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Abstract
Bacterial polyester polyhydroxyalkanoates (PHAs) have been produced in engineered

Escherichia coli, which turned into an efficient and versatile platform by applying metabolic

and enzyme engineering approaches. The present study aimed at drawing out the latent

potential of this organism using genome-wide mutagenesis. To meet this goal, a transpo-

son-based mutagenesis was carried out on E. coli, which was transformed to produce poly

(lactate-co-3-hydroxybutyrate) from glucose. A high-throughput screening of polymer-accu-

mulating cells on Nile red-containing plates isolated one mutant that produced 1.8-fold

higher quantity of polymer without severe disadvantages in the cell growth and monomer

composition of the polymer. The transposon was inserted into the locus within the gene en-

coding MtgA that takes part, as a non-lethal component, in the formation of the peptidogly-

can backbone. Accordingly, themtgA-deleted strain E. coli JW3175, which was a derivate

of superior PHA-producing strain BW25113, was examined for polymer production, and ex-

hibited an enhanced accumulation of the polymer (7.0 g/l) compared to the control (5.2 g/l).

Interestingly, an enlargement in cell width associated with polymer accumulation was ob-

served in this strain, resulting in a 1.6-fold greater polymer accumulation per cell compared

to the control. This result suggests that the increase in volumetric capacity for accumulating

intracellular material contributed to the enhanced polymer production. ThemtgA deletion

should be combined with conventional engineering approaches, and thus, is a promising

strategy for improved production of intracellularly accumulated biopolymers.

Introduction
Polyhydroxyalkanoates (PHAs) are bacterial polyesters that can be developed as commodity
plastic materials and also applicable for environmental and biochemical applications [1–4].
The material properties of PHAs are governed by their monomer composition, molecular
weight and copolymer microstructure [5]. In addition, the efficient conversion of inexpensive
and renewable feedstock into PHA results in value-added products that are competitive with
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their petroleum counterparts [6]. The primary aims of the metabolic engineering of PHA,
therefore, include controlling the different factors that determine these polymer properties and
optimizing yield. In this regard, a recombinant Escherichia coli system, which incorporates nat-
ural and engineered PHA biosynthetic pathways, is useful for achieving high-yield production
of various tailor-made PHAs [7–9]. In addition, unlike many natural PHA produces, in which
PHA accumulation is induced under the nitrogen and/or phosphate limited conditions, recom-
binant E. coli is able to produce PHAs under the nutrient rich condition probably because E.
coli possesses no regulators controlling PHA biosynthesis.

To date, many rationally designed approaches have been examined to increase a flux toward
PHA, such as reinforcement in the activities of PHA biosynthetic enzymes by means of gene
dosage [10–12], and enzyme engineering [13–16]. In addition, disruption of competing path-
ways was also effective to improve the polymer production [17]. On the other hand, optimiza-
tion of fermentation parameters such as pH, aeration rate etc, was useful to achieve high cell
density and production per unit time [18,19]. These strategies for the metabolic and fermenta-
tion engineering of PHA producers were implemented either individually or in combination.

For further improvement in polymer production, we have explored positive factor(s) indi-
rectly contributing to improved polymer production that is unable to be predicted based on ra-
tional approaches. Previously we evaluated the effect of deletion of four non-essential sigma
factors, which is a global regulator governing the transcription of over 100 genes, of E. coli on
the production of lactate-based polyester poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)],
an engineered PHA with semitransparent and flexible properties (for detail, see [20]). This ex-
periment aimed at exploring a global gene suppression that eventually increased polymer pro-
duction. As a result, the rpoN deletion was found to improve P(LA-co-3HB) production in
recombinant E. coli [21]. This result suggested the potential of this organism to be modified for
enhanced polymer production. Therefore, in this study, we designed a transposon-based ge-
nome-wide mutagenesis of P(LA-co-3HB)-producing E. coli and high-throughput screening of
highly-accumulating mutants. This approach expectedly isolates beneficial single gene knock-
outs that increased polymer production among all non-lethal gene disruptants. Indeed, one
strain bearing a disruption of MtgA, which is involved in formation of the peptidoglycan strand
[22–24], was isolated as a positive mutant. Interestingly, the selected mutant exhibited pheno-
type of enlarged cell size, which was associated with polymer accumulation. To the best of our
knowledge, this is the first case of the single gene deletion that induced both cell size enlarge-
ment (a so-called fat cell), and enhanced polymer production.

Materials and Methods

Plasmids, strains, and growth conditions
E. coli strains used in this study are listed in Table 1. The expression vector pTV118NpctphaC1Ps(ST/
QK)AB, which harbors genes encoding propionyl-CoA transferase fromMegasphaera elsdenii (pct)
[25], engineered PHA synthase with LA-polymerizing activity [phaC1Ps(ST/QK)] from Pseudomonas
sp. 61–3 [26] and 3HB-CoA supplying enzymes β-ketothiolase and acetoacetyl-CoA reductase
(phaA, and phaB) from Ralstonia eutropha [27], was used for P(LA-co-3HB) production
[16,28]. The synthetic pathways of P(LA-co-3HB) was shown in Fig 1. pTS52 was used as a
helper plasmid for conjugation [29]. For polymer production, recombinant E. coli harboring
pTV118NpctphaC1Ps(ST/QK)AB were grown on 1.7 ml LB medium containing 20 g/l glucose
and 10 mM calcium pantothenate at 30°C for 48 h with reciprocal shaking at 180 rpm. Ampi-
cillin (Amp; 100 μg/ml), kanamycin (Km; 25 μg/ml), and chloramphenicol (Cm; 25 μg/ml)
were added when needed. pCA24N-mtgA was obtained from ASKA clone [30].

MtgA Mutation Causes Enhanced Intracellular Polyester Accumulation

PLOS ONE | DOI:10.1371/journal.pone.0125163 June 3, 2015 2 / 11

Competing Interests: The authors have declared
that no competing interests exist.



Construction of mutant library of E. coli JM109 and screening of the
positive mutants
E. coli S17-1 λ-pir carrying pUTmini-Tn5 Km (Ampr, Biomedical, Seville, Spain [31]) was used
for the conjugative transfer of the mini-Tn5 transposon (Kmr) to recombinant E. coli JM109
harboring pTV118NpctphaC1Ps(ST/QK)AB (Ampr) and pST52 (Cmr). The S17-1 and JM109
cells were conjugated on an LB agar plate at 30°C for 16 h. The cells were suspended in 10 mM
MgSO4 and grown on LB plates containing Cm, Km and Amp. Cm was used to get rid of S17-1
cells. Km was used to select transposon-inserted JM109 cells. Amp was used to maintain
pTV118NpctphaC1Ps(ST/QK)AB. The plates were incubated at 30°C for 16 h. The transposon-
inserted JM109 harboring pTV118NpctphaC1Ps(ST/QK)AB was screened on LB plates con-
taining 2% glucose, Amp, Km and 0.5 μg/ml Nile red (Sigma-Aldrich). Colonies emitting
strong fluorescence were chosen as candidates under a transilluminator and subjected to

Table 1. E. coli strains used in this study.

Strains Genotype Purpose Reference

S17-1 MG1655 RP4-2-tc::[ΔMu1::aac(3)IV-ΔaphA-Δnic35-ΔMu2::zeo] ΔdapA::(erm-pir)
ΔrecA

Transposon mutagenesis of JM109 [48,49]

JM109 endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14- [F' traD36
proAB+ lacIq lacZΔM15] hsdR17(rK-mK+)

Host strain of transposon mutagenesis [49]

JM109
C21

JM109 ΔmtgA::Tn5 Selected mutant of JM109 as a enhanced
polymer producer

this study

BW25113 Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) lacIp- 4000(lacIq) λ- rph-1 Δ(rhaD-rhaB)
568 hsdR514

Parent strain of Keio collection mutants [38]

JW3175 ΔmtgA::FRT-kan-FRT A mutant in Keio collection [38]

doi:10.1371/journal.pone.0125163.t001

Fig 1. Model of polymer accumulation in fat E. coli cell withmtgA deletion.MtgA is a dispensable monofunctional glycosyltransferase catalyzing the
polymerization of lipid II for the extension of glycan strands but not cross-linking. Penicillin-binding proteins (PBPs), which are bifunctional transpeptidases-
transglycosylases and monofunctional transpeptidases, play a central role in the peptidoglycan formation. ThemtgA deletion had no obvious effect on cell
morphology without polymer accumulation, but generated a fat cell phenotype with polymer production. P(LA-co-3HB) production from glucose in E. coliwas
achieved by expressing four heterologous enzymes; β-ketothiolase (PhaA), acetoacetyl-CoA reductase (PhaB), propionyl-CoA transferase (PCT) and
lactate-polymerizing engineered polyhydroxyalkanoate synthase [PhaC1(ST/QK)]. D-Lactate dehydrogenase (LDH) is an intrinsic enzyme. The polymer
synthesis may elevate turgor pressure, which expands the cell to form the fat-cell and allowed to accumulate the additional amount of polymer.

doi:10.1371/journal.pone.0125163.g001
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HPLC analysis for determining polymer production as described previously [32]. In brief, cells
were directly treated with concentrated sulfuric acid at 100°C to convert polyester into unsatu-
rated carbonic acids, which were measured using UV detector at 210 nm [33,34]. The concen-
tration of glucose in the supernatant was determined by HPLC equipped with a refractive
index detector, as previously described [35].

Identification of transposon insertion site
The transposon insertion site was identified using inverse PCR method. Chromosomal DNA
of E. coli was digested with PstI, self-ligated [36] and amplified by PCR using a pair of primers:
50-AAGGTGATCCGGTGGATGAC-30 and 50-CAATCGGCTGCTCTGATGCCGC-30, which
annealed to the Km resistance gene in the transposon [37]. The amplified fragment was se-
quenced to identify the transposon insertion site in E. coli chromosome.

Measurement of cell density using flow cytometry
The volumetric cell density (cells/l) was measured by flow cytometry using a SH800 cell sorter
(SONY). Cells grown under aforementioned conditions were harvested at 48 h (OD600 between
20 and 25) and 10-fold diluted sample with water was analyzed. The flow rate was set to
11 μl/min (pressure 2). All FSC (forward scatter) and SSC (side scatter) images were recorded
using SH800 software (SONY).

Determination of cell size
Cells were grown on polymer-producing conditions and harvested at 48 h. The cell images
were captured using a microscopy BZ-X700 (Keyence). On the digital images, the length of
polar axis (x) and diameter (y) of 150–200 cells for each condition were measured using ImageJ
software (http://rsb.info.nih.gov/ij/index.html). Based on the " lemon-shaped " morphology of
polymer accumulating cells, the cell volume (V) was approximated by that of oval sphere, and
thus, calculated using the following formula (1).

V ¼ 4

3
p � x

2
� y

2

� �2

ð1Þ

Results and Discussion

Transposon mutagenesis and screening of the highly polymer-producing
mutant
Amutant library of the E. coli JM109 strain producing P(LA-co-3HB) was prepared by using
the transposon mini-Tn5. A high-throughput screening of polymer-accumulating cells was
performed by means of plate assay using Nile red-containing agar plates. The dye-staining al-
lowed us to readily screen the candidates with higher polymer production than that of original
recombinant (parent control). The strain JM109 was used as a host because the cells were effi-
ciently stained with Nile red and our group has developed several in vitro evolved enzymes in-
volved in PHA biosynthesis using the screening method [15]. Among approximately 10,000
colonies, 100 colonies were chosen as the first stage candidates. The polymer production in the
candidates was determined using HPLC, and eventually, one mutant C21, which exhibited an
enhanced polymer accumulation, was isolated. The mutant C21 produced 5.1 g/l polymer com-
pared to the parent recombinant (2.9 g/l, S1 Table).
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The deletion ofmtgA gene contributed to the enhanced polymer
production
Nucleotide sequence analysis of chromosomal DNA of C21 revealed that the transposon was
inserted into themtgA gene. Accordingly, this knowledge was applied to a superior P(LA-co-
3HB)-producing strain E. coli BW25113, which has been extensively used for the polymer pro-
duction [17,32]. AnmtgA-deleted derivative of BW25113, E. coli JW3175, was obtained from
Keio collection [38,39]. Recombinant JW3175 and BW25113 harboring
pTV118NpctphaC1Ps(ST/QK)AB (referred as rJW and parent recombinant, respectively) were
grown on glucose to induce polymer accumulation (Table 2). rJW produced increased amount
of P(LA-co-3HB) (7.0 g/l) compared to the parent recombinant (5.2 g/l) as observed in C21.
To confirm a contribution ofmtgA deletion to the enhanced polymer production, a comple-
mentary experiment of rJW was carried out by heterologous expression ofmtgA gene [30]. The
complementation recovered the phenotype the parent recombinant (Table 2). Thus, it was con-
cluded that the deletion of themtgA gene led to an increase in P(LA-co-3HB) production in E.
coli. ThemtgA-deletion had little effect on the LA/3HB ratio in the copolymer (Table 2).

The time profile of polymer accumulation and glucose consumption are shown in Fig 2. At
initial stage, rJW produced slightly less amount of polymer than parent recombinant, but at

Table 2. P(LA-co-3HB) production inmtgA-deleted and complemented strains.

Genotype Plasmid Cell dry weight (g/l) True cell weight (g/l) Polymer production (g/l)

Total LA 3HB

Wild type pTV118Npct phaC1Ps(ST/QK)AB 9.2 ± 0.2 4.1 ± 0.3 5.2 ± 0.1 0.8 ± 0.1 4.4 ± 0.1

ΔmtgA pTV118Npct phaC1Ps(ST/QK)AB 11.6 ± 1.0 4.6 ± 0.9 7.0 ± 0.4 1.0 ± 0.1 6.0 ± 0.4

ΔmtgAa pTV118Npct phaC1Ps(ST/QK)AB + pCA24N-mtgA 8.0 ± 0.7 3.2 ± 0.3 4.9 ± 0.3 0.9 ± 0.1 3.9 ± 0.3

E. coli BW25113 (wild type) and JW3175 (ΔmtgA) harboring pTV118NpctphaC1Ps(ST/QK)AB were grown on LB medium containing 20 g/l of glucose at

30°C for 48 h with reciprocal shaking at 180 rpm. The data represent the average ± standard deviation of three independent trials. pCA24N-mtgA bears

the mtgA gene, which is expressed by lac promoter.
a 100 μM IPTG was added.

doi:10.1371/journal.pone.0125163.t002

Fig 2. Time course of P(LA-co-3HB) production in themtgA-deleted E. coli. E. coli BW25113 (wild type) (A) and JW3175 (ΔmtgA) (B) harboring
pTV118NpctphaC1Ps(ST/QK)AB were grown on LB medium containing 20 g/l glucose. Triangle, glucose concentration in the medium. Square, cell dry
weight. Gray bar, amount of 3HB unit in the polymer. White bar, amount of LA unit in the polymer. The data represent the average ± standard deviation of
three independent trials. The cells were inoculated at time zero.

doi:10.1371/journal.pone.0125163.g002
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24 h, achieved higher production. Notably rJW consumed glucose more rapidly than parent re-
combinant. The yield of the polymer from glucose in rJW (3.6 g/g) was slightly higher than the
control (3.1 g/g). Therefore,mtgA-deletion increased both of the glucose consumption and
conversion efficiency into polymer.

Cell size enlargement caused by polymer accumulation inmtgA-deleted
strain
ThemtgA gene has been reported to encode a monofunctional peptidoglycan transglycosylase
involved in the polymerization of lipid II molecules into glycan strands of peptidoglycans [40].
This fact prompted us to observe the cell morphology of themtgA-deleted strain with polymer
accumulation. Under the non polymer-producing conditions, as expected, JW3175 exhibited
similar cell size to the parent strain BW25113 (Table 3). Thus, themtgA deletion alone did not
affect the cell morphology. On the contrary, under the polymer-producing conditions, rJW
cells remarkably increased in size (1.4-fold) compared to the parent recombinant (Table 3). In-
terestingly, themtgA deletion led to an increase in only the cell diameter but not length of
polar axis, thus cells became fat rather than tall. Furthermore, the complemented strain of rJW
exhibited cell size similar to the parent recombinant (data not shown), supporting that the
mtgA deletion contributed to the cell enlargement. The transposon-inserted strain JM109 C21
exhibited similar cell morphology (data not shown).

The cell morphology of rod-shaped bacteria such as E. coli is determined by a balance be-
tween elongation and septation of the cells, in which the peptidoglycan synthesis plays a central
role. E. coli peptidoglycan is synthesized by multiple penicillin-binding proteins (PBPs), which
are categorized into three classes; bifunctional transpeptidases-transglycosylases (class A),
monofunctional transpeptidases (class B) and endopeptidases (class C) [40]. In the case of E.
coli, deletion of class B PBP3 produced filamentous cells because the cells are unable to septate,
whereas deletion of class B PBP2 resulted in an increase in the diameter of the cell [41]. These
results suggest that the removal of cross-linking enzymes influenced the cell morphology. On
the other hand, MtgA, a dispensable monofunctional transglycosylase, has been thought to
play an auxiliary role in peptidoglycan synthesis. In fact,mtgA deletion alone exhibited no ob-
vious effect on cell morphology (Fig 3) [42]. However, the result of present study showed that
the cells lacking MtgA increased diameter presumably by outward force from the intracellular-
ly synthesized polymer (Table 3), suggesting that MtgA does contribute to the peptidoglycan

Table 3. Correlation between polymer production and cell volume in recombinant E. coliwithmtgA deletion.

Genotype Plasmid Cell
density (l-1)

Single cell
dry weight
(g)

Cellular polymer
content (wt%)

Polymer production
in single cell (g)

Size of cell

Polar axis
(μm)

Diameter
(μm)

Volume
(μm3)

Wild-type pTV118N 0.73×1012 2×10–12 N.D. N.D. 2.26 ± 0.56 1.10 ± 0.12 1.43

Wild-type pTV118NpctC1
(STQK)AB

1.2×1012 8×10–12 56.8 ± 1.8 4.5×10–12 3.36 ± 0.82 1.15 ± 0.16 2.56

ΔmtgA pTV118N 0.75×1012 2×10–12 N.D. N.D. 2.49 ± 0.62 1.14 ± 0.23 1.69

ΔmtgA pTV118NpctC1
(STQK)AB

0.96×1012 12×10–12 60.9 ± 3.5 7.3×10–12 3.48 ± 0.84 1.42 ± 0.25 3.67

E. coli BW25113 (wild type) and JW3175 (ΔmtgA) harboring pTV118NpctphaC1Ps(ST/QK)AB were grown on LB medium at 30°C for 48 h. Cell density

was measured using a flow cytometory. Cellular polymer content was defined as a ratio of polymer weight over total cell dry weight. The data represent

the average ± standard deviation of three independent trials. The size of cells was determined using microscopic images of 150–200 cells. N.D.,

not detectable.

doi:10.1371/journal.pone.0125163.t003
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synthesis in E. coli. In addition,mtgA deletion did not induce filamentation of the cells, sug-
gesting no critical effect on septation. This phenotype was contrast to the cell elongation in-
duced by inhibition of FtsZ [43]. Currently, the three-dimensional structure of peptidoglycan
remains elusive and there is ongoing argument on this issue [44–47], and therefore, an effect of
mtgA deletion on the peptidoglycan structure also remains uncharacterized. ThemtgA deletion
may increase the flexibility of cell wall that allowed cells to expand in width and to accumulate
extra amount of polymer.

Quantitative analysis of the polymer production in fat cell
Volumetric polymer production (P) is determined using the following formula:

P ðg=lÞ ¼ Cell density ðcells=lÞ � Single cell weight ðg=cellÞ
� Cellular polymer content ðwt%Þ

In order to gain an advantage of the cell enlargement, the impact on cell growth is a primarily
important factor. The growth of rJW was slightly slower than the control at the initial stage (Fig
3), but the decrease in the cell density (number of cells per volume. Cell density was measured
using a flow cytometory.) of polymer-accumulating rJW at 48 h from parent recombinant was as
small as 20% (Table 3), suggesting that there was no severe influence ofmtgA-deletion on cell

Fig 3. Effect on the cell volume exerted by polymer production in the wild-type andmtgA-deleted E. coli. The cells were grown on LB medium
containing 2% glucose. E. coli BW25113 (wild-type) harboring pTV118N (empty vector) (A) and pTV118NpctphaC1Ps(ST/QK)AB (B). E. coli JW3725
(ΔmtgA) harboring pTV118N (C) and pTV118NpctphaC1Ps(ST/QK)AB (D). The cells harboring pTV118N did not produce detectable amount of polymer.
Scale bars = 5 μm.

doi:10.1371/journal.pone.0125163.g003
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growth. In addition, themtgA-deleted strain appeared robust and no cell lysis was observed (S1
Fig).

Another important value is the polymer production per cell. Based on the cell dry weight and
cellular polymer content, the polymer production in a single cell of rJW was estimated to be
7.3 × 10–12 g/cell, which was 1.6-fold greater than the parent recombinant (4.5 × 10–12 g/cell).
This result clearly indicated that the rJW fat cell possessed higher capacity of accumulating poly-
mer. The increase in cell size should be necessarily accompanied with an increase in the amount
(area) of cell membranes. In fact, the true cell weight (subtraction of polymer weight from total
cell dry weight) of rJW was greater than parent recombinant when cells accumulated polymer
(Table 3). However, the benefit of the increased accumulation capacity for PHA outweighed the
additional consumption of carbon source for cell formation, and overall, the polymer production
(g/l) and the polymer yield over glucose consumption (g/g) in rJW were increased. This fact con-
versely indicates that the size of intracellular space has been a limiting factor in the polymer accu-
mulation in E. coli, and themtgA deletion loosened the limitation.

In summary, P(LA-co-3HB) production in recombinant E. coli was elevated by disruption
of themtgA gene that led to a formation of fat cell. The same phenomenon was observed for P
(3HB) production inmtgA-deleted strain (S2 Fig and S2 Table), indicating that the beneficial
effect ofmtgA deletion is not limited to P(LA-co-3HB) but should be applicable to wide range
of intracellularly accumulated compounds. In addition, a synergy of combiningmtgA deletion
and conventional engineering approaches would be useful for further increasing polymer
production.

Supporting Information
S1 Fig. Leakage of intracellular protein in the medium from E. coli BW25113 and JW3175
(ΔmtgA). Cells were grown on LB medium at 30°C for 48 h. Proteins in culture medium was
concentrated with acetone and applied to SDS-PAGE. M, size marker. 1, BW25113. 2. JW3175.
There was no significant difference in protein level in the medium, indicating that no cell lysis
was promoted bymtgA deletion.
(EPS)

S2 Fig. Effect on the cell volume exerted by P(3HB) production in themtgA-deleted strains.
E. coli BW25113 (wild-type) harboring pGEMphaC1Ps(ST/QK)AB grown on LB medium con-
taining glucose (A). E. coli JW3725 (ΔmtgA) harboring pGEMphaC1Ps(ST/QK)AB grown on
LB medium containing glucose (B). The cells produced P(3HB) under the presence of glucose.
Scale bar = 5 μm.
(EPS)

S1 Table. P(LA-co-3HB) production in E. coli JM109 and selected transposon mutant. All
strains were grown in 1.7 ml of LB medium containing 20 g/l of glucose at 30°C for 48 h with
reciprocal shaking at 180 rpm. The data represent the average ± standard deviation of three
independent trials.
(DOCX)

S2 Table. P(3HB) production inmtgA-deleted and complemented strains. E. coli BW25113
(wild type) and JW3175 (ΔmtgA) harboring pGEMphaC1Ps(ST/QK)AB [50] were grown on LB
medium containing 20 g/l of glucose at 30°C for 48 h with reciprocal shaking at 180 rpm. The
data represent the average ± standard deviation of three independent trials.
(DOCX)
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