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ABSTRACT The application of organic amendments to mining soils has been
shown to be a successful method of restoration, improving key physicochemical
soil properties. However, there is a lack of a clear understanding of the soil bacte-
rial community taxonomic and functional changes that are brought about by these
treatments. We present further metagenomic sequencing (MGS) profiling of the
effects of different restoration treatments applied to degraded, arid quarry soils in
southern Spain which had previously been profiled only with 16S rRNA gene (16S)
and physicochemical analyses. Both taxonomic and functional MGS profiles showed
clear separation of organic treatment amendments from control samples, and
although taxonomic differences were quite clear, functional redundancy was higher
than expected and the majority of the latter signal came from the aggregation of
minor (,0.1%) community differences. Significant taxonomic differences were seen
with the presumably less-biased MGS—for example, the phylum Actinobacteria and
the two genera Chloracidobacterium (Acidobacteria) and Paenibacillus (Firmicutes)
were determined to be major players by the MGS and this was consistent with
their potential functional roles. The former phylum was much less present, and the
latter two genera were either minor components or not detected in the 16S data.
Mapping of reads to MetaCyc/BioCyc categories showed overall slightly higher bio-
synthesis and degradation capabilities in all treatments versus control soils, with
sewage amendments showing highest values and vegetable-based amendments
being at intermediate levels, matching higher nutrient levels, respiration rates,
enzyme activities, and bacterial biomass previously observed in the treated soils.

IMPORTANCE The restoration of soils impacted by human activities poses specific
challenges regarding the reestablishment of functional microbial communities which
will further support the reintroduction of plant species. Organic fertilizers, originating
from either treated sewage or vegetable wastes, have shown promise in restoration
experiments; however, we still do not have a clear understanding of the functional
and taxonomic changes that occur during these treatments. We used metagenomics
to profile restoration treatments applied to degraded, arid quarry soils in southern
Spain. We found that the assortments of individual functions and taxa within each
soil could clearly identify treatments, while at the same time they demonstrated
high functional redundancy. Functions grouped into higher pathways tended to
match physicochemical measurements made on the same soils. In contrast, signifi-
cant taxonomic differences were seen when the treatments were previously studied
with a single marker gene, highlighting the advantage of metagenomic analysis for
complex soil communities.
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Soils represent one of the main sources of microbial diversity, containing between
2,000 and 8.3 million bacterial species per gram of soil (1, 2). Their taxonomic diver-

sity is also mirrored by the diversity of their protein-encoded functions (3)—microbial
communities play key roles in maintaining multiple ecosystem functions and services
such as the cycling of nutrients (for example, carbon, nitrogen, etc.), participating in
primary production, and regulating soil fertility and plant health (3–8). They participate
in, or are solely responsible for, degradation, transformation, and biosynthesis reac-
tions in biogeochemical cycles, as well as the detoxification of natural and human-
made pollutants (9).

Human impacts that degrade physical and chemical soil qualities also affect soil mi-
crobial communities, reducing their overall diversity (10–16). These impacts are espe-
cially drastic in soils affected by extractive activities in quarries (14, 16), where superfi-
cial organic and/or organo-mineral horizons, which generally contain the largest
number of soil microorganisms (17, 18), are eliminated from the soil (16, 19). Such dis-
turbances could influence the correct functioning of soil biogeochemical cycles in the
underlying soils. Nevertheless, the disappearance of some microbial species due to soil
degradation may not have the same impact on basic or widely distributed functions
across living organisms, such as global organic matter decomposition and N and P cy-
cling (20–22), because these same functions can be performed by many different rep-
resentatives. This phenomenon, known as functional redundancy, contributes to the
maintenance of the stability and functioning of the whole soil ecosystem, which has a
high buffering capability, and is sometimes referred to as “soil memory” (20). However,
the loss of specialized or rare functions carried out by smaller groups of specialized
species, such as those performing detoxification, methanogenesis, or mineralization of
recalcitrant organic compounds (9, 23), could lead to the collapse of different meta-
bolic pathways, resulting in a strong negative impact on overall ecosystem functioning
and services (20, 23).

Soil microbial communities, in addition to being clearly affected by processes such
as mining practices in arid environments (14, 16, 24), also suffer significant impacts
from subsequent restoration treatments necessary for the recovery of soil functionality
(16, 24–26). The application of organic amendments to mining soils has been shown to
be a successful method of restoration, improving physical (e.g., moisture and aggre-
gate stability) and chemical (e.g., pH, organic matter, total N, available P, etc.) soil prop-
erties and key indicator enzymatic activities (involved in the C, N, and P cycles) (19, 24,
26–29) and influencing CO2 fluxes (30). After the application of organic amendments in
mining soils, the changes in the abovementioned physicochemical soil properties
(which are considered key factors in directing the structure of soil microbial commun-
ities) (31–36) indirectly influence soil bacterial community composition (16, 24).
Moreover, the organic amendments themselves can directly affect the composition of
the bacterial communities of the soils through the inoculation of new bacteria present
in the amendments or due to changes in the chemical composition of the amend-
ments, with a higher content of labile or recalcitrant organic compounds allowing the
proliferation of some bacterial communities over others (16, 24). These changes to the
(taxonomic) composition of microbial communities will foreseeably affect the functions
that these microorganisms perform in the soils. For example, the application of com-
post organic matter amendments favors specialized functions such as lignin degrada-
tion (23), requiring the cooperation of a diverse group of microorganisms (37).

Despite the large diversity of microbial communities in the enormously heterogene-
ous matrices of soils, their crucial roles in soil biogeochemical cycles, and their complex
taxonomy-function relationships, thorough metagenomic studies in severely human-
impacted soils are less common. In general, soil microbial diversity has been mainly
studied using 16S rRNA gene analyses (here referred to as 16S) until most recently (38–
40), but this method provides only taxonomic information. However, in the last dec-
ade, the application of culture-independent (meta)genomics approaches (37, 41) based
on high-throughput DNA sequencing has proved a promising tool to investigate the
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abundance of specific genes, entire functional profiles, and ecological significances of
microbial communities living in diverse ecosystems (3, 42–51). As metagenomic analy-
sis forgoes using selective primers and PCR, it is widely considered a much less biased
approach to analyze communities—although challenges still remain in having
adequate database coverage of novel organisms, the preponderance of unknown func-
tions, and the fact that gene presence does not necessarily equate to expressed func-
tion (52, 53). That being said, given the greater resolution of this technique, the main
goal of the work presented here is the further functional profiling of the effects of dif-
ferent soil restoration treatments (of differing organic amendments from recycled
materials) applied to degraded, arid quarry soils in southern Spain which had previ-
ously only been molecularly profiled with 16S analyses (16) but which have been
extensively studied from a physicochemical/biological activity perspective as part of a
multiannual restoration experiment (26, 30). The organic amendments applied were (i)
100% vegetable compost manufactured from garden waste (COVG), (ii) 100% vegeta-
ble compost manufactured from horticultural greenhouse crop waste (COHort); (iii)
treated sewage sludge waste (SS), (iv) an amendment made from a 50:50 mixture of
COVG 1 SS, and (v) an amendment made from a 50:50 mixture of COHort 1 SS.
Changes in the taxonomic composition and functions, especially related to the carbon
cycle, were examined in detail between soils restored with the different treatments
compared to degraded unrestored soils in the quarry (Control) and surrounding natu-
ral soils undisturbed by mining activity (Natural). Given the results of the previous stud-
ies on these restoration experimental plots, our working hypotheses were (i) that ex-
perimental and control plots within the degraded soils would show stark differences
from nearby natural soils; (ii) that the same major players detected in the 16S analyses
would also be recovered in the metagenomic taxonomic analysis; (iii) that the func-
tional data unique to metagenomics would discriminate among soil types, while still
displaying a minor amount of functional redundancy between them; and (iv) that the
SS treatment would show the highest functional diversity due to its previously
observed highest biological activity of all the treatments (26, 30).

RESULTS
Soil taxonomic composition. The overall pattern of taxonomic distributions between

soils showed very clear separation of each primary treatment (COHort, COVG, or SS) from
the control and natural soils in ordination (Fig. 1), and the ADONIS results confirmed that
87% of the variation could be attributed to the treatment category. The replicates for the
control and natural soils were very tightly clustered, and these two soil types were also
relatively close to each other. There was slightly more spread among the treatment repli-
cates (widest for the SS); however, they were also distinctly clustered apart so that no pri-
mary treatments overlapped. The two treatment mixtures (COHort1 SS and COVG 1 SS)
displayed “intermediate” patterns where their centroid distances were being pulled more
toward the mixed-in SS position; however, the effect of adding SS to COVG appears to
have had a much greater impact, as COHort1 SS shows a minor shift at best. These clus-
tering patterns were driven by over 200 significantly different genera between treatments
and untreated plots (Naturals 1 Controls), whether in the ALDEx2 or linear discriminant
analysis (LDA) effect size (LEfSe) analysis (Fig. 2). However, a substantial portion of those
differences were due to minor genera (i.e., rare/low-abundance genera), and when indi-
vidual treatments were examined on their own, a range of ;20 to 70 genera were found
to be enriched in each. In the ALDEx2 comparisons, the SS amendment showed the most
substantial differences from the control soils, with COHort showing intermediate differen-
ces and COVG being the closest to control soils. Perhaps not surprisingly given their near-
overlap in ordination, the natural soils showed zero significantly different genera com-
pared to the study control plots, and the two plot types were then combined into the
“untreated” plots for the majority of the taxonomic and functional comparisons below. As
the mixture plots (COHort1 SS and COVG1 SS) simply showed straightforward interme-
diate patterns, these two plot types were excluded from some of the subsequent
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analyses/plots (e.g., ALDEx2 and MetaCyc) in order to specifically zero in on the factors
specific to the primary single treatments (COHort, COVG, and SS) compared to the con-
trols. Although trending toward differences in diversity (Shannon’s H) in the multiple
comparison (Kruskal-Wallis), there were ultimately no significant differences between any
of the study plots in pairwise comparisons due to multiple test correction (Fig. 2).

In term of high-level taxonomy, the distributions of the phyla in the soils (see Fig. S1
in the supplemental material) also showed fairly clear patterns of untreated soils being
distinct from the plant-based amendments (COHort and COVG), which were also them-
selves quite different from the sewage amendment. Actinobacteria and Proteobacteria
were the two largest contributors to all communities (.50% combined in all soils),
although skewed toward the former in untreated/COHort/COVG and toward the latter in
SS. Bacteroidetes and Firmicutes were more prevalent in SS (;12 to 19%), followed by
COHort and COVG (;8 to 12%), but were minor components in untreated soils (,3%).
Conversely, Acidobacteria represented ;4% of the total community in untreated soils
but were;1% or less in all amendments.

At the more detailed genus level, the overall distributions of the most prevalent gen-
era also reinforced the above partitioning of untreated versus COHort/COVG versus SS
(Fig. S2). Differential analysis of these genera (Fig. 3 and 4) showed between 110 and
140 significant genera separating the untreated soils from the treatments, with almost
complete agreement between ALDEx2 and LEfSe results; however, most of these were
with small LDA scores or small effect sizes (,1% absolute difference in mean propor-
tions). That being said, Fig. 3 and 4 show those genera with the most significant effects
and abundances across the various plots. Streptomyces was the most abundant single
genus across all soils and was the top significantly enriched genus in untreated soils,
followed as a close second (both .4.0 log LDA) by Chloracidobacterium (Acidobacteria),

FIG 1 Overall patterns of restoration treatment and untreated plots derived from the taxonomic
abundances. Bray-Curtis PCoA of the Kraken2 (Bracken-corrected) individual sample counts of genera
found (n = 329 across all samples after low-abundance filtering), color coded (along with specific
symbols) by treatments or controls with triplicates for each soil plot type. Results of the ADONIS test
for significant groupings are included in the figure inset. COHort, plots treated with vegetable
compost from horticultural waste; Control, plots of quarry soils without restoration amendments;
COVG, plots treated with vegetable compost from garden waste; Natural, non-human-impacted
natural soils near the study area; SS, plots treated with treated sewage sludge; 1 SS, 50:50 mixtures
of the preceding vegetable composts with SS.
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which averaged a 3% greater mean proportion in untreated soils (Fig. S2). The SS
treatment showed the longest list of differential genera, dominated mostly by
Gammaproteobacteria and Bacteroidetes versus Alphaproteobacteria and Actinobacteria
for untreated soils, among which were Lysobacter, Pseudomonas, Sphingobacterium,
Pedobacter, and Flavobacterium. The top abundant genera that were significantly
enriched in the COHort treatments were Paenibacillus (Firmicutes; very abundant in
both plant amendments [Fig. 4]), Isoptericola (Actinobacteria), and Nocardiopsis
(Actinobacteria), among a few more from diverse phyla. COVG treatments showed fur-
ther enrichment of various Actinobacteria, including Nocardioides, Mycobacterium,
Mycolicibacterium,Microbacterium, and Promicromonospora.

Soil functional profiles. Similar to the overall taxonomic patterns, the ordination
plots of the distributions of both the individual functions (from EC numbers; Fig. 5A) and
those functions grouped into their respective pathways (Fig. 5B) showed the same dis-
tinct clustering of the untreated soils away from the amendments (although some repli-
cates were closer now), and the individual primary treatment types (COHort, COVG, and
SS) still separated from each other (accounting for 67 to 71% of the total variation by
ADONIS). The mixed treatments (1 SS) showed more overlap functionally here, but the
sewage treatment still showed the greatest distance from controls. ALDEx2 pairwise
comparisons resulted in many fewer significantly different features compared to taxon-
omy, falling to almost none in treatments versus the control soils, and LEfSe enriched
features were absolutely 0 for pathways and a few functions for each treatment (Fig. 2).
Additionally, unlike the top taxonomy features, most of these functional differences
were small—LDA scores were mostly near the minimum of 2.0 (Fig. 6) and ALDEx2 effect
sizes were also almost all ,2.0. Similar to taxonomy, the overall functional diversity
trended toward higher values in treatments, but no significant differences were found in
the pairwise comparisons after multiple test correction (Fig. 2).

When each treatment was compared to the untreated controls, some small func-
tional differences were seen, with 1 to 6 enriched EC numbers in controls and plant-
based amendments and only 5 differences for the sewage treatment (Fig. 6). The

FIG 2 Overall richness, diversity, and differentially abundant features of restoration treatment and untreated plots derived from the taxonomic (left
column), function (middle column), and pathway (right column) abundances. Top panels are the richness boxplots (showing median [bar] and range of
triplicates) for each data type, with total numbers of different genera, EC numbers, or MetaCyc pathways detected per sample represented on the y axes.
Middle panels are the Shannon’s H boxplots (as above) for each data type. For all boxplot panels, results of the Kruskal-Wallis tests for differences between
medians are shown in the upper or lower left. Bottom tables are the numbers of differentially abundant/enriched features for each data type determined
using ALDEx2 and LEfSe. Shown are the results of individual testing for each unmixed treatment plot or, in the last column of the tables, for the
differences between untreated plots (Controls 1 Naturals) and all five treated plots together. Note that ALDEx2 requires pairwise comparisons; therefore,
the feature numbers in the first five columns of each table are for the plots compared to the Controls, whereas LEfSe analyzes all plots at once to find the
nonredundant features enriched in each plot. Color coding and treatment abbreviations are as in Fig. 1.
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untreated soils showed slightly higher abundances of four functions related to various
protein/amino acid functions, such as glutaminase and endopeptidase, as well as ure-
ase degradation and phosphate transport. COHort showed the single enrichment of
ectoine synthase, whereas COVG showed enrichment of 6 functions, including proteo-
some functions (e.g., Pup ligase) and energy/metabolism functions, such as glutamate-
ammonia ligase from the N cycle and some cytochrome 1 NADH functions (mostly in
the 1 SS mixture). The sewage treatment was enriched in 5 functions, among which
were thymidine and lipid A synthesis (EC 3.5.1.108), rRNA/ribosome maturation (EC
2.1.1.166), and sodium motive force for flagella or transport (EC 7.2.1.1).

In terms of pathways, ALDEx2 found 6 significantly more abundant in the treated
soils and 32 more abundant in untreated plots (Fig. 7), although effect sizes were quite
small and LEfSe did not concur, having found 0 functional differences. Treated soils
showed more pyridoxal 59-P, pyrimidine, and lipid biosynthesis, as well as slightly more
abundant denitrification pathways. The small shifts in untreated soil pathways were
mostly in various isoleucine and arginine biosynthesis pathways; various biosynthesis
pathways involving peptidoglycans, salvage pathways, and queuosine biosynthesis;
and energy pathways such as glycolysis, tricarboxylic acid (TCA) cycles, and a sulfate
assimilation pathway.

FIG 3 Top significantly enriched genera in restoration treatment and untreated plots. Due to the large numbers of significant features found for each plot
type (tables in Fig. 2), only the top LEfSe-determined enriched genera with log LDA scores of .3.5 are shown here for the untreated plots (Controls 1
Naturals) (A) and the treated plots (B), further broken down by treatment type using the same color coding and treatment abbreviations as in Fig. 1. Note
that most of these genera were also found to be differentially abundant in the ALDEx2 comparisons (Fig. 4 gives a comprehensive comparison). Acido,
Acidobacteria; Actino, Actinobacteria; AlphaP, Alphaproteobacteria; Bact, Bacteroidetes; BetaP, Betaproteobacteria; Firmi, Firmicutes; GammaP, Gammaproteobacteria.
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FIG 4 Top genera in restoration treatment and untreated plots from metagenomic sequencing (left heatmap) and previous 16S rRNA gene sequencing
(right heatmap) of the same samples (blue shows less and yellow shows more for both heatmaps). Also indicated are whether the metagenomic genera
were found to be differentially abundant/enriched by either ALDEx2 or LEfSe (center: black-filled dots for yes, empty for no), either in individual testing for
each plot (first and second dots) or for the differences between untreated plots versus all five treated plots together (third and fourth dots), as in Fig. 2. To
be included in these heatmaps, genera had to be either (i) among the top 5 metagenomic LEfSe-enriched genera for each treatment or untreated plot or
(ii) among the top 20 metagenomic LEfSe-enriched genera for untreated or treatment plots combined or (iii) all of the 25 genera (Aminobacter was
removed since it was ,1% abundant across all 16S samples) identified by the network analysis of Rodríguez-Berbel et al. (16) as having importance in
structuring the 16S data (only identified genera; unclassified taxa removed). If a genus was not detected in one or the other data set, a red X is marked to
the right of the respective heatmap. Downward red triangles indicate that those genera were at ,1% abundance (summed across all samples) for that
data set and were therefore excluded from the respective heatmap. Sample color coding and treatment abbreviations are as in Fig. 1.
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Finally, when the various individual functions and pathways were grouped into the
MetaCyc/BioCyc categories (Fig. S3 to S5), a general trend was observed of overall
higher biosynthesis and degradation capabilities in all treatments versus control soils,
with sewage showing the highest mapping of reads to those functions and COHort/
COVG being at intermediate levels. For example, this order was mostly maintained
through all major categories of biosynthesis, such as amino acid and lipid synthesis
(Fig. S3A). Interestingly, for carbohydrate biosynthesis, the order was the same for
most subcategories, with a large spike in sugar-nucleoside synthesis for SS, but essen-
tially inversed for glycan and glycogen synthesis (Fig. S3B). Mostly all of the degrada-
tive categories followed the SS . (COVG/COHort) . control pattern (Fig. S4), including
the more abundant amino acid and carbohydrate degradation subcategories, as well
as the more minor aromatic degradation subcategory. In the energy and “other path-
ways” categories, substantial numbers of reads mapped to fermentation, CO2 fixation,
and C1 compound utilization (Fig. S5), again higher in treatments than control soils. In
terms of inorganic nutrient metabolism, only the N cycle showed substantial read
counts, with control and SS at similar levels and only a small extra amount of mapping
in the two plant-based amendments. Overall, though, it must be kept in mind that
many of these cumulative count differences represent only about 10% variance
between many of the treatments/controls.

DISCUSSION

The overarching goal of this study was to further compare previously studied treat-
ment effects on degraded quarry soils, but using more fine-scale, and supposedly less-
biased, metagenomics. Comparisons with the 16S analysis are presented below, along
with the newly determined functional data which allowed for better comparison with
measured physicochemical processes and clearer understanding of the potential
mechanisms at play.

Similar microbial profiles between natural and control soils. Before delving into
the details of the compost treatment effects, it is appropriate to address our first hy-
pothesis which also anticipated that the unamended control plots within the mining
area would show substantial differences from the nearby natural soils that were undis-
turbed by mining activities. However, control and natural soils were nearly overlapping
in ordination and showed no significant taxonomic or functional differences between
them, leading us to group them together as “untreated” soils (to increase statistical
robustness in the analyses). One potential explanation of this similarity is that the “soil

FIG 5 Overall patterns of restoration treatment and untreated plots derived from the functional abundances. (A) Bray-Curtis PCoA of the individual sample
counts of all EC functions found (n = 376 across all samples after low-abundance filtering). (B) Bray-Curtis PCoA of the individual sample counts of all
MetaCyc pathways found (n = 148 across all samples after low-abundance filtering). Results of the ADONIS tests for significant groupings are included in
the figure insets. Color coding, symbols, and treatment abbreviations are as in Fig. 1.
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memory”—which includes the collection of similar species capable of similar functions
and dormant microbes (20, 54, 55)—in the lower soil horizons could rapidly reseed the
mining soils after the end of active exploitation, so that their profiles now closely
resembled nearby natural soils. A second potential explanation is that the very high
dispersal rate of soil bacteria (54, 55) led to rapid recolonization of the mining soils
with typical topsoil bacteria from the local geographic area. These two phenomena are
not mutually exclusive, and both could be influencing primary soil succession/recovery
happening in this zone since the cessation of mining activities. Additionally, as these
soils are semiarid and have a shallow topsoil layer (a few centimeters) composed pri-
marily of biocrusts and shrubs/grasses, they may require less time to return to a taxo-
nomic profile resembling natural soils after perturbations compared to more organi-
cally complex temperate soils.

That being said, even though their microbial profiles appear similar, the degraded
mining control soil plots have not exhibited spontaneous revegetation, and extraction of
DNA was quite difficult compared to the natural soils, which concurred with previous
measurements of bacterial biomass. The similarity to natural soils was therefore quite sur-
prising given that every single measure of soil function (chemistry, CO2 flux/respiration,
enzyme activities, lipid/carbohydrate contents, etc.) indicated the control soils were of
poor biological quality and only the compost treatment plots showed improvement for
supporting introduced vegetation (16, 26, 30). It could therefore be that the only two
things separating the control mining soils from assuming more “natural soil function” are
the topsoil nutrients removed during mining (reintroduced in the compost plots) and the

FIG 6 Significantly enriched EC functions in restoration treatment and untreated plots. All LEfSe-determined enriched functions (default minimum log LDA
2.0) are shown here for the untreated plots (Controls 1 Naturals) (A) and the treated plots (B), further broken down by treatment type using the same
color coding and treatment abbreviations as in Fig. 1. Functions are labeled on the far left with their corresponding MetaCyc/BioCyc broad categories
(similar to Fig. S4 to S6).
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rates of growth plus expression of the same bacteria that are present in both, which could
be elucidated by metatranscriptomics, as discussed in context below.

Treatment-induced taxonomic shifts and comparison to 16S data. The PCR-tar-
geted 16S analysis of the exact same soil sample DNAs (16) and the assumedly less-
biased shotgun metagenomic sequencing (MGS) analysis presented here do show
significant overlap in community characterization (Fig. 4). However, there are also multi-
ple differences in fine details that will be outlined below. In the first case, both methods
showed distinct separation of each treatment type, based on overall taxonomic distribu-
tions, indicating that the amendments were responsible for significant community shifts
from control soils. Whereas the 16S data found higher overall community diversity in
COVG (and treatment mixtures) and lower diversity in control soils, no significant differ-
ences were found using the current MGS method. This discrepancy is perhaps a side
effect of the difference in resolution of the two techniques: the MGS method tends to
detect vastly more features than 16S, which then decreases the maximal variance that
can be observed between categories in compositional data and also vastly increases the
statistical impact of the multiple test correction burden by needing greater differences
to pass the false-positive detection limits (56). Case in point, the 16S method detected
12 phyla and 152 genera among all soils, whereas the MGS method detected 49 phyla
and 1597 genera at the same minimum abundance levels (.0.1% in all samples).
Although one of the advantages of the untargeted MGS is the ability to also capture
archaeal and eukaryotic information, and phyla from those two other domains were
observed, the vast majority of the taxa from MGS were still bacterial (see Fig. S1 and S2
in the supplemental material); hence, the data set is still directly comparable to the 16S
data. As a point of reference, the average ;1% Ascomycota (most abundant fungi) and

FIG 7 Significantly enriched MetaCyc pathways in restoration treatment and untreated plots. ALDEx2-determined differential pathways are listed here for
the untreated plots (Controls 1 Naturals) (A), grouped by their corresponding MetaCyc/BioCyc broad categories (similar to Fig. S4 to S6), and the treated
plots (B), visualized by treatment type in the read count heatmap. Color coding and treatment abbreviations are as in Fig. 1. NAM, N-acetylmuramoyl; PG,
peptidoglycan.
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;0.5% Euryarchaeota (most abundant Archaea) across all samples are typical of their
contribution levels in soils (57–59).

The top 5 most abundant bacterial phyla in all treatments for the 16S were (in order)
Bacteroidetes, Proteobacteria, Actinobacteria, Planctomycetes, and Firmicutes, albeit with
different proportions in each treatment—for example, Proteobacteria were dominant in
controls versus Bacteroidetes in amended soils (especially SS) (16). Conversely, the
order of the MGS top bacterial phyla was Actinobacteria, Proteobacteria, Bacteroidetes,
Firmicutes, and Acidobacteria, with Actinobacteria dominant in all plots, except the sewage
treatment, where Proteobacteria were most abundant. Although Bacteroidetes can be a
dominant phylum in soils, it is typically less abundant and similar to the minor phylum
Planctomycetes (60). It is not uncommon for 16S and MGS analyses in soil to provide differ-
ing taxonomic assessments (61); however, Actinobacteria have consistently been shown to
be dominant in soils using MGS—examples include disparate locations such as the Florida
Everglades and croplands in China (62, 63)—but even more pronounced in cold or dry de-
sert soils (3), which are the soil type most comparable to the arid Spanish quarry soils in
this study. If the MGS pattern is taken as more accurate, the overrepresentation of
Bacteroidetes in 16S may be related to more cultured representatives in the reference
databases having more strongly influenced the design of 16S primers or simply to greater
inherent priming efficiency of this group. Actinobacteria may present lower 16S priming
efficiencies; however, the inclusion of enough of their genomes in MGS databases seems
to adequately identify their community contributions in this non-PCR-based method.
Additionally, analyses of actinobacterial phylotypes in soil seem to indicate that a large
proportion of them belong to “uncultured/unclassified” groups (64, 65), further indicating
that current primers may not be capturing realistic actinobacterial contributions with 16S.
The two methods do agree on the larger contributions of copiotrophic Bacteroidetes in SS
and Firmicutes in COVG (and COHort for MGS); however, the greater contribution of copio-
trophic Proteobacteria in SS shown by MGS is more consistent with their substantial domi-
nance of sewage sludges (66, 67), upon which this amendment is based.

The presence of Chloracidobacterium (Acidobacteria) in the MGS data as a main
marker for control soils is probably indicative of the nutrient-poor conditions of these
nonamended soils. The 16S data missed the genus completely, indicating potential
primer biases against the phylum as a whole. Members of the Acidobacteria are recalci-
trant to cultivation; hence, many of their functions are unknown, due to their oligotro-
phic nature (68)—accordingly, they often show preference for dry soils low in total or-
ganic C (69) and would be expected in the barren quarry soils of this study. The COVG
treatment showed some of the highest proportions of Actinobacteria; however, it and
COHort showed different enriched taxa: Nocardioides and two genera previously
grouped into Mycobacterium (70) for COVG versus Isoptericola (some previously known
as Cellulosimicrobium) (71) and Nocardiopsis for COHort, generally at the expense of
Streptomyces, which remained most dominant in controls. This is perhaps consistent
with the observations of some of the former genera being faster growing and/or iso-
lated from richer soil types (72–75), potentially allowing them to outcompete
Streptomyces in the organically richer environments of the amended soils. The most
enriched genus in the plant-based amendments (COVG and COHort) was the function-
ally complex and plant-growth-promoting Paenibacillus (76, 77), being nearly absent
from control soils and SS. It was again nearly missed by the 16S data (,1% summed
across all samples) and could be an example of a taxon that thrived in the study plots
after possibly being introduced from the original amendment, due to multiple reports
of this Firmicutes member being frequently isolated from composts (78–80). The plant-
growth-promoting and disease-suppressive Lysobacter (Gammaproteobacteria) (81)
was the most significantly enriched genus in SS for the MGS method and was detected
in the 16S but was not seen as relevant to the community patterns in the latter.
However, the gammaproteobacterium Pseudomonas and the Bacteroidetes members
Sphingobacterium, Pedobacter, and Flavobacterium were consistent between methods
as being significant contributors to the sewage amendment patterns. That being said, a
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multitude of other genera identified as being key players in the 16S data were determined
by MGS either to be nonsignificant, such as Novosphingobium and Staphylococcus, or to
compose a minor (,1%) proportion of the soils, such as Gemmatimonas and Taibaiella
(Fig. 4). Overall, the MGS missed only one genus (Verticia) found to be important in the
16S, whereas the 16S did not detect 9 genera seen as differentially abundant in the MGS,
and a further 12 genera were in such low proportions in the 16S that they were ignored.

Functional redundancy across soils with potential small shifts in enzymes and
pathways. Although one can utilize predictive software, such as PICRUSt2 (82), to get
a proxy of function from 16S data, shotgun MGS is still the “gold standard” for the
direct analysis of microbial community function in the environment—although this still
remains “predicted” function versus “expressed” function from metatranscriptomics.
That being said, MGS data still present substantial challenges in accurate assignment,
visualization, and interpretation, especially for soil environments given their higher
complexity (52). Our MGS depth was not enough to consider sequence binning and as-
sembly, but those techniques also have significant caveats that are still under examina-
tion (83); therefore, we restricted our analysis to the more straightforward description
of assigned functions and their groupings into pathways. Similar to the taxonomic
data derived from the MGS above, the functional data also showed distinct separation
of each treatment type, regardless of whether individual EC distributions or combined
pathways were examined, indicating that the amendments were responsible for push-
ing the community functional profiles away from their original control soil values.
Although these patterns were still very clear, they were not driven by vast differences
between treatments. In contrast to the taxonomic data where substantial swings in
presence/proportions of individual phyla or genera could be seen between soils, the
functions showed substantial redundancy in that most functions were present in all
soils and showed only relatively minor proportional differences. The result was that
substantially fewer significant features were detected (many times none at all, espe-
cially for pathways) and represented true redundancy, not being simply the product of
the high feature number increasing the multiple test burden, as the total number of
individual functions annotated (see Data Set S4 in the supplemental material) was a
similar order of magnitude (;3,000) as the total number of genera. Functional redun-
dancy is commonly observed at the level of broad-scale ecosystem functions or indi-
vidual pathways in soils and other environments (9, 84, 85) and is considered a natural
emergent property of all microbial systems (86).

Despite the functional redundancy “dampening” the major signals in the MGS data,
various modest conclusions can still be drawn about the overall community function-
ing of the control and treatment restoration plots. The MetaCyc results showing
slightly higher total biosynthesis and degradation mapping in all amended soils than
in controls accords with higher nutrient levels (total organic C, total N, and assimilable
P), higher respiration rates, increased enzyme activities, and 10- to 40-fold increases in
bacterial biomass (via fatty acid methyl ester [FAME] analysis) observed in the treated
soils as part of the companion studies on the quarry restoration project (16, 26, 30).
Similarly, the overall MetaCyc mapping order of SS . (COVG/COHort) . control
matches the pattern of increased organic matter remineralization in all treatments
over control soils, with the highest in sewage, followed by COVG and COHort at inter-
mediate levels (16). In terms of the few specific enzyme activities previously measured
in the study samples using biochemical techniques (as standard proxies for metabolic
activity) (16), their patterns did not consistently match MGS read numbers mapped to
those functions (Fig. S6). Urease read numbers were highest for control soils versus all
other treatments, whereas enzyme activity was measured as highest in COHort.
b-Glucosidase read mapping was not significantly different while showing the typical
trend in activity (SS . COHort . COVG . control). Mapping to alkaline phosphatase
followed a pattern of SS . control . (COVG/COHort), whereas activity also had SS as
highest, but COHort and COVG were still well above control levels. However, the pat-
tern for total dehydrogenase category mapping (all EC 1.1.1.X enzymes) did match the
exact activity pattern of SS . COHort . COVG . control. The disconnect between
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biochemical activities and gene mapping could highlight specificity problems in the
chemical assays or, more likely, represents the difference between conducting meta-
transcriptomics (i.e., gene expression) and conducting MGS in this study, which cata-
logues the changes in gene copies encoded by the genomes of the community,
whether active or not (53). It is at times difficult to tease apart whether increases in
reads to specific functions in MGS data are simply a result of “piggybacking,” where a
function increases simply because it is in the genomes of organisms increasing, or
whether those functions are truly selected for in the samples. An example of the for-
mer was possibly the increase of the osmolyte ectoine in COHort, known to be present
in Paenibacillus (87), concomitant with the increase of that same genus in COHort.
However, our data also contained examples of the latter—functions and pathways that
seemed to have logical selection patterns implying actual use/activity: (i) the near-ab-
sence of mapping to denitrification pathways in the N-starved control soils compared
to the N-rich amendments and (ii) the inverse pattern of increased mapping to glyco-
gen pathways (used for energy storage during nutrient stress) (88) in the nutrient-poor
control soils compared to most other carbohydrate biosynthesis categories showing
increased mapping to all amendments. Having metatranscriptomic data for these soil
treatments may have definitively resolved some of these open questions. However,
sampling in the field for RNA analysis, which requires snap-freezing samples in liquid N
immediately, is often challenging, and few soil metatranscriptomes have been yet
completed (89). The assumption behind the much more often-used MGS is that if func-
tions are under selection in particular environments/treatments, then the genomes car-
rying those functions will also be positively selected, resulting in trends still visible in
MGS data, even if obscured somewhat by inactive organisms that are still sequenced.

One caveat of our study data is that the functional differences here do need to be
taken in context, as some of the analysis methods used (either ALDEx2 or LEfSe, as
the case may be) did not find any significant differences at all for most of the func-
tional and pathway comparisons. This seems to imply that even very minor functional
shifts, connected to a small number of taxon changes observed above, are capable of
vastly improving treated soil performance. Either this is the case, or shared functions
(redundancy) across untreated and treated plots are simply being expressed to much
greater degrees in the treated soil which, as mentioned above, could be further eluci-
dated by metatranscriptomics.

Conclusions. Overall, the metagenomic analysis displayed more functional redun-
dancy and overall similarity between the various soils than perhaps was expected at
the outset. It has recently been shown that arid ecosystem metagenomes appear to
have higher proportions of genes that are unknown in reference databases (51), poten-
tially leading to difficulties in annotating and, therefore, discriminating arid soil sam-
ples from temperate soil samples. However, the extracted taxonomic identities of the
reads, and the specific functions encoded by them, in our quarry soils were more than
sufficient to discriminate the various treatments and showed significant impacts of the
restorations on community profiles. These significant shifts mirrored the overall substan-
tive soil quality and vegetation-supporting improvements that occurred in the treated
plots versus the control plots (16, 26), the latter of which were much poorer overall than
the non-human-impacted natural soils used as a reference here. Subsequent study of
these restorations using metatranscriptomics might help further demonstrate that the
patterns of gene abundances here are indeed supported by actual expression changes in
the actively growing segment of the bacterial population, which may also lead to sub-
stantially more separation between the treatment and control plots. We are also mining
the existing data for more information on specific biogeochemical pathways and
attempting to reconstruct further taxon-function relationships that were beyond the
scope of this first broad profiling of the communities.

MATERIALS ANDMETHODS
Study area. The study was carried out in completely degraded soils from a limestone quarry located

in the Gádor mountain range in Almería (southeast Spain; 36°559180 N, 02°309400 W). The geological
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material was mainly formed by limestones and dolomites with calcareous sandstones, and marly and
loamy marls forming Regosols (90). This region has a semiarid Mediterranean climate with an average
annual rainfall of 242 mm; most of these events are in winter and autumn. Potential evapotranspiration
is 1,225 mm year21. Summers are hot and dry with maximum temperatures recorded in August of 31°C
and minimum temperatures of approximately 8°C in January (19). Native vegetation is composed mainly
of Macrochloa tenacissima (L.) Kunth (= Stipa tenacissima L.), accompanied by small shrubs such as Ulex
parviflorus Pourr. and Anthyllis cytisoides L., as well as dispersed individuals of Maytenus senegalensis
(Lam.) Exell., Pistacia lentiscus L., and Rhamnus lycioides L. (14).

Experimental design and soil sampling. The experimental plots were established in a totally exploited
flat site in the quarry at 362 m above sea level (masl). See the work of Soria et al. (26, 30) for pictures and
detailed descriptions of the experimental setup. Briefly, the marl substrate was homogenized and decom-
pacted using heavy machinery from the quarry (i.e., mechanical excavators and bulldozers) to decrease ero-
sion by rainfall events and facilitate soil infiltration. Eighteen experimental plots of 50 m2 each (10 m by 5
m) were then demarcated, and five restoration treatments consisting of different organic amendments
from wastes of different origin and chemical composition were applied randomly to these experimental
plots using a mechanical backhoe also available in the quarry facilities. These treatments increased the or-
ganic carbon content over 3% in the first 20 cm of depth. The organic amendments applied were (i) 100%
vegetable compost manufactured from garden waste (COVG); (ii) 100% vegetable compost manufactured
from horticultural greenhouse crop waste (COHort); (iii) sewage sludge waste treated by mesophilic diges-
tion, thermal dehydration at 70°C, and centrifugation (SS); (iv) an amendment made from a 50:50 mixture
of COVG1 SS; and (v) an amendment made from a 50:50 mixture of COHort1 SS. In addition, unamended
experimental plots were used as control plots (Control). Finally, the experimental design had 3 plots per
each treatment (i.e., 3 replicates) � 5 different restoration treatments plus the controls = 18 experimental
plots total. Moreover, surrounding natural soils close to the experimental plots, but not disturbed by mining
activities, were chosen as quality reference soils (Natural) (91).

Once the treatments were applied, two different species of native plants characteristic of the study
area were selected for the restoration: 40 plants of Macrochloa tenacissima L. Kunth and 10 plants of
Olea europaea L. var. sylvestris Brot. were planted 1 m apart in each experimental plot (restored and con-
trol soils). Irrigation was established during the first summer just after planting to ensure the vegeta-
tion’s survival because of the harsh climatic conditions typical of the Mediterranean semiarid area, such
us long summer droughts and high temperatures (19).

Composite soil samples, from mixing 10 random subsamples, were collected up to a depth of 10 cm
throughout each experimental plot in the gaps between plants after 6 months of application of the or-
ganic amendments to study the short-term microbial responses. A total of 21 soil samples (3 replicates� 5
restoration treatments = 15, plus 3 replicates from unamended control experimental plots and 3 replicates
from surrounding natural soils) were taken to the laboratory in isothermal bags. In the laboratory, the sam-
ples were sieved through a 2-mm screen and preserved at 220°C for DNA extraction and next-generation
sequencing.

DNA extraction, metagenomic library preparation, and sequencing. The DNA contained in 0.3 g
of soil was extracted from the each of the 21 samples using the DNeasy PowerSoil kit (Qiagen, Hilden,
Germany) and later quantified with an ND-2000 Nanodrop spectrophotometer (Thermo Fisher Scientific,
USA). Approximately 5 ng of extracted DNA was then used as input for the Illumina Nextera DNA Flex
library prep kit and barcoded using the Nextera DNA CD indexes, per the manufacturer’s instructions.
Final libraries were quantified using the Invitrogen Quant-iT double-stranded DNA (dsDNA) (high-sensi-
tivity) assay using a microplate reader, and equal amounts of each library were pooled and then
sequenced at the Integrated Microbiome Resource (IMR; Dalhousie University) to an average read depth
of 5 million 2 � 150-bp paired-end (PE) reads on an Illumina NextSeq 550 using the High Output v2.0
chemistry.

Metagenomics data taxonomic and functional annotations. Raw FASTQ files were demultiplexed
on instrument and then processed using a pipeline under development at the IMR as part of the continu-
ally evolving Microbiome Helper (92) repository, the current version of which is available at https://github
.com/LangilleLab/microbiome_helper/wiki/Metagenomics-Standard-Operating-Procedure-v3. In summary,
raw reads were quality controlled using KneadData v0.7.2 (https://github.com/biobakery/kneaddata),
which employs Trimmomatic v0.36 (93) (options: SLIDINGWINDOW:4:20 MINLEN:50) and Bowtie2 v2.2.3
(94) (options: –very-sensitive –dovetail) to filter low-quality reads and screen out potentially contaminant
sequences against the human (GRCh38) and phiX174 genomes. A summary of raw and post-quality-con-
trol (post-QC) read numbers per sample, along with the key to which group they belong, is available as
Data Set S1 in the supplemental material. “Raw” taxonomic composition was determined using Kraken2
v2.0.8 (95) (option: –confidence 0.1), based upon a 150-mer database built from the entire NCBI RefSeq
Complete v93 database, and final taxonomic abundance profiles were generated using Bracken v2.0 (96)
(option: -t 10). Custom PERL and Python scripts (available above) were then used to do functional mapping
of reads using MMseqs2 (97) against the entire UniRef90 database (http://www.uniprot.org/uniref), select
the top hit for each read, map functions to Enzyme Commission (EC) numbers, and then generate either
unstratified (function-only) or stratified (linking the above Kraken2 taxonomy) matrices. Two PICRUSt2
v2.2.0-b scripts (82) were used to append functional descriptions (add_descriptions.py) to the above matri-
ces and to generate MetaCyc pathway coverages (pathway_pipeline.py). Final functional coverages were
normalized to reads per kilobase per million (RPKM). Processes were parallelized using GNU parallel
(http://www.gnu.org/software/parallel/).

Statistical analyses and visualizations. Taxonomic, functional, and pathway matrices were imported
into QIIME2 v2020.08 in order to generate ordination plots, conduct differential abundance testing for
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significant taxa/functions/pathways, and prepare heatmaps. The input tables were normalized and low-
abundance filtered (to remove signal noise constituting ,1% of cumulative counts across all 21 sam-
ples) as follows: taxonomy to 1 million reads per sample with a minimum of 10,000 per genus, functions
to 85,000 RPKM per sample with a minimum of 850 per EC number, and pathway abundance to 8,500
RPKM per sample with a minimum of 85 per pathway. Principal-coordinate analyses (PCoAs) from the Bray-
Curtis distance matrices, ADONIS tests of the groupings, and Shannon’s H were created using the qiime di-
versity functions. Differential abundance testing was conducted by two methods: (i) using the ALDEx2 (98)
plugin available for QIIME v2019.7 (https://library.qiime2.org/plugins/q2-aldex2/24/) and (ii) running LEfSe
(99) on the Huttenhower Galaxy server (https://huttenhower.sph.harvard.edu/galaxy/). Nonparametric
base statistics, such as richness and diversity comparisons (e.g., Kruskal-Wallis), were conducted in the
PAST v4.03 statistical program (100). Where already not integrated into the test, the Benjamini-Hochberg
false-discovery rate was systematically applied to correct for multiple testing. Further visualizations were
done by importing the unstratified functional matrix as a SmartTable into the MetaCyc Omics Dashboard
(101) (https://metacyc.org/dashboard/dashboard-intro.shtml); however, the complexity of the matrix was
reduced by excluding trace functions that did not represent at least 100 RPKM summed across all 21
samples.

Data availability. The raw metagenomic sequences presented in this study are available at the ENA
under accession number PRJEB47869. The full taxonomic profiles at the phylum and genus levels are
available as Data Sets S2 and S3, and the full unstratified functional profiles are available as Data Set S4.
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