solution ŝv
ij =

(
− dij

2α + ε)
+

can be acquired, where (a)+ = max(a, 0). As a result of

the constraints 1Tsv
i = 1, it has ε = 1

k +
1

2kβ ∑k
j=1 hij.

• R16 (Determining β rule): Since there are only k non-zero values in sv
i , β has a maximum

value, which is conveyed as β = k
2 di,k+1 − k

2 Σj = 1kdij.
• R17 (Getting the sv

i rule): The j-th element of sv
i is as follows:

sv
ij =


di,k−1−dij

kdi,k+1−∑k
h=1 bih

j ≤ k

0 j > k
.
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Through the above evolution rules, the number of neighbors can be automatically
determined. The introduced manifold learning and sparse representation are robust to
noise and outliers, and thus the similarity matrix Sv of each view is obtained in cell 1.

3.2.2. The Evolution Rules of Constructing the Unified Graph Matrix, Degree Matrix,
Laplacian Matrix in Cell 2

The unified graph matrix W is to merge each similarity matrix Sv of multiple views
into an affinity matrix to execute the subsequent clustering algorithm and obtain the final
clustering result. Enlightened by previous models, this paper leads a soft thresholding
operator into the unified graph affinity matrix based on the following two principles:

(1). The unified graph matrix W and the similarity matrix Sv of each view tend to be as
consistent as possible.

(2). The unified graph matrix W is sparse, which can further alleviate the noises generated
by different views.

In order to construct the unified graph matrix as quickly as possible, the objective
function is:

min
W

m

∑
v=1
||Sv −W||2F + para||W||0 (8)

The first item of Equation (8) can satisfy the principle (1), while the second item
satisfies the principle (2). Due to the `0-norm minimization, the solution of Equation (8) is
an NP-hard problem. According to previous studies on sparse learning [57,58], Equation (8)
can be rewritten as:

min
W

m

∑
v=1
||Sv −W||2F + para||W||1 (9)

where ||W||1 is the convex relaxation of ||W||0, and then Equation (9) can be expressed as:

min
W
||S1 −W||2F + ||S2 −W||2F+, . . . ,+||Sm −W||2F + para||W||1

⇒ min
W

m
∑

v=1
||Sv||2F − 2Tr

(
m
∑

v=1
SvWT

)
+ m||W||2F + para||W||1

⇒ min
W

1
m

m
∑

v=1
||Sv||2F − 2Tr

(
1
m

m
∑

v=1
SvWT

)
+ ||W||2F +

para
m ||W||1

⇒ min
W

∣∣∣∣∣
∣∣∣∣∣ 1

m

m
∑

v=1
Sv
∣∣∣∣∣∣∣∣2

F
− 2Tr

(
1
m

m
∑

v=1
SvWT

)
+ ||W||2F +

para
m ||W||1 + cons

(10)

where cons is the constant item to be balanced, that is

cons =
1
m

m

∑
v=1
||Sv||2F −

∣∣∣∣∣
∣∣∣∣∣ 1
m

m

∑
v=1

Sv

∣∣∣∣∣
∣∣∣∣∣
2

F

(11)

All in all, the evolution rules for constructing the unified graph matrix in cell 2 are
shown in rule R2:

• R21 (Removing the cons rule): Removing the cons, then the problem (11) is redefined
as min

W
||T−W||2F +

para
m ||W||1, where T = Σm

v=1Sv/m.

• R22 (Soft-thresholding operator rule): Based on the above, when µ > 0, the soft-
thresholding operator is introduced here:

Sµ(x) =


x− µ, x > µ

x + µ, x < −µ

0, otherwise

.
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• R23 (Obtaining W rule): By conducting the Sµ element-wise, it can be extended to
the matrix. In addition, as shown in [52], the approximate solution to problem (13) is
W∗ = S para

2m
(T).

• R24 (Constructing the Degree Matrix rule): According to Dii = ∑n
j=1 Wij, the degree

matrix D is gained.
• R25 (Constructing the Laplacian Matrix rule): In terms of the Laplacian Matrix, it is

based upon W and D, L = I−D−1/2WD−1/2.

3.2.3. The Evolution Rules of K-Means in Cell 3

On the basis of a unified graph matrix, this section adopts the spectral clustering
method to acquire the final clustering results. The evolution rules are shown in R3.

• R31 (Building new cluster instances rule): The formation of clustering new instances
is conducive to K-means clustering. We select the eigenvectors U = {u1, u2, · · · uc},
U ∈ Rn∗c corresponding to the first c eigenvalues of L, and standardize it to obtain
Yij = Uij/(∑j U2

ij)
1/2.

• R32 (Randomly selecting clustering centers rule): Among the n points of Y, it randomly
selects c points as the initial clustering centers and stores them in the subcells.

• R33 (Clustering rule): After that, the distance from each instance to each cluster center
is computed in the subcells simultaneously and transported to cell 3. Finally, the
instances are allocated based on the principle of minimum distance to form c different
clusters in cell 3.

• R34 (Outputting result rules): For clusters divided in accordance with rule R35, it takes
the current average distance of each cluster as the new cluster center. Comparing the
current cluster center with the previous cluster center, if there is a change, it repeats
rule R35. Conversely, the result of clustering is outputted to cell 4.

3.3. The Communication Rules between Different Cells

In the MVCS system, communication between cells relies on the synapses between
different cells. Membranes have distinct functions, such as initializing objects, executing
algorithms, and outputting clustering results. In that way, the ordered communication
between membranes makes the whole algorithm more efficient.

The rules of communication between different cells are as follows:

(1) Unidirectional transport between cells. u is a string containing the object. λ is the
empty string.

• Rule 1 : (0, u/λ, 1): It feeds u containing the original data X of m views into cell
2 for the determination of the similarity matrix for each view.

• Rule 2 : (0, u/λ, 2): The u including the parameter para and the number of
clusters c are transferred to cell 3 to format the unified graph matrix and construct
the degree matrix and the Laplacian matrix.

• Rule 4 : (1, u/λ, 2): The string u of similarity matrix S for each view produced
by cell 1 is transported to cell 2 for the construction of the unified graph matrix.

• Rule 5 : (2, u/λ, 3): It conveys the string u containing the Laplacian matrix and
the number of clusters c to cell 3 for K-means clustering.

• Rule 6 : (2, u/λ, 3): The string u of clustering results generated by K-means is
transmitted to cell 4 for storage.

(2) Unidirectional transport between cells and the environment.

• Rule 3 : (0, u/λ, 2): It transports the string u of the resulting reverse neighbor
Nb(x) into the environment to release.
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4. Experiments

In this section, we verify the performance of MVCS-CP on the real multiview dataset.
All experiments were carried out in the MATLAB 2016a environment under the computer
with Intel Core i7-2.9G CPU, 16 GB RAM, and Windows 10 64-bit.

4.1. Datasets

Experiments are conducted on nine commonly used multiview datasets, and the
general information of the dataset is shown in Table 1.

Table 1. The general information of the dataset (- means null).

Datasets Objects View Clusters d d d d d d

Caltech101-20 2386 6 20 48 40 254 1984 512 928
Caltech101-7 1474 6 20 48 40 254 1984 512 928

NUS 2400 6 12 64 44 73 128 155 500
ORL 400 4 40 512 89 864 254 - -

3sources 169 3 6 3560 3631 3068 - - -
BBC 685 4 5 4659 4633 4665 4684 - -

BBC_Sport 544 2 5 3183 3203 - - - -
100leaves 1600 3 100 64 64 64 - - -
Scene15 4485 3 15 20 59 40 - - -

• Caltech101 [59]: Coltech101-07 and Coltech101-20 are selected from the Caltech101
dataset, which includes 2386 and 1474 images, respectively. Each image contains six
feature vectors of GABOR, WM (wavelet moment), CENT (Centrist features), HOG,
GIST and LBP.

• NUS [60]: It contains 2400 images in 12 categories. The six features of colour histogram,
CM, edge direction histogram, wavelet texture, block-wise colour moment and SIFT
description are included for each image.

• ORL [61]: This dataset contains 400 images with four feature vectors of GIST, HOG,
LBP, and CENT.

• 3sources: This dataset contains 169 news documents reported by three online news
organizations, BBC, The Guardian and Reuters.

• BBC [62]: It is a collection of 685 documents from the BBC News website, each divided
into four feature vectors.

• BBC_Sport [62]: This dataset consists of 544 documents collected from the BBC Sports
website; each document has two feature vectors.

• 100leaves [63]: It consists of 1600 samples from the UCI repository, each of which is
one of a hundred species.

• Scene15 [64]: It consists of 4485 images of indoor and outdoor scenes with a total of
three views.

4.2. Evaluation Metrics

This paper adopts six evaluation indicators to measure the quality of clustering results,
namely accuracy (ACC), Adjusted Rand Index (ARI), Normalized Mutual Information
(NMI), F1-score (F), Purity and Precision.

(1). Accuracy: ACC refers to the ratio of the number of correctly clustered samples to the
total number of instances N.

Acc =
TP + TN

N
(12)

where N = TP + FP + FN + TN, TP represents true positive, FP means false positive, FN
indicates false negative and TN denotes true negative.
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(2). Adjusted Rand Index: The value range of the ARI is [−1, 1].

RI =
TP + TN

TP + FP + TN + FN

ARI =
RI − E[RI]

max(RI)− E[RI]

(13)

(3). Normalized Mutual Information: NMI measures the difference between cluster
partitions through information theory. The value range is [0, 1]

NMI(X; Y) = 2
I(X; Y)

H(X) + H(Y)
(14)

where I(X; Y) denotes the mutual information between random variables X and Y, and
H(X), H(Y) are in the entropy of them.

(4). Precision: It represents the probability of the true positive sample among all predicted
positive samples.

Precision =
TP

TP + FP
(15)

(5). F1-score: F is the harmonic mean of precision and recall to comprehensively measure
the clustering effect.

R =
TP

TP + FN

F =
2 ∗ Precision ∗ R

Precision + R

(16)

(6). Purity: The general idea of cluster purity is to divide the number of correctly clustered
instances by the total number of instances.

Purity = (Ω,T) = 1
N ∑

c
max

j

∣∣ωc ∩ tj
∣∣ (17)

where Ω = {ω1, ω2, . . . ωc} denotes the clustered clusters, and T =
{

t1, t2, . . . , tj
}

repre-
sents the correct category. ωc is all samples in the cth class after clustering. tj expresses the
true positive sample in the jth cluster. Its value range is [0, 1]—the higher the better.

4.3. Compared Methods

To verify that the proposed method can effectively improve the clustering perfor-
mance, we compare the MVCS-CP method with a single-view clustering method (spectral
clustering method) and six state-of-the-art multiview clustering methods.

• SC [65] performs clustering on every single view and concatenates all views in the
dataset into one view (Featconcat) for clustering.

• GBS [33] proposes a general graph-based multiview clustering system. The number of
neighbors takes its default setting of 5.

• AMGL [66] is a parameter-free model for spectral embedding learning that automatically
learns the weights for each view by solving a square root trace minimization problem.

• MVGL [67] uses it to explore the Laplacian rank-constrained graph after obtaining the
similarity graph for each view, where the number of neighbors is set to a default value
of 10.

• ASMV [32] adaptively jointly optimizes the data correlation between multiple features,
and the number of neighbors is set to 15.

• CDMGC [36] is a graph clustering method of explicitly exploiting both multiview
consistency and multiview diversity. The parameters in the experiment leverage the
default values in the code provided by the author.
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• CoMSC [68] is a multiview subspace clustering algorithm that groups objects and
simultaneously removes data redundancy. In the experiment, the two parameters λ
and c are respectively searched in

{
2−10, 2−8, 2−6, 2−4, 2−2, 20, 22, 24, 26, 28, 210} and

{k, 2k, . . . , 20k}, where k is the number of classes.

The experimental results on the nine datasets are shown in Tables 2–10, with the
standard deviation in parentheses. The value with the best experimental result is bolded,
and the second-best value is marked with an underscore (_). The following results can be
obtained from the tables:

• The proposed MVCS-CP method performs better on six evaluation metrics on all
datasets, basically being the best or second best. In the caltech101-20 dataset, it has
the best performance on the four metrics of ARI, NMI, precision and purity with 8%,
2%, 4% and 6% improvement over the second-best results. As far as the caltech101-7
dataset is concerned, the three indicators of ACC, Precision and Purity are the best,
and the remaining indicators ARI, NMI and F are the second best. In terms of the NUS
dataset, except for the F indicator, the rest of the indicators perform the best. Compared
with the better overall performance of CoMSC, the effect was increased by 5% (ACC),
2% (ARI), 2% (NMI), 2% (Precision) and 16% (Purity), respectively. Synthesizing the
caltech101-20, caltech101-7 and NUS datasets, it can be concluded that the proposed
MVCS-CP can achieve better results in processing more than five views. MVCS-CP
performs optimally on all six metrics for the ORL dataset, with an average of 2%
improvement for each metric over the second-best result. As for the 100leaves dataset,
except for the NMI indicator, which is 0.5% lower than the second-best, all other
indicators perform the best. The ORL and 100 leaves datasets have more clusters
numbers (40 and 100 categories, respectively). Based on the above experimental
results, it can be found that MVCS-CP can cope well with rich clusters number. On
the 3sources dataset and the BBC dataset, the proposed algorithm demonstrates
obvious improvement on all indicators. In addition, the BBC_Sport dataset has the
best performance on the remaining five metrics except for Precision, which is the
second-best. Combining the three datasets of 3sources, BBC and BBC_Sport, all of
them have a higher dimension of the order of thousands. It can be seen that the
proposed MVCS-CP can achieve satisfactory results when dealing with datasets with
higher dimensions.

• Furthermore, the Scene dataset has the best performance on four metrics (ACC, ARI,
Precision and Purity), especially on Purity, which is 7% better than the second-best
result. And it is comparable to the best results on the NMI indicator. This illustrates
that MVCS-CP can handle larger-scale datasets.

• Compared with the state-of-the-art multiview clustering algorithms, the MVCS-CP
algorithm has better or comparable performance. This suggests that taking each view’s
geometry and sparse representation into account yields better results.

• In terms of the single-view method, it is found that the multiview clustering algorithm
is basically better than it, which shows that considering the multiple features of
the dataset can be better clustered. However, on the BBC_Sport dataset, Featconcat
performs the best in terms of Precision, which means that the multiview clustering
method still needs further improvement.

In order to display the results more intuitively, the unified graph learned by different
methods is visualized, taking ORL and BBC_Sport as examples to explain (see Figure 5).
ORL dataset, the methods can obtain the correct number of block diagonals. Nevertheless,
AMGL and MVGL have a lot of noise—the result of GBS is clearer, yet the noise is more
than that of MVCS-CP. About the BBC_Sport dataset, ASMV and CDMGC cannot acquire
the correct number of block diagonals, and the COMSC block diagonal structure is obvious
but noisier. The visual display of the unified graph indicates that the sparse representation
can effectively reduce the noise.
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Table 2. Experimental results on Caltech101-20 datasets (%).

Caltech101-20 ACC ARI NMI Precision F Purity

SC1 26.55 ± 1.46 11.73 ± 1.03 26.99 ± 0.4 36.13 ± 1.79 19.47 ± 1.01 52.46 ± 0.92
SC2 28.32 ± 1.38 16.27 ± 0.26 33.43 ± 0.32 46.73 ± 0.86 22.96 ± 0.32 59.62 ± 0.63
SC3 28.32 ± 1.38 16.27 ± 0.26 33.43 ± 0.32 46.73 ± 0.86 22.96 ± 0.32 59.62 ± 0.63
SC4 40.49 ± 1.13 30.05 ± 1.67 52.89 ± 0.99 71.02 ± 1.78 35.78 ± 1.67 75.43 ± 0.68
SC5 39.28 ± 1.72 27.47 ± 1.85 48.82 ± 0.98 67.2 ± 2.4 33.31 ± 1.81 73.19 ± 1.15
SC6 35.44 ± 2.75 24.18 ± 1.93 43.31 ± 1.37 60.39 ± 3.51 30.39 ± 1.8 68.64 ± 1.6

Featconcat 49.97 ± 0.13 14.52 ± 0.35 20.2 ± 0.29 23.09 ± 0.19 36.51 ± 0.21 52.77 ± 0.12
AMGL 52.73 ± 3.14 26.82 ± 2.82 52.19 ± 3.33 35.21 ± 3.1 40.67 ± 1.99 67.62 ± 1.88
MVGL 60.69 ± 0 28.92 ± 0 50.73 ± 0 33.54 ± 0 44.15 ± 0 71.29 ± 0
ASMV 41.17 ± 2.07 28.79 ± 2.06 54.23 ± 0.65 63.13 ± 2.75 35.25 ± 2 74.78 ± 0.7

GBS 64 ± 0 34.08 ± 0 53.73 ± 0 37.07 ± 0 47.95 ± 0 73.34 ± 0
CoMSC 53.98 ± 4.83 43.01 ± 6.31 59.47 ± 6.59 78.6 ± 4.91 78.21 ± 5.05 48.77 ± 2.32
CDMGC 55.7 ± 9.49 22.72 ± 10.33 44.68 ± 8.29 29.28 ± 6.34 40.43 ± 6.76 65.08 ± 8.99

MVCS-CP 60.6 ± 0.59 51.05 ± 2.2 61.36 ± 1.48 82.23 ± 1.56 56.56 ± 2.07 81.98 ± 1.01

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).

Table 3. Experimental results on Caltech101-07 datasets (%).

Caltech101-7 ACC ARI NMI Precision F Purity

SC1 28.83 ± 2.1 7.94 ± 0.92 11.51 ± 0.5 48.77 ± 0.97 29.14 ± 1.45 65.88 ± 1.66
SC2 34.79 ± 2.24 19.67 ± 1.26 24.18 ± 0.59 66.23 ± 1.46 36.94 ± 1.13 73.09 ± 0.75
SC3 55.6 ± 0.22 2.81 ± 0.26 3.15 ± 0.37 39.44 ± 0.09 55.91 ± 0.03 56.61 ± 0.29
SC4 42.43 ± 2.57 29.55 ± 1.99 37.88 ± 1.62 78.48 ± 2.15 45.18 ± 1.9 81.25 ± 1.46
SC5 40.72 ± 0.39 28.11 ± 1.48 35.36 ± 0.7 77.99 ± 1.45 43.59 ± 1.37 81.41 ± 0.54
SC6 46.15 ± 3.24 30.32 ± 1.91 36.04 ± 1.17 78.42 ± 2.02 46.1 ± 1.64 80.62 ± 1.07

Featconcat 54.04 ± 0.04 1.22 ± 0.08 1.47 ± 0.03 38.93 ± 0.03 55.69 ± 0.06 54.52 ± 0.06
AMGL 64.46 ± 6.14 44.36 ± 5.82 54.6 ± 1.96 70.94 ± 6.65 63.71 ± 4.75 84.79 ± 0.77
MVGL 57.06 ± 0 45.96 ± 0 53.17 ± 0 87.25 ± 0 60.37 ± 0 87.04 ± 0
ASMV 40.77 ± 1.2 29.04 ± 1.22 41.55 ± 0.81 76.53 ± 0.75 45.2 ± 1.22 82.5 ± 0.53

GBS 69.2 ± 0 59.43 ± 0 60.56 ± 0 88.58 ± 0 72.17 ± 0 88.47 ± 0
CoMSC 63.28 ± 3.68 49.02 ± 3.96 53.62 ± 3.9 86.26 ± 4.95 63.49 ± 3.55 86.57 ± 1.32
CDMGC 51.74 ± 11.66 5.97 ± 23.25 23.71 ± 16 42.53 ± 12.76 50.26 ± 10.59 61.8 ± 12.3

MVCS-CP 69.95 ± 0.03 57.69 ± 0.07 56.13 ± 0.3 94.27 ± 1.29 69.99 ± 0.16 89.48 ± 0

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).

Table 4. Experimental results on NUS datasets (%).

NUS ACC ARI NMI Precision F Purity

SC1 21.25 ± 0.42 4.32 ± 0.35 8.74 ± 0.19 12.03 ± 0.37 12.71 ± 0.22 22.99 ± 0.58
SC2 20.76 ± 0.42 4.23 ± 0.18 8.75 ± 0.34 12.04 ± 0.2 12.42 ± 0.09 22.41 ± 0.34
SC3 18.7 ± 0.22 3.4 ± 0.17 7.18 ± 0.23 11.33 ± 0.17 11.62 ± 0.15 19.94 ± 0.2
SC4 23.43 ± 1.1 5.23 ± 0.36 10.02 ± 0.61 13.02 ± 0.31 13.21 ± 0.36 24.84 ± 0.84
SC5 21.03 ± 0.45 4.73 ± 0.22 9.64 ± 0.72 12.44 ± 0.2 12.98 ± 0.22 22.41 ± 0.65
SC6 11.43 ± 0.18 0.32 ± 0.01 4.61 ± 0.14 8.44 ± 0.01 15.31 ± 0.02 13.09 ± 0.2

Featconcat 10.79 ± 0.23 0.32 ± 0.02 4.5 ± 0.16 8.44 ± 0.01 15.4 ± 0.02 12.75 ± 0.12
AMGL 21.43 ± 0.96 4.15 ± 0.66 12.2 ± 0.96 10.68 ± 0.48 16.33 ± 0.2 23.37 ± 0.99
MVGL 13 ± 0 0.36 ± 0 5.57 ± 0 8.46 ± 0 15.44 ± 0 13.83 ± 0
ASMV 12.13 ± 1.2 0.71 ± 0.84 8.13 ± 2.21 9.14 ± 0.94 14.21 ± 0.15 22.46 ± 2.67

GBS 16.5 ± 0 1.24 ± 0 7.88 ± 0 8.88 ± 0 15.92 ± 0 17.88 ± 0
CoMSC 26.83 ± 2.65 8.32 ± 3.47 14.12 ± 3.47 15.84 ± 2.98 27.46 ± 2.76 16 ± 1.49
CDMGC 11.96 ± 1.43 0.27 ± 0.25 4.14 ± 1.57 8.42 ± 0.12 15.42 ± 0.17 12.68 ± 1.54

MVCS-CP 31.38 ± 0.83 10.49 ± 0.58 16.1 ± 0.29 17.52 ± 0.52 18.21 ± 0.52 32.42 ± 0.38

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).
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Table 5. Experiments results on ORL datasets (%).

ORL ACC ARI NMI Precision F Purity

SC1 75.7 ± 1.95 68.01 ± 1.65 89.92 ± 0.68 58.42 ± 1.75 68.86 ± 1.6 80.6 ± 1.31
SC2 49.25 ± 2.02 35.32 ± 2.11 70.37 ± 1.16 34.84 ± 1.7 36.86 ± 2.07 53.3 ± 1.87
SC3 65.45 ± 1.16 58.83 ± 2.31 85.05 ± 0.81 51.09 ± 2.7 59.92 ± 2.23 71.8 ± 0.87
SC4 53.65 ± 2.06 37.44 ± 2.82 72.1 ± 1.5 36.77 ± 2.74 38.94 ± 2.76 57.15 ± 1.71

Featconcat 74.4 ± 0.72 68.87 ± 1.18 89.37 ± 0.41 60.55 ± 1.72 69.67 ± 1.14 79.5 ± 0.71
AMGL 72.91 ± 3.33 65.43 ± 6.51 89.69 ± 1.77 54.66 ± 7.71 66.39 ± 6.27 80.21 ± 2.54
MVGL 73.75 ± 0 52.74 ± 0 87.15 ± 0 40.38 ± 0 54.17 ± 0 80.25 ± 0
ASMV 67 ± 1.23 49.46 ± 0.67 81.08 ± 0.45 43.59 ± 1.37 50.79 ± 0.82 72.34 ± 0.71

GBS 83.75 ± 0 76.32 ± 0 92.6 ± 0 68.75 ± 0 76.92 ± 0 86.75 ± 0
CoMSC 86.5 ± 9.67 83.63 ± 13.03 94.42 ± 6.76 80.84 ± 11.97 84.01 ± 12.72 88.75 ± 9.78
CDMGC 71.35 ± 1.9 47.16 ± 3.27 86.7 ± 0.85 33.95 ± 3.15 48.88 ± 3.12 79.2 ± 0.96

MVCS-CP 89.5 ± 2.71 85.96 ± 0.46 94.87 ± 0.08 84.27 ± 0.82 86.28 ± 0.45 90.75 ± 1.41

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).

Table 6. Experiments results on 3sources datasets (%).

3sources ACC ARI NMI Precision F Purity

SC1 30.3 ± 0.77 −2.87 ± 0.42 6.34 ± 0.73 22.06 ± 0.19 34.37 ± 0.53 36.45 ± 0.9
SC2 37.4 ± 0.77 4.58 ± 0.44 10.37 ± 1.6 25.19 ± 0.2 38.27 ± 0.2 39.76 ± 1.28
SC3 31.95 ± 0 −2 ± 0.19 7.07 ± 0.62 22.42 ± 0.08 35 ± 0.23 37.63 ± 0.79

Featconcat 31.01 ± 1.36 −0.37 ± 1.36 5.45 ± 2.12 23.09 ± 0.77 27.54 ± 1.84 37.28 ± 1.82
AMGL 34.02 ± 2.69 −1.66 ± 1.45 7.2 ± 2.95 22.58 ± 0.6 34.78 ± 0.56 39.25 ± 2.73
MVGL 30.77 ± 0 −3.38 ± 0 6.6 ± 0 21.86 ± 0 34.17 ± 0 37.87 ± 0
ASMV 69.82 ± 4.7 60.01 ± 7.14 64.07 ± 4.56 65.99 ± 6.45 69.84 ± 5.23 77.51 ± 3.75

GBS 69.23 ± 0 44.31 ± 0 54.8 ± 0 48.44 ± 0 60.47 ± 0 74.56 ± 0
CoMSC 64.93 ± 4.39 53.44 ± 5.59 62.41 ± 3.63 68.11 ± 4.98 63.54 ± 4.4 78.27 ± 3.18
CDMGC 34.91 ± 0 −1.26 ± 0.05 6.31 ± 0.26 22.73 ± 0.02 35.77 ± 0.08 39.35 ± 0.31

MVCS-CP 78.11 ± 0.74 65.86 ± 1.27 71.62 ± 1.41 80.31 ± 3.49 73.49 ± 0.69 85.21 ± 0.56

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).

Table 7. Experiments results on BBC datasets (%).

BBC ACC ARI NMI Precision F Purity

SC1 33.11 ± 2.04 −1.4 ± 0.71 7.73 ± 2.46 22.88 ± 0.29 35.09 ± 0.39 36.15 ± 3.35
SC2 31.53 ± 0 −0.66 ± 0 1.24 ± 0.13 23.2 ± 0 37.26 ± 0 33.02 ± 0.07
SC3 30.92 ± 1.38 −0.71 ± 0.37 2.1 ± 0.16 23.17 ± 0.15 36.84 ± 0.6 33.28 ± 0.21
SC4 33.75 ± 0.28 −0.29 ± 0.13 2.71 ± 0.32 23.34 ± 0.05 37.24 ± 0.13 35.07 ± 0.52

Featconcat 33.26 ± 0.12 −0.23 ± 0.03 1.19 ± 0.07 23.37 ± 0.01 37.59 ± 0.03 34.01 ± 0.18
AMGL 35.66 ± 2.75 0.88 ± 1.22 2.23 ± 1.28 23.83 ± 0.51 37.22 ± 0.45 36.66 ± 2.93
MVGL 35.04 ± 0 0.24 ± 0 3.82 ± 0 23.55 ± 0 37.49 ± 0 36.35 ± 0
ASMV 63.94 ± 1.2 46.07 ± 3.02 46.82 ± 1.25 50.86 ± 0.86 0 ± 3.33 64.09 ± 1.21

GBS 69.34 ± 0 47.89 ± 0 48.52 ± 0 50.12 ± 0 63.33 ± 0 69.34 ± 0
CoMSC 70.18 ± 5.63 45.72 ± 8.07 51.49 ± 6.53 60.36 ± 6.92 57.99 ± 6.06 71.77 ± 3.89
CDMGC 31.53 ± 1.24 −0.69 ± 0.09 1.08 ± 1.03 23.19 ± 0.03 36.93 ± 0.13 32.99 ± 1.16

MVCS-CP 74.89 ± 0.15 52.64 ± 0.19 51.76 ± 0.28 64.67 ± 0.11 63.56 ± 0.16 74.89 ± 0.15

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).

Table 8. Experiments results on BBC_Sport datasets (%).

BBC_Sport ACC ARI NMI Precision F Purity

SC1 35.59 ± 0.1 −0.07 ± 0.06 1.33 ± 0.05 23.83 ± 0.02 38.25 ± 0.04 36.54 ± 0.08
SC2 36.76 ± 0 0.36 ± 0.02 1.78 ± 0.06 23.99 ± 0.01 38.41 ± 0 37.1 ± 0.08

Featconcat 0.12 ± 0.12 1.4 ± 0.22 38.27 ± 0.08 96.04 ± 0.38 36.84 ± 0.28 23.9 ± 0.05
AMGL 36.21 ± 0 0.15 ± 0 1.34 ± 0.3 23.91 ± 0 38.42 ± 0.04 36.58 ± 0
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Table 8. Cont.

BBC_Sport ACC ARI NMI Precision F Purity

MVGL 39.15 ± 0 1.89 ± 0 6.98 ± 0 24.59 ± 0 39.07 ± 0 39.52 ± 0
ASMV 69.12 ± 6.7 40.78 ± 5.49 39.26 ± 5.09 48.07 ± 4.8 57.76 ± 3.04 69.3 ± 5.95

GBS 80.7 ± 0 72.18 ± 0 72.26 ± 0 72.71 ± 0 79.43 ± 0 84.38 ± 0
CoMSC 88.6 ± 0.81 72.37 ± 2.66 71.63 ± 1.84 80.28 ± 0.99 78.84 ± 2.15 88.6 ± 0.81
CDMGC 36.03 ± 0.19 0.06 ± 0.14 1.43 ± 0.06 23.88 ± 0.05 38.33 ± 0.09 36.76 ± 0.19

MVCS-CP 93.75 ± 0.41 84.18 ± 0.65 81.77 ± 0.44 88.2 ± 1.88 87.94 ± 0.78 93.75 ± 0.63

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).

Table 9. Experiments results on 100leaves datasets (%).

100leaves ACC ARI NMI Precision F Purity

SC1 41.78 ± 1.23 28.47 ± 1.17 67.71 ± 0.43 26.94 ± 1.16 29.2 ± 1.16 44.39 ± 1.29
SC2 33.3 ± 1.04 20.85 ± 0.84 62.44 ± 0.76 18.51 ± 0.76 21.72 ± 0.83 36.28 ± 1
SC3 45.96 ± 2.08 31.41 ± 1.85 70.13 ± 0.87 29.73 ± 1.91 32.1 ± 1.83 48.85 ± 1.86

Featconcat 62.91 ± 2.45 52.85 ± 2.42 82.01 ± 1.03 49.96 ± 2.59 53.32 ± 2.39 66.23 ± 2.15
AMGL 77.58 ± 2.5 47.47 ± 11.8 87.87 ± 2.17 34.87 ± 11.62 48.18 ± 11.58 81.25 ± 1.94
MVGL 81.06 ± 0 51.55 ± 0 89.12 ± 0 37.95 ± 0 52.17 ± 0 83.31 ± 0
ASMV 48.5 ± 0.41 23.8 ± 0.59 71.38 ± 0.51 16.36 ± 0.37 24.89 ± 0.19 54.06 ± 0.58

GBS 82.44 ± 0 57.11 ± 0 91.15 ± 0 42.67 ± 0 57.65 ± 0 85.13 ± 0
CoMSC 88.5 ± 6.83 86.56 ± 6.95 95.95 ± 4.84 82.92 ± 6.83 86.69 ± 6.2 90.88 ± 5.49
CDMGC 88.61 ± 1.34 76.15 ± 9.08 94.54 ± 1.1 66.56 ± 12.45 76.42 ± 8.95 89.93 ± 1.04

MVCS-CP 91.5 ± 0.74 86.82 ± 0.17 95.39 ± 0.13 84.1 ± 0.43 86.95 ± 0.16 92 ± 0.32

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).

Table 10. Experiments results on Scene15 datasets (%).

Scene15 ACC ARI NMI Precision F Purity

SC1 34.69 ± 0.7 19.64 ± 0.26 36.53 ± 0.19 24.87 ± 0.38 25.29 ± 0.23 40.08 ± 0.56
SC2 25.39 ± 0.43 10.05 ± 0.14 21.86 ± 0.29 14.06 ± 0.22 18.01 ± 0.1 27.87 ± 0.54
SC3 22.7 ± 0.99 8.82 ± 0.6 19.89 ± 0.18 14.77 ± 0.56 15.38 ± 0.57 28.54 ± 0.34

Featconcat 14.46 ± 0.59 1.58 ± 0.33 10.49 ± 1.05 7.68 ± 0.17 13.78 ± 0.16 17.33 ± 0.66
AMGL 32.78 ± 2.41 15.1 ± 1.73 30.79 ± 1.84 16.66 ± 1.6 23.38 ± 1.16 34.06 ± 2.09
MVGL 23.21 ± 0 6.01 ± 0 20.44 ± 0 10 ± 0 17.16 ± 0 24.41 ± 0
ASMV 34.09 ± 0.41 17.52 ± 0.48 33.74 ± 0.51 22.38 ± 0.54 23.51 ± 0.41 38.86 ± 0.69

GBS 14 ± 0 0.42 ± 0 5.82 ± 0 7.11 ± 0 13.17 ± 0 14.65 ± 0
CoMSC 43.15 ± 2.69 25.86 ± 1.97 41.24 ± 1.39 30.72 ± 2.02 47.29 ± 2.53 31.04 ± 1.79
CDMGC 12.44 ± 0.73 0.19 ± 0.13 3.99 ± 0.84 7 ± 0.06 13.01 ± 0.09 12.97 ± 0.71

MVCS-CP 45.84 ± 2.12 26.71 ± 1.01 41.18 ± 0.39 30.85 ± 1.01 31.95 ± 0.92 47.42 ± 0.81

The value with the best experimental result is bolded, and the second-best value is marked with an underscore (_).

4.4. Running Time

Table 11 (the value with the best experimental result is bolded) and Figure 6 show the
runtime comparison of different multiview clustering methods on nine real-world datasets.
It can be seen that except AMGL has the shortest running time on the BBC dataset; the
proposed MVCS-CP method has the shortest running time on the remaining eight datasets.
Even on a relatively large-scale Scene dataset, the time taken is less than 10 s. Compared
with MVGL, ASMV and CoMSC methods, the MVCS-CP method has obvious advantages,
and the time cost for most of the datasets is only one percent of the former methods. In
conclusion, the method can save a significant amount of time without iteration.
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Table 11. Performance comparison of running time on nine real-world datasets.

Time(s) AMGL MVGL ASMV GBS CoMSC CDMGC MVCS-CP

Caltech101-20 80.954 662.011 317.870 28.231 562.93 122.846 3.411
Caltech101-7 21.3763 150.587 288.339 8.102 282.196 51.511 1.467

NUS 144.625 545.729 349.962 27.655 81.597 144.333 2.333
ORL 0.809 5.115 8.740 0.459 4.441 2.612 0.062

3sources 1.436 0.528 3.918 0.193 0.683 0.354 0.028
BBC 4.837 8.776 22.629 29.819 9.583 5.269 6.742

BBC_Sport 2.387 4.753 8.214 6.199 1.628 3.054 1.552
100leaves 47.818 90.341 449.571 5.849 175.703 40.080 1.204
Scence15 616.978 3485.092 1100.982 97.190 432.381 641.264 8.988

4.5. Comparison of the Number of Neighbors

Determining the number of neighbors in each view is an important step for the
MVCS-CP method before constructing the similarity matrix, which is different from other
methods. Table 12 indicates the different number of neighbors automatically determined
for each view for the nine datasets. It can be seen that except the 3sources dataset has
the same number of neighbors in each view, the rest of the datasets are different. In
order to verify that automatically determining the number of neighbors can effectively
improve the clustering results, the fixed number of MVCS-CP methods will be adopted
for comparison. Figures 7 and 8 show the comparison of the ACC and F metrics when the
number of neighbors is fixed at 5, 10, 15, 20 and the number of neighbors is automatically
determined, respectively. The MVCS-CP method has the best clustering effect on both
ACC and F values, which show the effectiveness of automatically determining the number
of neighbors.
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Table 12. The number of neighbors each view for nine datasets (- means null).

Datasets d1 d2 d3 d4 d5 d6

Caltech101-20 18 18 21 33 25 33
Caltech101-7 17 16 21 28 31 27

NUS 13 2 4 5 5 16
ORL 7 10 8 19 - -

3sources 8 8 8 - - -
BBC 16 13 9 15 - -

BBC_Sport 14 16 - - - -
100leaves 17 26 14 - - -
Scene15 24 18 31 - - -
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4.6. Parameter Analysis

In this paper, the parameter para is used when forming the unified graph matrix, and
its selection range is {0.01, 0.02, 003, 0.04}. It can be seen from Figure 9 that the clustering
effect of MVCS-CP is relatively stable in the parameter range from 0.01 to 0.04. When the
parameter of the NUS dataset is 0.04, the data is too complex to be read during clustering,
so only the results from 0.01 to 0.03 are shown in the figure. Figure 9 demonstrates that the
proposed method is less sensitive to parameters.

4.7. Result Discussion

As mentioned previously, the comprehensive results on nine common datasets indicate
that the MVCS-CP can handle datasets with different numbers of views and clusters,
different dimensions and different sizes. For higher-dimensional and larger-size datasets, it
can still obtain better clustering results. The above shows that considering the geometry and
sparse representation of each view enables better clustering. The visualization of the unified
graph demonstrates that MVCS-CP obtains a clearer and more concentrated clustering
structure. This shows that the introduction of sparse representation effectively reduces
noise. In terms of the running time results, the MVCS-CP method without iterations saves
more time. As far as the number of neighbors, automatically determining the number of
neighbors can effectively improve the clustering results. Furthermore, MVCS-CP is not
sensitive to parameters.
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5. Conclusions

This paper proposes a multiview clustering of adaptive sparse representation based on
coupled P system (MVCS-CP). After reading the data matrix, the number of neighbors of
each view is automatically determined, and then it adopts the concepts of manifold learning
and sparse representation to construct the similarity matrix. During the unified graph
formation stage, it aims to learn a sparse similarity matrix that is as consistent as possible
with all views. In addition, the model directly obtains the close-form solution without
iteration, consuming less time. The experimental data on nine real datasets demonstrate
that the proposed MVCS-CP method outperforms the state-of-the-art multiview clustering
algorithms. Moreover, the comparison experiment with the fixed number of neighbors
indicates that the automatic determination of the number of neighbors is effective. In brief,
this method can be implemented quickly and intuitively, which is more suitable for dealing
with practical problems. The method of embedding a deep neural network into multiview
clustering to automatically determine the number of clusters and parameter-free will be
issues worth exploring in the future.

Author Contributions: Conceptualization, X.Z. and X.L.; methodology, X.Z. and X.L.; software, X.Z.;
validation, X.Z.; Formal analysis, X.Z.; Writing—original draft preparation, X.Z.; writing—review
and editing, X.Z. and X.L.; supervision, X.Z.; project administration, X.L.; Funding acquisition, X.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
(Nos. 62172622, 61876101, 61802234, and 61806114), the Social Science Fund Project of Shan-
dong (16BGLJ06, 11CGLJ22), China Postdoctoral Science Foundation Funded Project (2017M612339,
2018M642695), Natural Science Foundation of the Shandong Provincial (ZR2019QF007), China Post-
doctoral Special Funding Project (2019T120607) and Youth Fund for Humanities and Social Sciences,
Ministry of Education (19YJCZH244).

Data Availability Statement: The datasets used in this paper come from related papers (see Section 4.1)
or contact the authors for the full datasets.

Conflicts of Interest: The authors of this paper declare no conflict of interest.



Entropy 2022, 24, 568 21 of 23

References
1. Janani, R.; Vijayarani, S. Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization. Expert

Syst. Appl. 2019, 134, 192–200. [CrossRef]
2. Djenouri, Y.; Belhadi, A.; Fournier-Viger, P.; Lin, J.C.W. Fast and effective cluster-based information retrieval using frequent closed

itemsets. Inf. Sci. 2018, 453, 154–167. [CrossRef]
3. Ge, C.J.; de Oliveira, R.A.; Gu, I.Y.H.; Bollen, M.H.J. Deep Feature Clustering for Seeking Patterns in Daily Harmonic Variations.

IEEE Trans. Instrum. Meas. 2021, 70, 2501110. [CrossRef]
4. Bang, H.; Zhou, X.K.; Van Epps, H.L.; Mazumdar, M. Statistical Methods in Molecular Biology; Humana Press: Totowa, NJ,

USA, 2010.
5. Fu, L.L.; Lin, P.F.; Vasilakos, A.V.; Wang, S.P. An overview of recent multi-view clustering. Neurocomputing 2020, 402, 148–161.

[CrossRef]
6. Hu, Z.X.; Nie, F.P.; Chang, W.; Hao, S.Z.; Wang, R.; Li, X.L. Multi-view spectral clustering via sparse graph learning.

Neurocomputing 2020, 384, 1–10. [CrossRef]
7. Tan, J.P.; Yang, Z.J.; Cheng, Y.Q.; Ye, J.L.; Wang, B.; Dai, Q.Y. SRAGL-AWCL: A two-step multi-view clustering via sparse

representation and adaptive weighted cooperative learning. Pattern Recognit. 2021, 117, 107987. [CrossRef]
8. Cai, Y.; Jiao, Y.Y.; Zhuge, W.Z.; Tao, H.; Hou, C.P. Partial multi-view spectral clustering. Neurocomputing 2018, 311, 316–324.

[CrossRef]
9. Shi, S.J.; Nie, F.P.; Wang, R.; Li, X.L. Auto-weighted multi-view clustering via spectral embedding. Neurocomputing 2020, 399,

369–379. [CrossRef]
10. Li, Z.L.; Tang, C.; Chen, J.J.; Wan, C.; Yan, W.Q.; Liu, X.W. Diversity and consistency learning guided spectral embedding for

multi-view clustering. Neurocomputing 2019, 370, 128–139. [CrossRef]
11. Wu, J.L.; Lin, Z.C.; Zha, H.B. Essential Tensor Learning for Multi-View Spectral Clustering. IEEE Trans. Image Process. 2019, 28,

5910–5922. [CrossRef]
12. Brbic, M.; Kopriva, I. Multi-view low-rank sparse subspace clustering. Pattern. Recogn. 2018, 73, 247–258. [CrossRef]
13. Niu, G.L.; Yang, Y.L.; Sun, L.Q. One-step multi-view subspace clustering with incomplete views. Neurocomputing 2021, 438,

290–301. [CrossRef]
14. Zhu, W.C.; Lu, J.W.; Zhou, J. Structured general and specific multi-view subspace clustering. Pattern. Recognit. 2019, 93, 392–403.

[CrossRef]
15. Xiong, L.Y.; Wang, C.; Huang, X.H.; Zeng, H. An Entropy Regularization k-Means Algorithm with a New Measure of between-

Cluster Distance in Subspace Clustering. Entropy 2019, 21, 683. [CrossRef] [PubMed]
16. Zong, L.L.; Zhang, X.C.; Zhao, L.; Yu, H.; Zhao, Q.L. Multi-view clustering via multi-manifold regularized non-negative matrix

factorization. Neural Netw. 2017, 88, 74–89. [CrossRef]
17. Luo, P.; Peng, J.Y.; Guan, Z.Y.; Fan, J.P. Dual regularized multi-view non-negative matrix factorization for clustering.

Neurocomputing 2018, 294, 1–11. [CrossRef]
18. Zhang, X.Y.; Gao, H.B.; Li, G.P.; Zhao, J.H.; Huo, J.H.; Yin, J.L.; Liu, Y.C.; Zheng, L. Multi-view clustering based on graph-

regularized nonnegative matrix factorization for object recognition. Inf. Sci. 2018, 432, 463–478. [CrossRef]
19. Huang, A.P.; Zhao, T.S.; Lin, C.W. Multi-View Data Fusion Oriented Clustering via Nuclear Norm Minimization. IEEE Trans.

Image Process. 2020, 29, 9600–9613. [CrossRef]
20. Lu, G.F.; Zhao, J.B. Latent multi-view self-representations for clustering via the tensor nuclear norm. Appl. Intell. 2022, 52,

6539–6551. [CrossRef]
21. Zhang, X.Q.; Sun, H.J.; Liu, Z.G.; Ren, Z.W.; Cui, Q.J.; Li, Y.M. Robust low-rank kernel multi-view subspace clustering based on

the Schatten p-norm and correntropy. Inf. Sci. 2019, 477, 430–447. [CrossRef]
22. Wang, Q.; Dou, Y.; Liu, X.W.; Xia, F.; Lv, Q.; Yang, K. Local kernel alignment based multi-view clustering using extreme learning

machine. Neurocomputing 2018, 275, 1099–1111. [CrossRef]
23. Huang, Z.Y.; Hu, P.; Peng, X. Partially View-aligned Clustering. In Proceedings of the 33th Annual Conference on Neural

Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020.
24. Yang, M.X.; Li, Y.F.; Huang, Z.Y.; Liu, Z.T.; Hu, P.; Peng, X. Partially View-aligned Representation Learning with Noise-robust

Contrastive Loss. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
19–25 June 2021.

25. Yang, M.X.; Li, Y.F.; Hu, P.; Bai, J.F.; Lv, J.C.; Peng, X. Robust Multi-View Clustering with Incomplete Information. IEEE Trans.
Pattern. Anal. 2022; online ahead of print. [CrossRef] [PubMed]

26. Jiang, B.; Qiu, F.Y.; Wang, L.P.; Zhang, Z.J. Bi-level weighted multi-view clustering via hybrid particle swarm optimization. Inf.
Process. Manag. 2016, 52, 387–398. [CrossRef]

27. De Gusmao, R.P.; de Carvalho, F.D.T. Clustering of multi-view relational data based on particle swarm optimization. Expert Syst.
Appl. 2019, 123, 34–53. [CrossRef]

28. De Gusmao, R.P.; de Carvalho, F.D.T. PSO for Fuzzy Clustering of Multi-View Relational Data. Int. J. Pattern. Recognit. 2020, 34,
2050022. [CrossRef]

29. Dutta, P.; Mishra, P.; Saha, S. Incomplete multi-view gene clustering with data regeneration using Shape Boltzmann Machine.
Comput. Biol. Med. 2020, 125, 103965. [CrossRef] [PubMed]

http://doi.org/10.1016/j.eswa.2019.05.030
http://doi.org/10.1016/j.ins.2018.04.008
http://doi.org/10.1109/TIM.2020.3016408
http://doi.org/10.1016/j.neucom.2020.02.104
http://doi.org/10.1016/j.neucom.2019.12.004
http://doi.org/10.1016/j.patcog.2021.107987
http://doi.org/10.1016/j.neucom.2018.05.053
http://doi.org/10.1016/j.neucom.2020.02.071
http://doi.org/10.1016/j.neucom.2019.08.002
http://doi.org/10.1109/TIP.2019.2916740
http://doi.org/10.1016/j.patcog.2017.08.024
http://doi.org/10.1016/j.neucom.2021.01.080
http://doi.org/10.1016/j.patcog.2019.05.005
http://doi.org/10.3390/e21070683
http://www.ncbi.nlm.nih.gov/pubmed/33267397
http://doi.org/10.1016/j.neunet.2017.02.003
http://doi.org/10.1016/j.neucom.2017.10.023
http://doi.org/10.1016/j.ins.2017.11.038
http://doi.org/10.1109/TIP.2020.3029883
http://doi.org/10.1007/s10489-021-02710-x
http://doi.org/10.1016/j.ins.2018.10.049
http://doi.org/10.1016/j.neucom.2017.09.060
http://doi.org/10.1109/TPAMI.2022.3155499
http://www.ncbi.nlm.nih.gov/pubmed/35230947
http://doi.org/10.1016/j.ipm.2015.11.003
http://doi.org/10.1016/j.eswa.2018.12.053
http://doi.org/10.1142/S0218001420500226
http://doi.org/10.1016/j.compbiomed.2020.103965
http://www.ncbi.nlm.nih.gov/pubmed/32931989


Entropy 2022, 24, 568 22 of 23

30. Saini, N.; Bansal, D.; Saha, S.; Bhattacharyya, P. Multi-objective multi-view based search result clustering using differential
evolution framework. Expert Syst. Appl. 2021, 168, 114299. [CrossRef]

31. Guerin, J.; Thiery, S.; Nyiri, E.; Gibaru, O.; Boots, B. Combining pretrained CNN feature extractors to enhance clustering of
complex natural images. Neurocomputing 2021, 423, 551–571. [CrossRef]

32. Zhan, K.; Chang, X.; Guan, J.; Chen, L.; Ma, Z.; Yang, Y. Adaptive Structure Discovery for Multimedia Analysis Using Multiple
Features. IEEE Trans. Cybern. 2019, 49, 1826–1834. [CrossRef]

33. Wang, H.; Yang, Y.; Liu, B.; Fujita, H. A study of graph-based system for multi-view clustering. Knowl.-Based Syst. 2019, 163,
1009–1019. [CrossRef]

34. Peng, X.; Huang, Z.Y.; Lv, J.C.; Zhou, J.T. COMIC: Multi-View Clustering without Parameter Selection. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.

35. Wang, H.; Yang, Y.; Liu, B. GMC: Graph-Based Multi-View Clustering. IEEE Trans. Knowl. Data Eng. 2020, 32, 1116–1129.
[CrossRef]

36. Huang, S.; Tsang, I.; Xu, Z.; Lv, J.C. Measuring Diversity in Graph Learning: A Unified Framework for Structured Multi-View
Clustering. IEEE Trans. Knowl. Data Eng. 2021; early access. [CrossRef]

37. Paun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
38. Zhang, G.X.; Pan, L.Q. A Survey of Membrane Computing as a New Branch of Natural Computing. Chin. J. Comput. 2010, 33,

208–214.
39. Wu, T.; Pan, L.; Yu, Q.; Tan, K.C. Numerical Spiking Neural P Systems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2443–2457.

[CrossRef]
40. Ren, Q.; Liu, X.; Sun, M. Turing Universality of Weighted Spiking Neural P Systems with Anti-Spikes. Comput. Intell. Neurosci.

2020, 2020, 8892240. [CrossRef]
41. Wang, L.P.; Liu, X.Y.; Zhao, Y.Z. Universal Nonlinear Spiking Neural P Systems with Delays and Weights on Synapses. Comput.

Intell. Neurosci. 2021, 2021, 3285719. [CrossRef]
42. Song, B.S.; Li, K.L.; Zeng, X.X. Monodirectional Evolutional Symport Tissue P Systems with Promoters and Cell Division. IEEE

Trans. Parall. Distr. 2022, 33, 332–342. [CrossRef]
43. Zhao, S.; Zhang, L.; Liu, Z.; Peng, H.; Wang, J. ConvSNP: A deep learning model embedded with SNP-like neurons. J. Membr.

Comput. 2022, 4, 87–95. [CrossRef]
44. Zhang, Z.; Liu, X.; Wang, L. Spectral Clustering Algorithm Based on Improved Gaussian Kernel Function and Beetle Antennae

Search with Damping Factor. Comput. Intell. Neurosci. 2020, 2020, 1648573. [CrossRef]
45. Zhang, X.; Liu, X. Noises Cutting and Natural Neighbors Spectral Clustering Based on Coupling P System. Processes 2021, 9, 439.

[CrossRef]
46. Jiang, Z.; Liu, X.; Sun, M. A Density Peak Clustering Algorithm Based on the K-Nearest Shannon Entropy and Tissue-Like P

System. Math. Probl. Eng. 2019, 2019, 1713801. [CrossRef]
47. Newman, M.W.; Libraty, N.; On, O.; On, K.A.; On, K.A. The Laplacian spectrum of graphs. Int. J. Combin. Appl. 1991, 18, 871–898.
48. Surhone, L.M.; Tennoe, M.T.; Henssonow, S.F. Spectral Graph Theory; Published for the Conference Board of the Mathematical

Sciences by the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 2010.
49. Tarjan, R. Depth-first search and linear graph algorithms. In Proceedings of the Symposium on Switching & Automata Theory,

East Lansing, MI, USA, 13–15 October 1971.
50. Fan, K. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. Proc. Natl. Acad. Sci. USA 1949, 35, 11.

[CrossRef]
51. Huang, J.L.; Zhu, Q.S.; Yang, L.J.; Feng, J. A non-parameter outlier detection algorithm based on Natural Neighbor. Knowl.-Based

Syst. 2016, 92, 71–77. [CrossRef]
52. Zhu, Q.S.; Feng, J.; Huang, J.L. Natural neighbor: A self-adaptive neighborhood method without parameter K. Pattern. Recognit.

Lett. 2016, 80, 30–36. [CrossRef]
53. Cai, D.; He, X.F.; Han, J.W.; Huang, T.S. Graph Regularized Nonnegative Matrix Factorization for Data Representation. IEEE

Trans. Pattern. Anal. 2011, 33, 1548–1560.
54. Hao, W.; Yan, Y.; Li, T. Multi-View Clustering via Concept Factorization with Local Manifold Regularization. In Proceedings of

the IEEE International Conference on Data Mining (ICDM2016), Barcelona, Spain, 12–15 December 2016.
55. Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern.

Anal. 2009, 31, 210–227. [CrossRef]
56. Nie, F.; Wang, X.; Jordan, M.I.; Huang, H. The Constrained Laplacian Rank Algorithm for Graph-Based Clustering. In Proceedings

of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16), Phoenix, AZ, USA, 12–17 February 2016.
57. Candes, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [CrossRef]
58. Candes, E.J.; Li, X.D.; Ma, Y.; Wright, J. Robust Principal Component Analysis? J. ACM 2011, 58, 11. [CrossRef]
59. Dueck, D.; Frey, B.J. Non-metric affinity propagation for unsupervised image categorization. In Proceedings of the IEEE 11th

International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007.
60. Tat-Seng Chua, J.T.; Li, H.; Luo, Z.; Zheng, Y. NUS-WIDE: A real-world web image database from National University of

Singapore. In Proceedings of the ACM International Conference on Image and Video Retrieval, Fira, Greece, 8–10 July 2009.

http://doi.org/10.1016/j.eswa.2020.114299
http://doi.org/10.1016/j.neucom.2020.10.068
http://doi.org/10.1109/TCYB.2018.2815012
http://doi.org/10.1016/j.knosys.2018.10.022
http://doi.org/10.1109/TKDE.2019.2903810
http://doi.org/10.1109/TKDE.2021.3068461
http://doi.org/10.1006/jcss.1999.1693
http://doi.org/10.1109/TNNLS.2020.3005538
http://doi.org/10.1155/2020/8892240
http://doi.org/10.1155/2021/3285719
http://doi.org/10.1109/TPDS.2021.3065397
http://doi.org/10.1007/s41965-022-00094-6
http://doi.org/10.1155/2020/1648573
http://doi.org/10.3390/pr9030439
http://doi.org/10.1155/2019/1713801
http://doi.org/10.1073/pnas.35.11.652
http://doi.org/10.1016/j.knosys.2015.10.014
http://doi.org/10.1016/j.patrec.2016.05.007
http://doi.org/10.1109/TPAMI.2008.79
http://doi.org/10.1109/MSP.2007.914731
http://doi.org/10.1145/1970392.1970395


Entropy 2022, 24, 568 23 of 23

61. Samaria, F.S.; Harter, A.C. Parameterisation of a stochastic model for human face identification. In Proceedings of the 1994 IEEE
Workshop on Applications of Computer Vision, Sarasota, FL, USA, 5–7 December 1994.

62. Greene, D.; Cunningham, P. Practical solutions to the problem of diagonal dominance in kernel document clustering. In
Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006.

63. Mallah, C.; Cope, J.; Orwell, J. Plant Leaf Classification Using Probabilistic Integration of Shape, Texture and Margin Features; Acta Press:
Calgary, AB, USA, 2013.

64. Li, F.F.; Perona, P. A Bayesian Hierarchical Model for Learning Natural Scene Categories. In Proceedings of the 2005 IEEE
Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005.

65. Ng, A.Y.; Jordan, M.I.; Weiss, Y. On Spectral Clustering: Analysis and an Algorithm. In Proceedings of the 14th International
Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC, Canada, 3–8 December 2001.

66. Nie, F.P.; Li, J.; Li, X.L. Parameter-Free Auto-Weighted Multiple Graph Learning: A Framework for Multiview Clustering and
Semi-Supervised Classification. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New
York, NY, USA, 9–15 July 2016.

67. Zhan, K.; Zhang, C.; Guan, J.; Wang, J. Graph Learning for Multiview Clustering. IEEE Trans. Cybern. 2018, 48, 2887–2895.
[CrossRef] [PubMed]

68. Liu, J.; Liu, X.; Yang, Y.; Guo, X.; Kloft, M.; He, L. Multiview Subspace Clustering via Co-Training Robust Data Representation.
IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]

http://doi.org/10.1109/TCYB.2017.2751646
http://www.ncbi.nlm.nih.gov/pubmed/28961135
http://doi.org/10.1109/TNNLS.2021.3069424
http://www.ncbi.nlm.nih.gov/pubmed/33835924

	Introduction 
	Related Work 
	Notations 
	Graph-Based Clustering and Graph Learning 
	Natural Neighbours 
	P System 

	Multi-View Clustering of Adaptive Sparse Representation Based on Coupled P Systems 
	The General Framework of the Proposed Coupled P System 
	The Evolution Rules 
	The Evolution Rules of Determining Ncv and Constructing Similarity Matrix in Cell 1 
	The Evolution Rules of Constructing the Unified Graph Matrix, Degree Matrix, Laplacian Matrix in Cell 2 
	The Evolution Rules of K-Means in Cell 3 

	The Communication Rules between Different Cells 

	Experiments 
	Datasets 
	Evaluation Metrics 
	Compared Methods 
	Running Time 
	Comparison of the Number of Neighbors 
	Parameter Analysis 
	Result Discussion 

	Conclusions 
	References

