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Abstract.
Background: Medical imaging methods such as PET and MRI aid clinical assessment of Alzheimer’s disease (AD). Less
expensive, less technically demanding, and more widely deployable technologies are needed to expand objective screening
for diagnosis, treatment, and research. We previously reported brain tissue near-infrared optical spectroscopy (NIR) in vitro
indicating the potential to meet this need.
Objective: To determine whether completely non-invasive, clinical, NIR in vivo can distinguish AD patients from age-matched
controls and to show the potential of NIR as a clinical screen and monitor of therapeutic efficacy.
Methods: NIR spectra were acquired in vivo. Three groups were studied: autopsy-confirmed AD, control and mild cognitive
impairment (MCI). A feature selection approach using the first derivative of the intensity normalized spectra was used to
discover spectral regions that best distinguished “AD-alone” (i.e., without other significant neuropathology) from controls.
The approach was then applied to other autopsy-confirmed AD cases and to clinically diagnosed MCI cases.
Results: Two regions about 860 and 895 nm completely separate AD patients from controls and differentiate MCI subjects
according to the degree of impairment. The 895 nm feature is more important in separating MCI subjects from controls
(ratio-of-weights: 1.3); the 860 nm feature is more important for distinguishing MCI from AD (ratio-of-weights: 8.2).
Conclusion: These results form a proof of the concept that near-infrared spectroscopy can detect and classify diseased and
normal human brain in vivo. A clinical trial is needed to determine whether the two features can track disease progression
and monitor potential therapeutic interventions.
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INTRODUCTION

Although research has increased our understand-
ing of the cellular pathology of Alzheimer’s disease
(AD), little progress has been made towards therapy
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[1] because the insidious onset of symptoms masks
the ongoing, irreversible damage until a diagnosis
can be established. Clinical assessment of demen-
tia relies upon neurological, neuropsychological, and
imaging data for diagnoses of probable AD or senile
dementia of the Alzheimer type. Such cases can
be provided with a definitive diagnosis of AD only
by postmortem neuropathological examination of
brain tissue. Positron emission tomography (PET)
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and magnetic resonance imaging (MRI) have signifi-
cantly advanced AD research and medical diagnosis
[2]. Contrast provided by exogenous radionuclide
markers (PET) or the hydrogen atoms of endogenous
water molecules (MRI) enable high resolution images
to be constructed, which accurately represent neu-
ropathological features of AD: neurofibrillary tangles
and amyloid plaques in the case of PET, or cortical
atrophy characteristic of the progressive neurodegen-
eration of AD in the case of MRI. Dynamic processes
altered in AD such as glucose utilization and regional
hemoglobin oxygenation may be monitored by FDG-
PET and BOLD-MRI, respectively [2].

The inherent physical and chemical properties of
AD pathology also alter the optical spectroscopic
features of the tissue in diseased brain compared
to non-diseased brain. For example, consider a fig-
urative comparison between the hallmark histopa-
thological features of AD, plaques and tangles in
the neuropil, and water droplets in the atmosphere.
These dense protein aggregates of tau (tangles) and
amyloid-� (plaques) are uncharacteristic of the sur-
rounding neuropil with respect to both size and rel-
ative refractive index. Similarly, water droplets in
the atmosphere, when compared to the surrounding
air, are also large dense aggregates with a different
refractive index. In both cases, light scattering and
refraction contribute to a wavelength dependent ang-
ular redistribution of the light, i.e., a spectrum. The
observed spectrum is dependent on whether the water
droplets are present—for example a rainbow—or not,
and likewise on whether AD is present or not—for
example the diffuse scattering spectra we report here.
To be clear, this is not a claim that we are reporting
detection of plaques and tangles but rather an illus-
tration of how diffuse scattering of near-infrared light
by brain tissue may be altered in AD. Of particular
note is that since this effect is due to inherent phys-
ical chemical properties, exogenous markers are not
required.

A non-invasive method that screens for changes
in the structure and composition of brain tissue
might allow for early detection and also assess the
effects of early interventions, which could greatly
accelerate the development of treatments and pre-
vention. Optical spectroscopy can capture chemical
and structural information non-invasively and near-
infrared spectroscopy in particular can usefully probe
deeper layers of tissue. Near-infrared light propa-
gates several centimeters in tissue to reach the brain
from the surface of the scalp, because these wave-
lengths are only weakly absorbed and largely forward

scattered [3]. Although most applications of near-
infrared spectroscopy to the head involve oximetry
[4–7] or blood flow [8–10], more recent advances
have included imaging [11–14] and co-registration
studies [15–17]; hemoglobin spectroscopy is central
to most of these techniques. In contrast, our labora-
tory has been studying spectroscopy as a method to
detect the chemical and structural changes of AD [18,
19], with an eye toward classification or taxonomy.
In short, for the purposes of the familiar near-infrared
methods listed above, hemoglobin’s spectral charac-
teristics are signal; for our taxonomic purposes, they
are noise [20, 21]. Supplementary Table 1 lists known
scatters and absorbers of brain tissue.

In collaboration with Boston University’s Alzh-
eimer’s Disease Center, we first demonstrated that
near-infrared diffuse reflectance spectroscopy distin-
guishes autopsy samples of brains with AD from
those without [20]. We extended this approach to
living subjects by utilizing the relative transparency
of biological tissue to light in the 650–1050 nm
range[22, 23], a region known as the near-infrared
window. A brief overview of how this was done will
facilitate the presentation of issues that affected the
experimental design. For the acquisition of data, two
fiber optic probes are positioned at the same temple,
one delivering light from the source and one collect-
ing diffusely reflected light and delivering it to the
detector. With a separation of 25 mm between the
delivering and collecting probes, the light signal that
is detected and analyzed has interrogated a portion
of the temporal lobe as well as overlying tissues [3,
24, 25]. We acquired spectra from dementia subjects
while they were alive and used only those for whom
postmortem examination confirmed the diagnosis of
AD. Control and MCI subjects had volunteered for
the Boston University Alzheimer’s Disease Center’s
HOPE [26] protocol, which evaluates the cognitive
function of its subjects annually. Although acquir-
ing the spectra is straightforward, analyzing them
encounters two major difficulties: the similarity of
the spectra from different groups and the presence
of multiple neuropathological co-morbidities in indi-
vidual subjects.

To appreciate the first issue requires understanding
a general principle [27], often left unstated, that moti-
vates applications of optical spectroscopy to medical
diagnosis: if the same light source illuminates two
distinct materials, the resultant spectra are a priori
distinct.

Therefore, it is expected that the spectra from AD
and normal brains will differ. In practice, however,
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the scattering of light from biological tissues often
renders it extremely difficult to discover those spec-
tral features that mark the difference [5, 27–29]. To
mitigate this first problem, we eventually adopted
algorithms from the field of feature selection (also
called pattern recognition) [30–32] to search for those
regions of the spectra that best distinguished two
groups, that is, those regions of taxonomic signal.

The second issue of multiple neuropathological co-
morbidities in the brains of the elderly [33] was
confirmed by the autopsy reports. To mitigate this
problem, we identified subjects who had AD (NIA-
Reagan [34]: high likelihood; Braak neurofibrillary
stage [35]: VI) but no other significant pathology,
the closest to “pure AD” in practice, whose spec-
tra became our standard. We shall refer to these as
“AD-alone,” that is, AD without significant additi-
onal neuropathology. Feature selection on spectra of
AD-alone versus control subjects suggested two fea-
tures that were adequate for classification of all par-
ticipants, even those with additional pathology such
as infarcts and Lewy bodies. Therefore, the results
reported here constitute a proof of the concept that
NIR spectroscopy can usefully classify AD in vivo.
The utility of this concept in practice must be deter-
mined by a clinical trial that monitors subjects
longitudinally.

METHODS

Spectroscopy

Diffuse scattering spectra from 650–1050 nm were
acquired using the clinical spectrometer system we
are developing. Two fiber optic probes designed in-
house and using optical fiber elements and manu-
facturing from both Fiberguide Industries, Caldwell,
ID, USA (AFS200/220T) and PolyMicro Technolo-
gies, Phoenix, AZ, USA (FBP200220240, FBP
600660710) are positioned at the subject’s temple
area, using a spacing template constructed for that
purpose and held in place by an elastic headband.
The source probe (single fiber, low-OH, 600 �m
core, NA = 0.22) delivers near-infrared light from a
continuous-wave tungsten halogen source (HL2000,
20W, Ocean Optics, Dunedin, FL, USA), and the
detector probe (multiple fibers, low-OH, 200 �m
cores, NA = 0.22) collects the diffusely scattered light
at various source-detector separations (10–30 mm in
5 mm increments) and conducts it to an imaging spec-
trograph (HS-F/1.8-NIR, Kaiser Optical Systems,
Ann Arbor, MI, USA) coupled to a CCD detector

Fig. 1. Schematic diagram of method for acquiring spectra. At
each temple, spectra are obtained at a range of source-detector
separations determined by the plastic template (10–30 mm). The
20 mm source-detector configuration is illustrated; the 25 mm
spectra are analyzed in this report. The greater the source-detector
separation the greater the depth of the mean photon path. The tis-
sues probed and their nominal thicknesses are labelled. For the
25 mm source-detector separation, the mean photon path includes
a portion of the gray matter, in this case part of the temporal lobe.

cooled to –50◦C (DU-420-OE, Andor Technologies,
South Windsor, CT, USA). In this paper we will focus
on spectra acquired with the 25 mm source-detector
separation because they contain the most taxonomic
signal.

For comparison, analysis of data from the 30 mm
measurements is presented in the Supplementary
Material.

The clinical spectra reported here were acquired in
two sessions, with approximately two years between
them. A different detector probe was used in each
session. Spectra were acquired in the patient’s room
or a nearby clinical area, darkened to minimize ambi-
ent light interference. Spectra were acquired at each
source-detector separation on each temple (Fig. 1).
The temple is chosen for two reasons: 1) the great-
est loss of neurons in AD occurs in the frontal and
temporal lobes [36]; and 2) the temporal bone is
thin. Each spectrum was corrected for background
and acquisition time; correction for lamp output and
detector response was achieved by a reference spec-
trum obtained by reflection from barium sulphate
(first session) or from a Spectralon (SRT-02-050,
Labsphere, North Sutton, NH) low reflectance stan-
dard (second session). A detailed description of the
treatment of raw data is given in the Supplementary
Material, Section 2.

Participants

Subjects were recruited as part of an ongoing
project to monitor the progression of neurode-
generative diseases, especially AD. All subjects
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were recruited through a process approved by the
Institutional Review Boards; informed consent was
obtained in all cases. Subjects clinically diagnosed
with senile dementia of the Alzheimer’s type were
recruited from the inpatient dementia unit of the VA
Bedford Healthcare System. All autopsies were per-
formed by one of us (A.C.M.). Routine methods
for pathologic processing of tissue and neuropatho-
logic evaluation have been described elsewhere[ 37].
Briefly, the following stains were used: Luxol fast
blue, hematoxylin and eosin, and Bielschowsky’s sil-
ver stain.

Immunohistochemical methods for hyperphos-
phorylated tau (p-tau) (AT8), alpha synuclein, amy-
loid-� (A�), and phosphorylated TDP-43 were
performed using previously published methods [38–
40]. NIA-Reagan criteria [34] and Braak neurofibril-
lary staging [35] were tabulated. The average delay
between spectroscopy measurement and autopsy was
11 months.

Control subjects and those with mild cognitive
impairment had volunteered for the Health Outreach
Program for the Elderly (HOPE) of the Boston Uni-
versity Alzheimer’s Disease Center. Participants in
the HOPE protocol are to undergo cognitive assess-
ment yearly; the results are reviewed and an expert
panel assigns a consensus diagnosis. The control sub-
jects were younger (mean age 76.4 years) than the
AD subjects (mean age 82.3 years) but we do not
believe this to be clinically significant for these data
and therefore view them as age-matched groups.

MCI subjects (mean age 80.6 years) were subclas-
sified into more and less severe. Those with consensus
ratings of “probable MCI” or “possible MCI” with
a Clinical Dementia Rating = 0.5 were grouped as
less severe. Those with a consensus rating of pos-
sible AD were grouped as more severe. Of the 12
MCI participants, 7 were less severe and 5 were more
severe.

Exclusion criteria

Twenty-five dementia subjects came to autopsy.
Five were excluded from analysis here. Two had
Lewy bodies present in the temporal isocortex, which
is included in the light field interrogated by our
method. This adds a confounding factor to the optical
signal with too few subjects to assess it. All subjects
with Lewy bodies outside the temporal isocortex were
included. Three excluded subjects had frontotempo-
ral lobar degeneration with different degrees of AD
pathology and highly varied additional pathology.

These were excluded because each had unique fea-
tures that prevented ready grouping with others for
feature selection.

Therefore, 20 subjects with autopsy-confirmed
AD were studied: AD-alone, (7 subjects); AD with
infarcts (6 subjects), AD with Lewy bodies (7 sub-
jects). There were 13 control and 12 MCI subjects,
none of whom was excluded.

Feature selection

In general, feature selection consists of four stages:
1) the data set is randomly divided into two subsets:
one for exploratory analysis, the other for testing
hypotheses generated by the exploration; 2) when
successful, exploratory analysis suggests features
that may be useful; 3) the candidate features are
usually optimized in the first subset by constructing
weighted combinations of them to achieve the desired
outcome; 4) this optimized model is then applied to
the second subset and tested. In commonly used ter-
minology, the exploratory and weighting stages are
combined, and the first subset is called the “training
set.” Feature selection by fraction product (below)
applied to distinguish AD-alone and control subjects
results in discriminants that do not need any weight-
ing. The commonly used terminology will lead to
confusion because there is no “training” to optimize
the features found by exploratory analysis. Therefore,
we will refer to the first subset as the “discovery set.”
The common term used for the second subset, “test
set,” remains appropriate and will be used here.

Fraction-product approach

For exploratory analysis, the general principle for
classification is to select those features that maxi-
mally separate the groups of interest, but there is no
uniform method for achieving this [30]. A common
approach is to maximize the Mahalanobis distance
among the groups [32], and for the univariate case
with two groups this reduces to the t-statistic calcu-
lated on the two means and variances [41]. However,
because of the small numbers of subjects in each
group, many high t-values were due to outliers and the
associated feature was not useful in separating the two
groups. To solve this problem, we devised a median-
based approach in which the two group medians were
determined and an estimated cut-off calculated by
their average. The fraction of each group correctly
classified was determined and their product taken
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as the measure of separation, leading to the name
“fraction-product” for this statistic. This approach
gave the same results as the t-statistics but with much
more efficiency because outliers had less effect. We
have recently learned of a paper by Mucciardi and
Gose [31] in which they use a median-based method
called the “probability of error”, which is similar to
our algorithm. A detailed description of the methods
of feature selection is given in the Supplementary
Material, Section 3.

Feature selection was performed on the first deriva-
tive of the area-normalized intensity spectrum; the
value of the first derivative at each wavelength will
be referred to as the slope variate. The use of the
first derivative helps to bring out small changes in
a spectrum against a broad background [42, 43], as
is the case with tissue spectra. To calculate the first
derivative, the spectrum was smoothed by boxcar
averaging and the slope computed as a least-squares
fit of a straight line through a region of 11 pixels;
the slope variate thus calculated was assigned to the
center pixel of the 11 pixel region. This method
is the Savitzky–Golay algorithm [44] with a first-
order polynomial. The slope variates calculated for
the spectra of both temples were averaged pointwise
(i.e., pixel by pixel). Eleven subjects were measured
in both sessions and the values from each session
were averaged pointwise before analysis. Because
optical phenomena have linewidth, we also required
that features show significant efficacy over several
contiguous pixels. This additional criterion is unique
to optical data and is not a general technique of feature
selection.

The following steps comprised the protocol for fea-
ture selection. The group of 7 AD-alone subjects was
divided into a discovery set (5 subjects) and a test set
(2 subjects). Similarly, the 13 controls were divided
into discovery (5 subjects) and test (8 subjects) sets.
The measure of separation (mean-based or median-
based) was determined at each pixel (wavelength)
for the two discovery sets. Features of interest were
those in which a large t-statistic or fraction-product
occurred over at least three contiguous pixels. Further
details concerning feature selection are given in the
Supplementary Material, Section 4.

Statistical analysis

All statistical calculations used R [45] statistical
software. Programs in the “MASS” library were used
for linear discriminant analysis (lda) and principle
component analysis (prcomp with scale = T). Linear

discriminant analysis was not used to calculate scores
but only to determine the relative weight of each vari-
ate in distinguishing the two groups. The “Hotelling”
package was used for the Hotelling T2 test. Welch’s
t-test was performed through the R built-in function
t.test.

RESULTS

NIR diffuse reflectance spectra

Because first derivative spectra are not familiar
to many scientists, the usual intensity spectra (cor-
rected for background, integration time and lamp
spectrum) are shown in Fig. 2 as a group average spec-
trum for each group: autopsy-confirmed AD, MCI,
and control. Common spectral features attributed to
absorption by fat and water are marked. There is a fea-
ture at 895 nm that we have been unable to associate
with any biochemical substance. Though the average
intensities differ for the three groups, intensities of
the individual spectra, which comprise the averages,

Fig. 2. Average of intensity spectra for all subjects in each group.
These intensity spectra have been corrected for background, lamp
spectrum, and integration time. The AD spectra include all partici-
pants who had autopsy-confirmed AD. The MCI spectra similarly
include all subjects regardless of severity. Several features of the
spectra may be attributed to well-known absorption by fat or water
as marked. There is a shoulder around 895 nm (marked by ?); we
have not been able to associate this feature with any biochemical
substance. The features used elsewhere in this report come from
normalizing the individual spectra to unit area and taking the first
derivative. Although the relative intensity of a spectrum could be
incorporated as a feature to classify subjects, it is not as efficient
as the slope variates. The error bars represent standard error of the
mean.
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were found to be less useful for classifying subjects.
It is for this reason that we pursued feature selection
on the first derivative spectra.

Analysis of selected slope variate features:
autopsy-confirmed AD and control

To find the best spectral features for classification,
we applied two feature selection algorithms—one
using the mean, the other the median— to the AD-
alone and control discovery sets, and both gave
similar results. Two candidate regions emerged: one
centered around 895 nm (spanning 3 pixels), the other
around 860 nm (spanning 4 pixels). Linear discrimi-
nant analysis [46] determined that the slope variates
at 895.68 and 860.64 nm contributed the most to dis-
tinguishing AD-alone from control. An unweighted
scatter plot of these two variates is shown in Fig. 3.

Fig. 3. Scatter plot of selected AD and control subjects. To min-
imize confounding factors, we performed feature selection to
distinguish subjects with AD-alone from controls. Following the
usual approach of feature selection, the subjects were divided into
two sets: one used to identify the classifiers (here called discovery)
and the other to confirm (test). Both discovery and test sets behave
similarly and will not be distinguished in subsequent figures. Par-
enthetical number is the number of subjects in that group.

Fig. 4. Scatter plot adding AD subjects with additional pathology.
The addition of the subjects with other pathology increases the
dispersion in the AD group but the points remain within the same
regions as the previous diagram. Points distinguished as “test” in
Fig. 3 have been combined with the discovery set. Parenthetical
number is the number of subjects in that group.

The two features are uncorrelated (Pearson’s product-
moment correlation: 0.13 AD-alone; –0.15 controls).
For both the discovery and test sets, the AD-alone and
control points fall within two well-separated regions
of the diagram, which confirms the utility of the cho-
sen slope variates for classification.

Figure 4 illustrates the addition of autopsy con-
firmed subjects that had a high likelihood of AD by
the NIA-Reagan criteria but also had significant other
pathology: infarcts (6 subjects) or Lewy bodies (7
subjects). Dispersion of the data points increases, as
expected, but they remain within the same two regions
of the plot that distinguished AD-alone from controls.
Comparison of all cases that had no role in feature
selection showed statistically significant separation
between AD and control (15 autopsy confirmed AD
cases; 8 control cases; p < 0.0003, Hotelling’s T2-test;
see Table 1 for all compared sets).

Table 1
Number of Subjects in Discovery Sets and Test Sets together with Statistical Comparison

Discovery Sets Test Sets

Control AD alone Control AD alone AD + infarcts AD + LBs

5 5 8 2 6 7
Control All Test AD p-value

Hotelling T2 test 8 15 <0.0003

AD, Alzheimer’s disease; LBs, Lewy bodies.
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Analysis of selected slope variate features: MCI
subjects

We also studied 12 subjects with mild cognitive
impairment (MCI) whom we clinically subclassi-
fied as more severe (5 subjects) and less severe (7
subjects). Their results are plotted in Fig. 5. The
more and less severe MCI subjects appear to clus-
ter similarly to the AD and control scatter plots
but were shifted slightly down and to the left; note
that the axes in Figs. 3–5 are identical. Application
of linear discriminant analysis to MCI and control
groups suggested that 895 nm was the better dis-
criminant (ratio of weights: 1.3), whereas MCI and
AD-alone returned 860 nm as the better discriminant
(ratio of weights: 8.2). To determine whether proper
weighting of the two slope variates might clarify the
relationship among MCI, control and AD-alone, we
performed principal component analysis (PCA) on
those three groups. PCA is a standard method of data
analysis that in this setting may be viewed as fitting a
straight line to the data by the method of least squares
[47]. This line and that normal to it become a new set
of axes for displaying the data (Fig. 6A). The new
axes are called the first and second principal compo-
nents (PC1 and PC2), and the new co-ordinates of
the points are often called “scores.” The new axes are
mean-centered (the mean being for all three groups)
and are a linear combination of the previous axes,
that is, two differently weighted combinations of the

Fig. 5. Scatter plot of MCI subjects. The regional clustering is
similar to that of AD and control but is shifted slightly. The axes of
Figs. 3, 4, and 5 are identical. Parenthetical number is the number
of subjects in that group.

two slope variates (Fig. 6A). For our data, what is
most important is that the classification of a point
(AD, MCI, control) plays absolutely no role in deter-
mining either the principal components or the scores.
Although the new variates are weighted combinations
of the old, the weights are not selected to optimize
a particular outcome; therefore, this is not training.
Examining the MCI scores displayed in Panel B of
Fig. 6 simply as points (filled circles) leads to the
conclusion that they tend to cluster into two groups;
by contrary hypotheses, they would have clustered
about their mean value in the new coordinates or have
been uniformly distributed along the axis. When our
clinical assessments are factored in, it is clear that
the clusters correspond to those that are more and
less impaired, with two exceptional points (Fig. 6B).
When the PC1 scores are used to characterize the
MCI subjects that we have clinically subclassified,
the separation of the more and the less impaired is sta-
tistically significant (Welch’s t-test, p < 0.041), even
though two subjects are misclassified.

Analysis of excluded subjects

Figure 7 is an unweighted scatter plot of the sub-
jects that were excluded because of confounding
structures in the light field (Lewy bodies in the tempo-
ral isocortex) or highly heterogenous pathology with
frontotemporal lobar degeneration. The scatter plot
shows that the overall conclusions of the previous
analysis are not affected but that the presence of Lewy
bodies in the temporal isocortex can contribute to the
misclassification of a subject with autopsy-confirmed
AD.

Similarity of results from 30 mm source-detector
spectra

The primary purpose of this paper is to present the
25 mm spectra as a proof of concept. However, the
light detected at the 30 mm source-detector separa-
tion also probes a portion of the temporal lobe. To
illustrate the variation with source-detector separa-
tion, we applied the analysis used on the 25 mm data
(same discovery set, test set, excluded subjects) to
the 30 mm spectra. The data are given in the Sup-
plementary Material; only the significant results are
presented here.

Feature selection using AD-alone and control
groups led to the selection of the same two slope
variates at 895.68 and 860.64 nm; the scatter plot of
the unweighted variates also completely separated the



798 F.A. Greco et al. / In Vivo Near-Infrared Spectroscopy of AD

Fig. 6. Principal component analysis of MCI, control, and AD without other pathology subjects. The left panel is a biplot of the principal
component analysis. The right panel shows the distribution of MCI subjects using the scores of PC1 as a parameter. The left column of points
(filled circles) shows that there is a tendency for the MCI subjects to separate into two groups, which correspond to the clinical classification
of severity (right column). Two pairs of overlapping points have been slightly displaced for clarity. Parenthetical number is the number of
subjects in that group.

two groups (Supplementary Figure 1). Addition of
AD subjects with additional pathology increases the
dispersion, and in contrast to the 25 mm plot, there is
now some overlap between control and AD subjects
(Supplementary Figure 2).

Nonetheless, the separation of the test groups
of AD and control remains statistically significant
(p < 0.003; Hotelling T2 test). PCA of AD-alone, con-
trol and MCI subjects leads to scores that usefully
classify MCI subjects (Supplementary Figure 3B).
Again, there are two subjects misclassified, but
the separation between the two groups is statisti-
cally significant (p < 0.03; Welch t-test). LDA again
demonstrates that signal at 895 nm plays a more
important role in distinguishing MCI from control
subjects (ratio of weights 2.5) whereas the slope vari-
ate at 860 better separates MCI from pure AD (ratio
of weights 1.5).

DISCUSSION

Starting with 5 AD-alone subjects and 5 controls,
we discovered two spectral features that distinguish
AD from control. The 10 test set subjects (2 AD-
alone; 8 control) plotted in Fig. 3 and the 13 dementia
subjects subsequently plotted in Fig. 4 played no role
in the determination of the features. Nonetheless,
these 23 subjects followed the same regional clus-
tering as the 10 members of the discovery set. This
marks the first successful classification of a neurode-
generative condition in vivo by near-infrared optical
spectroscopy. In a strict sense, the 10 subjects in the
discovery set whose spectra were examined by fea-
ture selection generated the empirical hypothesis that
slope variates at 895.68 and 860.64 nm could usefully
separate AD from control; the subsequent analysis of
23 subjects that played no role in feature selection
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Fig. 7. Scatter plot of excluded subjects. Five subjects who came
to autopsy were excluded because of unique features of their
pathology. Two had Lewy bodies in the temporal isocortex; both
of these were NIA-Reagan high likelihood, Braak VI. Three had
frontotemporal lobar degeneration (FTLD) with other pathology.
FTLD-A, NIA-Reagan intermediate likelihood, Braak IV; FTLD-
B, tau-type, NIA Reagan high likelihood, Braak stage VI, Lewy
bodies; FTLD-C, TDP 43 positive inclusions (including temporal
cortex), Lewy bodies, 1 + neuritic plaques. The line drawn sep-
arates the AD subjects from the control subjects in Fig. 4. The
exclusion of these subjects did not affect the overall interpretation
of the data. It is noteworthy that the two most extreme cases (LB
isocortex on control side of line and FTLD-C) both had pathologic
structures in temporal cortex, which adds a confounding factor to
the optical signal.

confirms this hypothesis. We prefer the term “dis-
covery set” to the more commonly used “training
set” because typically candidate features must be
weighted to optimally classify the individuals; the
process of determining those optimal weights is a
large portion of “training.” For these data, no weight-
ing was required to classify the subjects – no training
per se; there was only discovery of features. More-
over, we imposed the additional requirement that the
feature be effective over several contiguous pixels in
order to increase the likelihood that it would corre-
spond to a true spectroscopic feature with linewidth.
Our results are consistent with the discovery of two
spectral features that are traceable to chemical and
structural differences between the brains of those with
AD and controls. Of course, in a clinical sense, it was
clear who did and who did not suffer from demen-
tia without the spectroscopic information. However,
Fig. 4 does demonstrate that, when viewed from the
proper mathematical perspective, you can “see” AD
pathology through the near-infrared window.

Excluding AD subjects with additional pathology
from the search for useful features was essential
because the additional pathology led to confounding
spectral features that may also distinguish the demen-
tia subject from controls but that obscured those
features that are more specific for AD. Figure 7 shows
that those subjects completely excluded from this
analysis would not have altered the overall conclu-
sions. The ultimate solution of confounding signals is
to obtain enough autopsy results so that most subjects
may be classified by NIR spectroscopy; for example,
features will be found to determine whether there are
abnormal structures in the temporal isocortex and to
account for them.

Figure 2 shows at a glance that the three groups
(AD, MCI, CTL) are differentiated by the aver-
age intensity of diffusely reflected light. This is to
be expected because the transparent layer of cere-
brospinal fluid (Fig. 1) acts as a light pipe [25, 48,
49] and should increase in thickness as cortical atro-
phy progresses. The larger the light pipe, the greater
the intensity of light at remote distances from the
source. However, the intensities of the individual spe-
ctra were not useful for classifying cases. Further-
more, the shapes of the three spectra in Fig. 2 appear
to be so similar as to be indistinguishable. In order to
search for features that are as instrument-independent
as possible, we chose the first derivative of the area-
normalized intensity spectra, which we refer to as
the slope variate. The use of the slope variate strips
away as much of the intensity information as pos-
sible, leaving what is mathematically close to “pure
shape” and hopefully instrument independent. The
achievement of instrument- independence is suppor-
ted by the fact that these measurements were made
in two sessions with slightly different experimental
conditions: different reference materials for lamp cor-
rection and different detector fibers. Of course, the
intensity information can be added back if need be,
but the success of the slope variates is adequate for
classification of these data.

Several facts lead to optimism that these findings
may extend to a larger population. First, the signifi-
cance of the Hotelling T2 test performed on the test
subjects (p < 0.0003) factors in the small number of
subjects. Second, the MCI participants are also test
subjects, and their separation by PCA supports the
hypothesis that the selected features correspond to
tissue structure and chemistry. Finally, the selection
of the same two features in the analysis of the 30 mm
data with results consistent with those obtained at
25 mm further strengthens the arguments that the
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slope variates at 860 and 895 nm answer to bio-
chemical entities; in particular, the Hotelling T2 test
performed on the 30 mm test subjects is also statisti-
cally significant (p < 0.003).

The fact that PCA shows two clusters of the MCI
values that correspond to AD and control groups
is important in potential applications. In a physical
sense, it means that some MCI patients have brains
that are similar to AD brains whereas others have
brains similar to controls. These mathematical results
are independent of, but consistent with, our clini-
cal assessments. Although Fig. 5 gives a hint of this
finding, PCA makes it quantitative. It is most intrigu-
ing that the slope variate at 895 nm plays a more
important role in distinguishing MCI from control
subjects, whereas the slope variate at 860 nm better
separates MCI from those with AD. Together with
the fact that the two slope variates are uncorrelated,
this behavior suggests that the method probes two
distinct processes with that at 895 nm being more
significant earlier and that at 860 nm playing a more
important role later in the progression of AD. We
have not been able to identify the tissue structures
or biochemistry that underlie the signals at 895 and
860 nm and we decline to speculate. Although this
is frustrating, it also opens the possibility of discov-
ering a new factor in the pathophysiology of AD.
One way to search would be to enlarge the range
of detected wavelengths to include the mid-infrared,
where protein structural features may appear. There is
a discernible feature in the spectra shown in Fig. 2 that
answers to the slope variate at 895 nm and this fact
will facilitate identification of the underlying phys-
ical origin of that feature. Finally, the fact that the
MCI subjects also played no role in feature selection
further strengthens the inference that the features cor-
respond to biochemical entities that play an important
role in AD.

The data presented here contain no temporal infor-
mation. Therefore, larger clinical studies on MCI
patients are needed to determine whether the spectral
changes track progression of the disease in a useful
manner. If so, this approach could become a safe, non-
invasive method for assessing response to treatments
in real time.

The best-case scenario would be if the signal at
895 nm responds to an intervention that prevents the
progression of the 860 nm signal. In this best-case
scenario, treatments to prevent AD might be devel-
oped and their effects documented before the onset
of symptoms and before those symptoms become
irreversible.
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