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Bacterial pathogens are always challenged by fluctuations of chemical and physical parameters that pose
serious threats to cellular integrity and metabolic status. Sudden deprivation of nutrients or key me-
tabolites, changes in surrounding pH, and temperature shifts are the most important examples of such
parameters. To elicit a proper response to such fluctuations, bacterial cells coordinate the expression of
parameter-relevant genes. Although protein-mediated control of gene expression is well appreciated
since many decades, RNA-based regulation has been discovered in early 2000s as a parallel level of
regulation. Small regulatory RNAs have emerged as one of the most widespread and important gene
regulatory systems in bacteria with rare representatives found in Archaea and Eukarya. Riboswitches and
thermosensors are cis-encoded RNA regulatory elements that employ different mechanisms to regulate
the expression of related genes controlling key metabolic pathways and genes of temperature relevant
proteins including virulence factors. The extent of RNA contributions to gene regulation is not completely
known even in well-studied models such E. coli and B. subtilis. In depth understanding of riboswitches is
promising for opportunity to discover a narrow spectrum antibacterial drugs that target riboswitches of
essential metabolic pathways.
© 2018 The Author. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Shifting of pathogenic bacterial species from an environmental
niche to a living host or vice versa is a challenging condition to
acclimate to. Changes in nutrients availability, pH, and temperature
are the most important parameters to be monitored constantly.
Dramatic changes of these parameters may lead to deleterious ef-
fects on cellular physiology or resources wasting in synthesis of
already available metabolites. To prevent such problems, bacteria
have established a panel of signaling networks to coordinate gene
expression programs to respond to its surroundings. Proteins play
the major role in signals sensing and mounting the regulatory re-
sponses by acting as signal receivers at membrane sensors and
cytoplasmic effector molecules activate or repress transcription of
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relevant genes. It is well-appreciated that proteins coordinate gene
expression at various phases, at transcription, translation, or post-
translational levels. For two decades, bacterial RNA-based regula-
tory strategies are being discovered in accelerating fashion
(reviewed elsewhere [1e3]). A plethora of RNA elements were
found not to encode for proteins or proteins synthesizing ma-
chinery, but to execute regulatory functions in controlling gene
expression. Such non-coding RNA elements reside in the intergenic
regions of open reading frames (ORFs).

Regulatory RNAs are classified into two major categories; cis-
encoded elements which are located mostly upstream genes they
regulate and trans-encoded elements that are transcribed from
other locations in the genome. Pathogenic lifestyle of some bacte-
rial species prioritized the sensing and responding to changes of
physical and chemical signals especially key metabolites and tem-
perature to avoid synthesizing available metabolites or proteins in
the absence of their substrates. Riboswitches and RNA thermom-
eters (RNATs) are regulatory elements contained within the 50-
untranslated region (50-UTRs) of bacterial mRNA transcripts for
genes they regulate at the transcriptional and translational levels.
The tertiary structure of such leader sequences are formed or
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disrupted in response to chemical or physical signals which lead to
activation or inhibition of downstream genes [4]. Such RNA regu-
lators exert their regulatory effects without obligate involvement of
other factors. It is hard to accept as true that the number of ribos-
witches in Bacillus subtilis outpaces the number of validated
metabolite-binding proteins coordinating gene expression [5].

Riboswitches participate in regulation of diverse cellular phys-
iologies and their ligands range from diverse metabolites of
different molecular weights to uncharged tRNAs and ions. Such
regulatory RNA elements can sense a plethora of cellular metabo-
lites such as amino acids and their derivatives [lysine, glycine, S-
adenosylmethionine (SAM), S-adenosylhomocysteine (SAH)], car-
bohydrates [glucosamine6-phosphate (Glcn6P)], coenzymes [flavin
mononucleotide (FMN), thiamin pyrophosphate (TPP), coenzyme
B12], nucleobases and their derivatives (adenine, guanine, cyclic di-
GMP, cyclic di- AMP) [6,7], metal ions (Magnesium, Nickel, and
Cobalt) [8,9], uncharged tRNA [10] and pH [11]. Temperature is
another physical parameter that also found to bemonitored by RNA
elements called RNA thermometers (RNATs), which are considered
by many authors as riboswitches [12,13].

The diversity of ligands and sensing RNA sequences has been
exploited as criteria to classify riboswitches into currently ~40,
different classes [14]. Indeed, not only the exact number of ribos-
witches classes is unknown, but also rough estimation is difficult to
draw even in completely sequenced bacterial genomes [5]. Each
class of riboswitches has a high degree of conserved nucleotides
comprising the sensory domains in different bacterial species or, in
some instances, among riboswitch variants of the same class in the
same species. Bioinformatic studies and high throughput
sequencing approaches accompanied by biochemical and genetic
characterization continued to reveal the complexity and diversity
of RNA-based gene regulation in various bacterial genomes.

The aim of this review is to discuss the nature and characteris-
tics of riboswitches and RNATs reported in bacterial pathogens
(overt or opportunistic) and their regulatory contributions to
pathogenesis to appreciate the roles and importance behind such
elements to bacterial cell physiology. Roles of other ncRNA ele-
ments in virulence and pathogenicity are excellently reviewed
elsewhere [15e18].

2. Riboswitches

2.1. Structure and secondary foldings

Bacterial riboswitches reside mostly at the 50 untranslated re-
gions (UTRs) of metabolic and transport genes which they regulate
in cis-fashion after direct binding of a specific metabolite ligand
[19e23]. Typical riboswitch sequence contains two functional do-
mains, the aptamer and the expression platform with a region of
overlap called switching sequence between the two domains [24].
Folding of the aptamer into distinctive secondary and tertiary
structures, result in scaffolding of the ligand docking site. The
expression platform responds to ligand-induced folding at the
aptamer region by adopting the functioning structure which in-
terfaces with the transcription or translation processes of down-
stream sequences to elicit a regulatory response.

After synthesis of aptamer, it undergoes a folding pathway in
order to achieve its effective configuration. Sequences and struc-
tural studies of many bacterial riboswitches have deciphered the
molecular architecture of aptamers at atomic levels. The folding
events of riboswitch follow the common principles governing other
RNA molecules [25]. Various RNA structural configurations have
been reported in riboswitches including helices, loops, and bulges.
The configuration of these loops and turns is dictated by the
sequence motifs of nucleotides. Such motifs can interact with each
other to form higher level of packing. These structural motifs
include, but not limited to, GA3 tetraloop, kink-turns (K-turns),
kissing-loop (KL), sarcin-ricin loops, T-loops, and pseudoknots
which facilitate the global folding of RNA molecules (reviewed in
Ref. [25]). Disrupting the sequences of these structural themes
renders or markedly hinders riboswitch function [26e32]. Real-
time folding of an aptamer is determined by sophisticated tech-
niques other than crystallography, which shows the final configu-
ration of the interrogated molecule. Local folding of the purine
riboswitch, xpt-pbuX of B. subtilis was tracked over time by a
chemical footprinting technique called Selective 20-Hydroxyl
Acylation analyzed by Primer Extension (SHAPE) that exploits the
attacking reactivity of N-methylisatoic anhydride (NMIA) against
the 20-hydroxyl groups of aptamer nucleotides [31]. This technique
revealed conformational changes of nucleotides at the binding
pocket in response to ligand binding in time window. Folding dy-
namics of the TPP riboswitch, thimM, of E. coli in the presence and
absence of the ligand (thiamine pyrophosphate) and Mg2þ ions
have also been studied at the molecular basis by another imaging
technique called single-molecule Fluorescence Resonance Energy
Transfer (smFRET) [33]. In smFRET technique, the targeted parts of
the aptamer are labeled differently and folding transitions are
correlatedwith changes in the detected FRET value. The same study
shows high degree of plasticity and dynamics of riboswitch parts
configurations as a result of ligand docking.

Having its binding site organized, the aptamer domain can
specifically bind the proper metabolite with a great discrimination
power against closely related compounds. For instance, adenine
riboswitch achieves ~10.000-fold level of discrimination between
adenine and guanine [34,35], however, lysine riboswitch has at
least 5000-fold level of discrimination between lysine and orni-
thine; amino acids that differ in their R group by a single methylene
group [24]. The virtue of high specificity is attributed to the fact that
all functional groups and polar parts of the ligand are engaged in
interactions with the nucleobases of the binding pocket, in some
instances, mediated by positive ions. The experimental proofs of
high selectivity came initially from synthetic aptamers designed to
sense different ligand metabolites with affinity and specificity [36].
Strikingly, these synthetic elements failed to exhibit the discrimi-
nation power of naturally occurring counterparts. This is not sur-
prising because natural aptamers have been and continue to be
sharpened by persistent and stringent evolutionary constraints for
billions of years.

2.2. Mechanism of genetic regulation

The conformational structures of bacterial riboswitches are
triggered by folding in response to ligand biding which directly
modulate gene transcription either to seize or to proceed through
formation of terminator or antiterminator structures respectively
[24]. Interestingly, riboswitches in Gram-positive bacteria exert
their action most commonly via transcriptional inhibition, while
translation inhibition is the frequent mechanism in Gram-negative
due to Shine-Dalgarno (SD) sequence sequesteration. The prefer-
ence of transcriptional arrest mechanism in Gram-positive may be
linked to the fact that their genomes are embedded with large
biosynthetic operons where more resources would be wasted if a
full-length mRNA is synthesized.

Despite the fact that premature transcription termination is the
most common mechanism employed by riboswitches [6], tran-
scription activation, translation initiation inhibition, and ribozyme-
like cleavage mechanisms have also been documented in certain
riboswitch classes [37]. Such diversity in mechanisms, alongside
with protein-mediated mechanisms, enables bacterial cells to
finely tune its metabolic status and pathogenic lifestyle by
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modulating relevant genes and their products. Heterogeneity of
genetic control mechanisms is attributed to different ligand-
induced structural reorganization of the aptamer region which
consequently determines the folding pathway of the downstream
expression platform region (Fig. 1). Such mutually exclusive sec-
ondary and tertiary structures are harnessed to control the
expression of downstream coding sequence(s). A strong intrinsic
terminator stem has two features; high G-C content followed by a
run of U residues that cause RNA polymerase (RNAP) to stall tran-
scription and dissociate from the DNA and nascent RNA stretch
[38]. In ligand-free state of riboswitch working by transcription
termination, aptamer nucleobases are engaged in certain base
pairing that masks key bases necessary to construct the terminator
stem (Fig. 1). In other words, some key bases of the terminator stem
are incorporated in certain structural motifs, but ligand docking
establishes new interactions between binding site' nucleobases and
downstream bases. These new interactions favor terminator stem
formation. Similarly, in translation inhibiting mechanism, ligand
binding causes the Shine-Dalgarno (SD) sequence or translation
initiation site to be masked in stem formation.

For a typical riboswitch to achieve optimally its regulatory goal,
Fig. 1. Diverse regulatory strategies of riboswitch elements [39]. Structurally, a riboswitch el
an aptamer (corresponding to red bar) and an output domain called an expression platform
conformational changes to trap the antiterminator sequence thus forming a terminator loop
codon AUG in response to ligand binding (b). In transcription activation, ligand binding preve
SD sequence and/or start codon AUG for ribosomal units loading (d). Complementary sequ
it should bind the correct ligand, adopt the final and stable
conformation of ligand-bound status, and arrest the transcriptional
machinery before the RNAP passes the 30 boundary of the ribos-
witch. Global folding in timescale of adenine riboswitches, pbuE of
B. subtilis, and add of Vibrio vulnificus, has been determined to be
around 1 s using smFRET and force spectroscopy [29,40]. Interest-
ingly, both techniques demonstrated that tertiary structure play a
key role in pre-organizing the binding pocket before ligand binding.

Considering that the elongation rate of bacterial RNAP is around
45 nucleotides per second at 25 �C, transcription of such aptamers
would require around 1.5 s, thereby transcription and folding
should occur within the same time as expected for a cotranscrip-
tional process. Experimental studies on purine and FMN ribos-
witches suggest that at 1 mM intracellular concentration of ligand,
10 s at least would be required for an aptamer to bind the ligand
correctly [41,42]. If transcription machinery progresses at constant
rate for this duration, a segment of nearly 500 nucleotides would be
produced downstream the riboswitch terminus. How cells resolve
this problem? One of the solutions is the programmed pause sites
located within the expression platform domain that effectively
decreasing transcription rate allowing time for the aptamer to fold
ement precedes a coding sequence and comprises of two domains; a sensor part called
(brown bar). In a transcription repressor riboswitches (a), binding of ligand induces

. However, translation inhibiting riboswitches sequester the SD sequence and/or start
nts the formation of terminator loop (c), while translation permissive riboswitches free
ences are color coded.
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properly [43]. It is also worth pointing out that different riboswitch
sequences will require different amounts of time to fold properly
before binding the target ligand. Of note, other factors also play
important roles in this regards include; speed of folding, RNA
structural stability, and ligand concentration inside bacterial cell
(R.R. Breaker, personal communication).

Transcription termination, via intrinsic structures, and trans-
lation inhibition are the two previously known mechanisms of
riboswitches regulation. However, recently, a new general mecha-
nism was demonstrated in Mg2þ-sensing (mgtA) and FMN-sensing
riboswitches in Salmonella Typhimurium and E. coli respectively
[44]. Interestingly, mgtA and ribB riboswitches lack typical intrinsic
transcription terminator sequence [45e47] and shuts off the tran-
scription process by Rho-dependent mechanism [44]. Rho factor is
a homohexameric RNA helicase that binds to nascent RNA and
translocates along the strand to reach the RNAP and cause disso-
ciation of the newly synthesizedmRNA from elongation complex at
specific cytosine-rich sequence [48]. Surprisingly, few riboswitches
show additional novel mechanism of gene regulation by acting in
trans. In principle, premature termination of transcription produces
short segments of RNA corresponding to the riboswitches
sequence. Additionaly, aptamer segments also produce by RNase
cleavage of transcriptionally generated riboswitches full segments
[9,49]. An intriguing question is; what is the fate(s) of these RNA
segments? Degradation and recycling of building blocks is one of
these fates. However, it was found that high aptamer concentration
effectively maintain homeostasis by titration of ligand metabolites,
in other words, by decreasing its cellular free concentrations [50]. A
subsequent study detected an interesting finding that, in certain
cases, these segments act in trans similarly to small regulatory RNAs
[51]. This study showed, for the first time, that two S-adeno-
sylmethionine (SAM) riboswitches (SreA and SreB) in Listeria
monocytogenes target several mRNA transcripts of virulence genes
through base pairing leading to translation inhibition and mRNA
degradation (see contribution to pathogenicity).

2.3. Tandem architecture

Composite riboswitches come in two versions (Fig. 2), two-
aptamer-one expression platform riboswitches (e.g. Glycine ribos-
witches in Vibrio cholerae and Bacillus anthracis) and two complete
riboswitches reside adjacent to each other within the same mRNA
transcript (TPP riboswitches in Bacillus anthracis). Tandem
arrangement of binding domains produces more complex charac-
teristics of interacting with ligand metabolites and gene expression
control. The two-aptamer version either possesses the same spec-
ificity for a particular ligand or the two aptamers differ markedly in
their target metabolites. The latter case was found inmetEmRNA in
Bacillus clausii tandem riboswitches sensing SAM and Adeno-
sylcobalamin (AdoCbl or coenzyme B12) [52]. The double
Fig. 2. Tandem architecture of riboswitches. (A) Glycine (Gly) riboswitch from Bacillus with
turn (P0) is dipected in red. This configuration is found in many glycine riboswitches in Gra
from B. anthracis and (C) two different complete riboswitches; SAM and Adenosylcobalami
sequences are colored in blue.
riboswitches version was also characterized biochemically and
genetically in TPP riboswitches located in the 50-UTR of tenA operon
in Bacillus anthracis encoding for thiaminase II involved in the
regeneration of the thiamine [53].

Similarly to all riboswitches, interactions of binding domains
with cognate ligands rely on many chemical strategies including
hydrogen bonding, van der Waals, electrostatic, and stacking in-
teractions [54]. Intradomain interactions have been proposed in
glycine riboswitches, gcvT, of V. cholerae [55] and the saprophytic
species B. subtilis [54]. Having two-aptamer one expression plat-
form architecture, these riboswitches are neither independent nor
cooperative however. The benefit of such architecturewas a topic of
debate until recently. Indeed, studies of ligand binding kinetics
revealed a sigmoidal curve which was interpreted as indications of
cooperative nature between the aptamers [55]. Nucleotide Analog
Interference Mapping (NAIM) approaches and mutagenesis studies
suggest cooperative nature inferred by specific interaction between
specific regions of both aptamers [55]. In fact, these studies have
employed and characterized glycine riboswitches lacking P0 double
helix linker at the 5 ʹend of the riboswitch (Fig. 2a). Hence, the
earlier observed cooperativity was an artifact of the truncated
constructs used for biochemical characterization. The discovery of
this k-turn motif precludes the proposed cooperativity between
aptamers in glycine riboswitches from V. cholerae [56]. This small
segment base pairs with a small stretch of ribonucleotides con-
necting the two aptamers (Fig. 2a). A revised model for ligand
binding in such riboswitches was proposed explaining that
aptamers dimerization, rather than double ligand-site occupancy, is
crucial for high ligand binding affinity. In other words, dimerization
and stability of the second aptamer results from ligand binding in
the first aptamer [56]. These in vitro analyses have been supported
very recently by evidences from in vivo interrogation of Glycine
riboswitch folding behavior [57].

Tandem T-box riboswitches (regulating amino acid metabolic
genes) are known in several pathogenic species; B. anthracis,
C. perfringens, and M. pneumoniae [58]. In order to trigger the
expression of amino acids metabolic operons, high levels of un-
charged t-RNAs are required to saturate all copies of T-boxes up-
stream the operon. What advantage has been gained from
harboring identical successive riboswitches? This, presumably,
would ensure nearly complete repression of the subsequent operon
through the combined action of both riboswitches with a nearly
half-ligand concentration needed for single riboswitch to reach the
same outcome (transcription termination). TPP Riboswitches were
found in tandem as in tenA RNAs encoding thiaminase (EC. 3.5.99.2)
in Bacillus anthracis [53]. TPP riboswitches in tenA are composed of
two complete versions of riboswitches linked by a stretch of re-
petitive U residues. These tandem riboswitches control gene tran-
scription termination independently as a natural Boolean NOR logic
gate, where ligand docking to either aptamer yields an output of
a double-aptamer and single expression platform [52]. The newly characterized kink-
m-positive speciesas well as in V. cholerae. (B) Two similar complete TPP riboswitches
ne (AdoCbl) precede methionine metabolic gene in Bacillus [52]. Expression platforms
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gene regulation. NOR logic function does not require that the two
riboswitches influence each other [52]. Such conclusionwas drawn
from genetic experiments in which mutated and wild-type tandem
TPP riboswitch was fused with beta-galactosidase reporter gene in
various combinations and tested at different concentrations of
thiamine, the precursor of TPP. Furthermore, the absence of the
second riboswitch was found negligible and one riboswitch was
sufficient to impart transcription termination of the reporter gene
construct in transformed B. subtilis [53].

3. RNA thermometers

The activities of enzymes and many biological molecules are
affected by changes in ambient temperature. Drastic fluctuations of
temperature pose a serious threat to cell physiology, therefore,
bacterial cell has to monitor and respond efficiently and rapidly to
such heat perturbations. Elevated temperature causes protein
denaturation, weakening structural integrity of DNA and RNA, and
increase fluidity of plasma membrane to an extent that disrupts its
selective permeability. In contrast, decrease in temperature leads to
dramatic decrease of enzymes activities, membranes rigidification,
and formation of stable RNA structures that obscure or interfere
with transcription and translation leading eventually to growth
arrest. Different physiological responses are mounted to face such
physiological deleterious alterations among of which is an RNA-
based immediate response. Accumulation of denatured proteins
serves as a signal that trigger the expression of hundreds genes
employed to respond to and limit the heat-triggered damages to
maintain normal metabolism. Three categories of genes are sub-
jected to thermoregulation; heat shock genes, cold shock genes,
and virulence genes.

Prompt change in temperature is most efficiently sensed and
transduced by RNA structures, called RNA Thermometers (RNATs)
because other signal transduction systems, protein- or DNA-
mediated, require much time to come into effect. The virtue of
RNATs immediate response is attributed to their mode of regulation
in which translation initiation of existing mRNA is controlled in
temperature-dependentmanner. It has been reported that asminor
as 1 �C variation of temperature is detected by such RNA-based
system [59]. However, the mechanism employed by RNATs to
detect such subtle variations of temperature is still largely un-
known. The exploitation of mismatch pairing in the effector hair-
pins of RNATs seems to be the major strategy. Pathogenic bacterial
species of environmental origin seem to depend on RNATs to
confirm that a living host has been reached in order to initiate
virulence factors production.

These complex RNA structures are mostly found in the 5ʹ-UTR of
temperature-responsive genes, and alter their conformation be-
tween two distinct structures in response to temperature [59]. In
low temperature, the “closed” configuration is adopted, in which
the SD sequence and/or AUG codon are occluded due to base
pairing with complementary nucleotides in the same element.
Melting of these secondary structures results in the alternative
“open” conformation exposing SD sequence and/or AUG to the
ribosome [60]. Although the first RNAT element was found in pla-
gue agent, Yersinia pestis, in 1993 [61], the best understood RNAT is
the thermometer of prfA transcript in Listeria monocytogenes con-
trolling, with other activators, the synthesis of PrfA protein, a
transcriptional global activator of virulence genes [62]. This ther-
mosensor (127 nt.) folds into hairpin structure at low temperature
to inhibit translation initiation, but the hairpin stem is melted upon
increase of temperature to 37 �C [63]. In general, these ribor-
egulators are highly dynamic motifs in a narrow temperature
ranges to modulate heat and cold shock response proteins [64,65].
To clarify the fundamentals of RNAT-based regulation, two classes
of these thermosensors are discussed herein.

3.1. High temperature RNA thermosensors

3.1.1. ROSE elements
Repression Of hear Shock gene Expression (ROSE) is the most

common class of RNATs encountered in rhizobia, alphaproteobac-
teria, and gammaproteobacteria [66e68]. ROSE elements range
from 60 to>100 nucleotides (nt.) upstream the coding sequences of
mRNA coding for heat shock chaperone proteins. Structurally, ROSE
elements are usually composed of 2e4 hairpins (Fig. 3a). The
hairpin of the 5ʹ-end is structurally stable irrespectively of the
temperature [69], whereas the 3ʹ-end hairpin looses its tertiary and
secondary structures gradually as temperature increase, much like
a zipper. The SD sequence is trapped by base pairing with
conserved U(U/C)GCU motif in the 3ʹ-end hairpin which is the
functional part of the RNAT. The other hairpins, however, are
thought to confer scaffolding purposes and ensure proper folding of
the ROSE element [70,71]. In vivo analysis of ROSE elements, it was
proved that at 30 �C, the ribosomal binding site (RBS) at the 3ʹ-end
hairpin is masked but partial liberation of SD sequence occurs at
37 �C, whereas an increase of temperature to around 42 results in
full liberation of RBS leading to complete translation of down-
stream gene in a zipper like fashion [70].

Expression of heat shock genes occurs when sigma factor 32
(s32) assists RNAP to identify their promoters. In turn, genes of s32,
rpoH, in E. coli, are controlled by four different promoters which
respond to different environmental signals [72] alongside with
ROSE-like RNATs at the level of transcription and translation
respectively. Unlike other RNATs, the RBS of rpoH is not completely
occluded, but partially exposed [12,13]. Nevertheless, its translation
is prevented at non-stress temperature by inhibitory structure
created by folding of two distinct segments in the coding sequence
that obscure ribosome units loading. At high temperature the
inhibitory structure is weakened and ribosome entry becomes
feasible [12,72]. Two of sigma 32- activated genes, IbpA and IbpB
encode for heat shock proteins participating in multichaperone
network that stabilizes heat-denatured proteins have been found to
possess a 96-nt ROSE-like RNATs at their 5ʹ-UTRs [73e75].

3.1.2. Four uredine thermometers
A stretch of four uredines (a.k.a. fourU) was firstly found at the

50-UTR of agsA gene in Salmonella enterica serovar Typhimurium.
AgsA gene encodes for Aggregation Suppression A (AgsA) protein
[76]. Several heat shock and virulence genes were also found to
harbor this sequence which exploits the strategy of mismatch base
pairing that would be disrupted easily in response to temperature
increase. Such sequence sequesters the SD sequence and control
translation initiation of mRNA at low temperatures. The 5ʹ-UTR
containing the fourU element folds into two stem-loops; the 5ʹ-
hairpin is heat stable, as in ROSE elements (Fig. 3b), while the
second hairpin containing the fourU is temperature-sensitive [76].
At high temperatures (40sº C), the mismatch pair A29. G52 is easily
disrupted due to their weak bonding and the melting of the fourU
hairpin ensues. However, the entire melting of the stem-loop is
prevented by the stable base pair G34. C46 at the top of the stem.
Substitution of A29. G52 with a typical C-G base pair results in
complete repression of the gene in vivo due to difficulty in opening
the stem [76]. On the other hand, substitution of G34. C46 by A-U
pair decreases the melting point by 5 �C and expressed the down-
stream gene at non-stress conditions. As in riboswitches, Mg2þ ions
participate in tertiary structure stabilization of the 3ʹ-hairpin [77].
Additionally, translation of htrA gene in Salmonella Typhyimurium,
encoding for periplasmic serine protease (a.k.a. Do or DegP pro-
tein), is controlled by a fourU-type RNAT composed of only one



Fig. 3. Structural features of two RNA thermometers (RNATs). (A) ROSE elements are composed of 2e4 hairpin structures, which sequester the SD sequence and in some cases the
AUG start codon in their 30 proximal hairpins. The SD sequence is predicted to be paired by the characteristic U(U/C)GCUmotif (marked in dark gray). The actual structure, however,
can be different than the ROSE represented herein. All known ROSE elements are found in the 50-UTR of bacterial small heat shock genes [79]. (B) FourU element upstream ag-
gregation suppressing A (agsA) gene in Salmonella enterica. It is made of two hairpins (I and II), with the functional fourU thermosensor placed in the 3ʹ-most stemeloop structure.
Experimentally validated base pairs involved in hydration shell-based intramolecular communication are indicated. Hydration shell is a layer of water molecules that is formed
around intracellular macromolecules (for example, DNA, RNA and proteins), with a possible effect on their functionality [59]. Purple shaded bases are Mg2þ binding sites.
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hairpin [78].

3.2. Cold RNA thermosensors

Cold Shock Proteins (CSPs) are protective proteins produced
under cold conditions to mitigate the damage or harmful effects at
membranes and undesirable RNA structures that impede trans-
lation initiation and elongation [80]. In L. monocytogenes, three
genes encoding CSPs are preceded by in-built relatively long
(198e363 nt.) sequences predicted to have hairpin structures [81].
This pathogen endures refrigerator temperature which reflects its
physiological ability to acclimate to such low temperature. In 4 �C
incubation, the expression levels of these genes elevate by 4e27-
fold compare to incubation at 37 �C [81]. The best characterized
representative of cold RNATs is the 160 nucleotides 5ʹ-UTR of cspA
in E coli. Similar to riboswitch, the arrangement of this thermo-
sensor results from mutually-exclusive structures. At 10 �C, the
RNAT is stable and adopted a secondary structure with exposed SD
sequence. Whereas at 37 �C, stem-loop formation traps the ribo-
some binding site which limits translation process. Interestingly,
the functional sequence of cspA RNAT in E coli extended into ~60
nucleotides of the downstream coding sequence [65].

4. Contributions of riboswitches and RNATs to pathogenicity

Though the aforementioned examples of RNATs reside in the 5ʹ-
UTRs of either monocistronic or polycistronic mRNAs, new levels of
RNAT-based sophisticated loci and regulation were documented in
human pathogens yersiniae and Neisseria meningitidis [82,83]. In
Yersinia pestis, an RNAT at the 5ʹ-UTR of lcrF gene was identified in
the intergenic region of two-gene operon, yscW-lcrF operon [82].
LcrF is a global transcriptional activator of many virulence genes
including outer membrane proteins (Yops) employed for evasion of
antibacterial immune response [84] and type III secretion system
[85e87]. Furthermore, transcription of the whole operon is also
regulated by thermosensitive histone-like protein that only when
melted at 37 �C allows RNAP to read-through the operon [82,88].
LcrF RNAT of human pathogenic yersiniae is composed of two
conserved hairpins that sequester SD sequence in its 3ʹ end loop by
a typical fourU motif. The partially occluded start AUG codon in
secondary structure is liberated at 37 �C when G-C mismatches of
SD/fourU are disrupted [82].
In Bartonella hanselae, the causative agent of Cat-scratch disease,
and also in other species of Bartonella, the coding sequences of
numerous transcriptional regulators, trp family, are preceded by
putative riboswitches named Brt1-9, with unidentified ligands [89].
From biochemical experiments, it is likely that in the absence of its
ligand, Brt1 terminates the transcription of the ensuing trp 1
sequence. Trp 1 is a helix-turn-helix DNA binding protein that
positively regulates badA gene transcription [89]. BadA is a major
virulence surface protein involved in autoaggregation, biofilm for-
mation, and phagocytosis inhibition [90,91]. Interestingly, besides
being a putative riboswitch, experimental evidence inferred a
possible trans-acting mechanism for Brt1 to downregulate badA by
base paring with badA mRNA transcript [89].

Ecologically, Listeria monocytogenes is a widely distributed
species that survives primarily as a saprophytic species in soil [92].
The ability of L. monocytogenes to switch to pathogenic lifestyle
upon ingestion by a susceptible human host is mediated by the
activation of number of genes collectively known as virulence
genes. Products of virulence genes are implicated in host cell in-
vasion, intracellular growth, and spread to neighboring cells [93].
The majority of such virulence factors, thus far, are known to be
regulated by PrfA protein, a transcriptional activator, which harbors
a thermometer regulatory sequence [92]. After successful access to
human host, increase of temperature serves as a confirmation
signal to the listerial cell to switch to parasitism. Intriguingly, PrfA
biosynthesis is subjected to regulation by a thermometer located in
the 5ʹ-UTR. At 30 �C, this regulatory region folds into hairpin sec-
ondary structure masking the SD sequence which only freed from
the hairpin if temperature elevated to 37 �C when RNA secondary
structures denatured [51]. At 37 �C, the virulence factors modulate
the pathogenicity after the thermometer permits the translation of
PrfA mRNA [92]. In presence of SAM, SreA riboswitch responds by
transcription termination of methionine metabolic genes. The
produced stretch of RNA corresponding to the 50-UTR of SreA en-
gages in base pairing with the sequence upstream the SD sequence
of prfA mRNA transcript at 37 �C. This trans-acting regulatory effect
of SreA does not take place at 30 �C, because the SD sequence is
incorporated in a thermometer stem [51].

Other examples in which a riboswitch plays a role in regulating
virulence factors are reported in Enterococcus faecalis [94] and also
in Listeria monocytogenes [95]. In L. monocytogenes, the eut operon
encoding for ethanolamine utilization is regulated by two-
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component regulatory system (EutVW). In this protein system,
EutW is the membrane sensor kinase and EutV is its associate DNA-
binding response regulator. EutV functions as antiterminator via
disrupting intrinsic terminator hairpins produced in the Rli55
segment during 50-end transcription of the operon [96e98]. The
enzymes of ethanolamine utilization pathway require vitamin B12
as a coenzyme. If ethanolamine is available (as in the intestines
during infection), EutW signals the EutV to aid transcription of the
operon. However, if B12 is absent, Rli55 is fully transcribed with its
terminator loops leading to EutV sequestration and failure to ex-
press eut genes. Yet binding of B12 to its riboswitch at the 50-UTR of
Rli55 masks the sequences that sequester EutV allowing for eut
operon to be expressed [95]. Such integrative multifaceted (protein
and RNA) regulation emphasizes the idea that pathogenic species
have engineered efficient systems to express pathogenicity-related
genes only under correct optimal conditions. Ethanolamine is
abundant molecule in the intestines of vertebrates and its utiliza-
tion was found to be part of listerial pathogenesis in mice model
[99].

Shigella dysenteriae has an outer membrane heme receptor,
ShuA, important for acquisition of iron from complex molecules in
human body. Nutrient iron is required for pathogenicity initiation
and progression [100,101]. ShuA transcription is regulated by an
iron-dependent transcriptional repressor, Fur [102,103] while its
translation is subjected to fourU RNAT located in its 300 nucleotides
50-UTR [104]. In iron-poor condition, ShuA is synthesized only at
37 �C when translation of ShuAmRNA is permitted, however, at low
temperature; fourU RNAT occludes the SD sequence regardless of
iron concentration.

In V. cholerae, the causative agent of life-threatening diarrheal
cholera disease, the production of cholera toxin (CT) and toxin-
coregulated pili (TCP) occurs when the bacterium reaches human
intestines [105]. The successful arrival to host is confirmed by rise
in temperature from less than 20 �C of the contaminated water to
the 37 �C of the body. The mentioned toxin and pili are the
important major virulence factors for pathogenicity (reviewed in
Ref. [106]). The expression of these factors is subjected to tran-
scriptional activator ToxT. The ToxT genes harbor a fourU RNAT
element that masks SD sequence under low temperature condi-
tions [107].

5. Evolution of riboswitches and RNATs

Before evolutionary emergence of DNA as genetic material, life
thought to have relayed on RNA for themission. Furthermore, life of
the RNA world might have depended on RNA for catalysis of
chemical reactions and for modulation of biological processes, at
least the essential ones. RNA viruses are considered as evidences to
support the hypothesis of RNA being the only medium of genetic
material [108e110]. On the other hand, ribozymes are thought to
have been the biocatalysts in the RNA life, much like modern en-
zymes before protein existence. This is supported by the discovery
of a carbohydrate-sensing riboswitch element that employe self-
cleavage mechanism. The key metabolites thought to have been
existed are amino acids and nucleobases, from which modern co-
enzyme may have evolved. Despite the fact that primordial RNA
world hypothesis is controversial, at least currently, successive
discoveries in the arena of RNA continue to provide testimonials
one after another. Riboswitches are robust evidences that RNA has
the ability to selectively bind specific molecules under low con-
centration with great discrimination power, much like contempo-
rary metabolite-binding proteins. If riboswitches are real fossils
from ancient RNA life, it is remarkable that they have retained
conserved sequences during billions of years of evolutionary
pressure to serve in modern organisms. Indeed, TPP riboswitches
have been found in the three domains of life and representatives of
different ribozymes are distributed in the three domains of life and
viruses.

On the other hand, an intriguing question is that; if modern
RNATs are remnants of the primordial RNA world, then what were
they employed for in the absence of DNA or protein molecules? If
their existence in RNA world is proven, then their contributions
were likely to regulate the expression and protection of genetic
material (RNA) resembling the modern roles in the modern DNA-
protein world. The catalysis capabilities of RNA molecules (such
as ribozymes) are affected by temperature raise which necessitated
the existence of a protective/regulatory aid mostly fulfilled by
RNATs.

Bioinformatic analyses continue to identify not only new classes
but also variants of already characterized classes [111e114]. A new
computational study employing multiple-sequence alignments,
atomic-resolution structural information, and riboswitch gene as-
sociation have identified many variants that changed their ligand
specificities much like protein enzymes [114]. Some variants
completely lost their ability to bind the primary ligand and the li-
gands of such variants are still unknown. Such changes are direct
results of mutations in key nucleotides at the binding pockets
reflecting continuous genome evolution. From gene regulation
standpoint, the associated genes with such variants are most
probably relying on other more effective regulatory mechanisms
beside the original riboswitch versions.

6. Conclusions and perspectives

Riboswitches and RNATs are important RNA-based regulators
that respond to key metabolites and temperature, respectively, via
different mechanisms and to different extent. Some riboswitches
precede a single genewhile others control a polycistronic transcript
encoding more than one gene. Unlike other noncoding RNA ele-
ments that are devoted to interact with other RNA transcripts via
restricted typical base pairing, riboswitches and RNAT are more
developed to compete with proteins to bind chemical compounds
and sense temperature shifts, respectively, to coordinate gene
expression and cope up with pathogenic lifestyle. The distribution
and levels of complexity reflect the paramount role of RNA domains
to participate in maintenance of cell physiology and homeostasis.
The extent of RNA-based regulatory networks is far from being fully
appreciated. In occasions, some riboswitches have been found to
interact with other riboregulators that control different physio-
logical process. Cells relay on riboswitches and RNA thermosensors
to avoid synthesizing unnecessary proteins or to induce the im-
mediate production of others in a much rapid response than
protein-mediated one.

Levels of RNA-based regulation of cell physiology are getting
expanded and sophisticated. Understanding of simple prokaryotic
model systems will provide the knowledge and principles to
explore higher eukaryotic RNA regulatory networks. Additionally,
discovery of selective drugs that compete with ligand to bind
riboswitch is a promising approach to fight pathogenic species and
lowering the burden of antibiotics resistant infections. The
continuous sequencing and annotation of bacterial genomes will
aid the research to delve deeply into mechanistic, biological func-
tion, and evolutionary questions regarding riboswitches and RNA
thermosensors. Additionally, characterization of a riboswitch up-
stream the coding sequence of a hypothetical gene helps in deci-
phering the identity and function of that gene product.
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