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Abstract
Hydrogen peroxide (H2O2) is used by phagocytic cells of the innate immune response to

kill engulfed bacteria. H2O2 diffuses freely into bacteria, where it can wreak havoc on

sensitive biomolecules if it is not rapidly detoxified. Accordingly, bacteria have evolved

numerous systems to defend themselves against H2O2, and the importance of these sys-

tems to pathogenesis has been substantiated by the many bacteria that require them to

establish or sustain infections. The kinetic competition for H2O2 within bacteria is complex,

which suggests that quantitative models will improve interpretation and prediction of net-

work behavior. To date, such models have been of limited scope, and this inspired us to

construct a quantitative, systems-level model of H2O2 detoxification in Escherichia coli that
includes detoxification enzymes, H2O2-dependent transcriptional regulation, enzyme deg-

radation, the Fenton reaction and damage caused by •OH, oxidation of biomolecules by

H2O2, and repair processes. After using an iterative computational and experimental proce-

dure to train the model, we leveraged it to predict how H2O2 detoxification would change in

response to an environmental perturbation that pathogens encounter within host phago-

somes, carbon source deprivation, which leads to translational inhibition and limited avail-

ability of NADH. We found that the model accurately predicted that NADH depletion would

delay clearance at low H2O2 concentrations and that detoxification at higher concentrations

would resemble that of carbon-replete conditions. These results suggest that protein syn-

thesis during bolus H2O2 stress does not affect clearance dynamics and that access to

catabolites only matters at low H2O2 concentrations. We anticipate that this model will

serve as a computational tool for the quantitative exploration and dissection of oxidative

stress in bacteria, and that the model and methods used to develop it will provide important

templates for the generation of comparable models for other bacterial species.

Author Summary

Bacterial hydrogen peroxide (H2O2) response networks contain essential virulence factors
for a number of pathogens. Without these systems, infecting bacteria fall prey to host
immune cells and cannot establish or sustain an infection. The reaction networks and reg-
ulatory features involved are complex, which suggests that computational modeling would
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facilitate quantitative dissection and analysis of these systems. However, current models of
H2O2 reaction networks have been of limited scope. Here, we constructed a systems-level
H2O2 detoxification model for Escherichia coli, and used it to understand how the network
responds to different H2O2 concentrations and insults. We anticipate that this model and
comparable ones for other species that are facilitated by its construction will be useful in
identifying and understanding methods to sensitize pathogens to immune attack. Such
strategies hold great promise for the development of next generation antibiotics, since
agents that impair oxidative stress defense systems would focus selective pressure to infec-
tion sites, and therefore exhibit slow resistance development and little impact on commen-
sal bacteria.

Introduction
Reactive oxygen species (ROS) are critical immune antimicrobials used in the first line of
defense against infections, where phagocytic cells of the innate immune response use NADPH
oxidase to generate an “oxidative burst” of superoxide (O2

−•) after engulfing pathogens in a
phagosome [1, 2]. The O2•

− can then be dismutated to H2O2 [2], which readily diffuses across
the bacterial membrane where it damages sensitive biomolecules, reacts with ferrous iron to
produce the highly deleterious •OH [3], or is detoxified by specialized enzymes. The impor-
tance of the oxidative burst to immunity is highlighted by the incidence of recurring infections
within and shortened life expectancy of patients with defects in NADPH oxidase, a condition
known as chronic granulomatous disease (CGD) [4]. In addition, many pathogens including
Bacillus anthracis [5], Coxiella burnetti [6], Chlamydia trachomatis (serovars E, K, and L2) [7],
Salmonella enterica (serovar Typhimurium) [8],Mycobacterium tuberculosis [9, 10], Staphylo-
coccus aureus [11], Helicobacter pylori [12], Streptococcus pyogenes [13], and Enterococcus fae-
calis [14] require H2O2 defense systems to establish or sustain infections. Interestingly, beyond
its use by immune cells, bacteria also use H2O2 against each other, such as when Streptococcus
pneumoniae stimulates prophage induction and cell death in Staphylococcus aureus by generat-
ing H2O2 during niche competitions [15].

Accordingly, bacteria have evolved various pathways to detoxify H2O2. While the impor-
tance of these H2O2 detoxification systems has been established [16], there are gaps in knowl-
edge regarding the kinetic interplay between them under different conditions. Escherichia coli
K-12 encodes one alkyl hydroperoxidase (AHP) and two separate catalases for detoxifying
H2O2, which differ in regulation and/or reaction mechanism. AHP and catalase HPI expression
are induced by OxyR during oxidative stress, whereas catalase HPII expression is up-regulated
in stationary phase and does not increase in the presence of H2O2 [17–19]. AHP requires one
molecule of NADH per reaction cycle, coupling the rate of detoxification achievable by this
enzyme to catabolism, whereas H2O2 is the only substrate in the catalase reaction cycle. AHP
has been shown to act as the primary scavenger of endogenously produced H2O2, and is effi-
cient at detoxifying low concentrations of H2O2 (<20 μM), whereas catalase is known to domi-
nate clearance at higher concentrations (>50 μM) [20, 21]. Since the result of H2O2 exposure
whether that be bacteriostasis, mutagenesis, cell death, or continued growth depends on a
kinetic competition for the molecule, it is important to have a quantitative, systems-level
understanding of its biochemical reaction network. Due to the complexity of H2O2 biochemical
reaction networks, computational models are necessary for interpretation of H2O2 detoxifica-
tion data and prediction of system behavior.

A Kinetic Model of H2O2 Detoxification in E. coli
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As a result of its importance as a signaling molecule, the most complete models of H2O2

metabolism currently available were developed for mammalian systems [22–24]. They have
included H2O2 elimination by antioxidants (e.g., glutathione and thioredoxin) and enzymes
(e.g., catalase, glutathione peroxidase, glutathione reductase, glutaredoxin, and peroxiredoxin),
and processing of oxidized protein thiols [22–24]. However, these models were specific to
mammalian physiology and did not include transcriptional regulation, enzyme degradation,
side reactions of H2O2 with sensitive biomolecules such as methionine and pyruvate, or the
related reactive oxygen species O2

−• and •OH and their associated reactivity (e.g., •OH rapidly
oxidizes all twenty amino acids and glutathione). Although models equivalent to those of
mammalian systems have yet to be described for bacteria, there has been progress in modeling
subsystems of the H2O2 response network under H2O2 stress, such as the thioredoxin system
in E. coli [25].

Here, we have generated a kinetic model of H2O2 stress in E. coli whose components are
depicted in Fig 1. The biochemical reaction network is compartmentalized into media and
intracellular spaces, includes spontaneous and enzymatic detoxification of H2O2,

Fig 1. H2O2 biochemical reaction network. A. The kinetic model is separated into three compartments:
gas, media, and intracellular. It includes spontaneous reactions (black lines, details in S2 Table) and
enzymatic reactions (blue lines, details in S3 Table). Metabolite abbreviations can be found in S1 Table.
Information regarding enzyme degradation can be found in S2 Table, and enzyme expression is described in
S3 Table. For clarity, •OH reaction products with amino acids and protons are not included in the diagram.

doi:10.1371/journal.pcbi.1004562.g001
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transcriptional regulation and inactivation of detoxification enzymes, and reactions of H2O2

and its degradation intermediates (e.g., •OH) with biomolecules (e.g., pyruvate, glutathione, all
twenty amino acids). Parameters were informed from literature or trained using an iterative
and integrated computational and experimental approach (Fig 2). The design criteria we chose
to use to develop the model stipulated that consistent discrimination between clearance contri-
butions by the major detoxification systems (AHP, HPI, and HPII) needed to be achieved.
Once the design criteria were met, remaining parametric uncertainty was accounted for with
use of a Markov chain Monte Carlo (MCMC) procedure to explore the viable parameter space
and assemble an ensemble of models that performed comparably well with the training data
[26]. The ensemble was then used to quantitatively investigate the importance of carbon avail-
ability and translation to H2O2 detoxification, and its predictions were experimentally
confirmed.

Fig 2. Systematic approach to construct a kinetic model of H2O2 metabolism. Uncertain parameters in each of the ten model structures are optimized
on wild-type clearance data of 10, 25, 100, and 400 μMH2O2, starting from 1,000 random initial parameter sets. Any models within an evidence ratio of 10
(ER�10) are used to calculate cumulative H2O2 clearance by the different detoxification pathways. If the calculated H2O2 distributions between the models
are inconsistent, simulations are used to suggest experiments that differentiate between the disagreeing models, experiments are executed, and the
optimization is performed on all experimental data for the model structures that had at least one parameter set with an ER�10. Once consistent H2O2

distributions are realized, we identify an ensemble of parameter sets that can all describe the data comparably well with an MCMC procedure. We then
assess whether H2O2 distributions are consistent across the entire ensemble. If the calculated H2O2 distributions are consistent, we undertake forward
predictions.

doi:10.1371/journal.pcbi.1004562.g002
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Results

Design criteria
Our aim was to construct a systems-level kinetic model of H2O2 detoxification in E. coli that
could provide consistent predictions of H2O2 distributions among its different detoxification
pathways after exposure to a range of initial H2O2 boluses. To accomplish this goal in the most
efficient way possible, we adopted the systematic approach shown in Fig 2. Briefly, we began
with a minimal number of experiments, wild-type clearance of different initial H2O2 concen-
trations. After optimizing uncertain parameters, we selected models based on their relative like-
lihood, also referred to as their evidence ratio (ER) [27–32], discarding models more than ten
times less likely than the most-likely model in our set (ER�10). If the acceptable models did
not uniformly attribute H2O2 detoxification to the same pathways, we performed simulations
to suggest experiments that could resolve the disagreement. Those experiments were then per-
formed, and data used to arrive at updated parameter estimates. This process was continued
until we arrived at a model or set of models that rendered consistent H2O2 distributions. Since
some parameters may not have been important to H2O2 clearance under the conditions used
here, and therefore, unlikely to be informed by the training procedure, we explored the param-
eter space using a previously developed MCMC procedure [26] to assemble an ensemble of
parameter sets that could all describe the H2O2 clearance data comparably well (ER�10). In
this way, we could ensure that forward predictions were not dependent on ill-defined parame-
ters. We note that this procedure also accounts for cases in which parameter pairings or more
complex relationships rather than absolute values are important by varying all parameters
simultaneously when walking away from known viable points. Also, before proceeding to for-
ward predictions, we confirmed that all the models within the ensemble still satisfied the design
criteria.

Kinetic model of H2O2 metabolism in E. coli
We constructed a compartmentalized reaction network that includes spontaneous and enzy-
matic reactions present in an E. coli culture under H2O2 stress, transcriptional regulation of
AHP and HPI, and degradation/inactivation of the major detoxification enzymes AHP, HPI,
and HPII. Uncertainty exists with regard to the dynamics of enzyme degradation/inactivation
in the presence of H2O2, as well as the possibility of an H2O2 gradient across the membrane.
Specifically, the enzymes could be degraded or inactivated in an H2O2-independent manner,
either with a fixed degradation constant [33, 34], or optimized to account for the varying degra-
dation rates of different proteins [35, 36]. Alternatively, the H2O2 detoxification enzymes could
be poisoned by their own substrate [37–39], following bimolecular [40] or more complex kinet-
ics [37].

In addition to the indeterminacy in degradation/inactivation kinetics, there is evidence sup-
porting [41] and opposing [42] the presence of an H2O2 gradient across the cell membrane.
Models accounting for these various possibilities are presented in Table 1, along with their cor-
responding number of uncertain parameters. The introduction of unknown parameters has the
potential to improve agreement between model simulations and experimental data solely by
increasing the flexibility of the model. For this reason, we calculated the relative likelihood of
models, otherwise known as their evidence ratio (ER) [27–32] based on their respective Akaike
Information Criterion (AIC), which is a commonly used statistical metric that weighs goodness
of fit against model complexity when discriminating between competing models [27, 43–45].
Models with a relative likelihood of ten times less than the best model in the set (ER�10) were
considered acceptable, whereas others were discarded.

A Kinetic Model of H2O2 Detoxification in E. coli
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Experimentally-driven model refinement and parameter estimation
When optimizing parameters simultaneously on clearance of 10, 25, 100, and 400 μM boluses
in wild-type cultures, 35 of the 10,000 models had an ER�10 and were considered viable mod-
els. The windows of simulation results of these 35 models are presented in Fig 3A–3D along
with the experimental clearance data they were trained on. None of these models contained a
gradient; 30 were structure 2 models, and 5 were structure 3. We note that structures that con-
tain a gradient could be favored over those with no gradient under different conditions (e.g.,
training on data from a single H2O2 concentration); however, our goal was to arrive at a model
that could describe a wide range of bolus concentrations, and the gain in simulation accuracy
for gradient models did not justify addition of the extra parameter as determined by the ER for
the experimental conditions considered here. When the H2O2 distributions of the acceptable
models were analyzed, the utility of AHP and the catalases separated into two distinct groups
at all bolus concentrations (Fig 3E–3H). The reaction fluxes through AHP and HPI+HPII can
be found in S2A–S2D Fig, and those also separated into two distinct groups. We found that
these two groups represented predictions made by the two model structures. At all bolus con-
centrations, structure 2 models predicted a greater contribution by AHP than did structure 3
models. Indeterminacy in catalase null mutant simulations (Fig 3I–3L) suggested that experi-
ments on a strain lacking both HPI (katG) and HPII (katE) would resolve this discrepancy.

Simultaneous training of models on wild-type and ΔkatE ΔkatG clearance data was able to
resolve the uncertainty between structures 2 and 3. This training iteration resulted in 965 mod-
els that all had an ER�10 (Fig 4A–4D), and all acceptable models were structure 3, which sug-
gests that bimolecular H2O2-dependent enzyme degradation is an important feature of the
detoxification network. We note that clearance of 400 μMH2O2 by ΔkatE ΔkatG was omitted
because significant cell death was observed (S1H Fig), and the models were not designed to
simulate cell death and possible lysis. All models predicted similar distributions across the
major pathways (Fig 4E–4H), but diverged when we looked more closely at the individual cata-
lase contributions (Fig 4I–4L). Reaction fluxes through the major pathways and individual cat-
alases can be found in S2E–S2H Fig and S3A–S3D Fig, respectively. The different parameter
sets predicted a range of clearance profiles after removal of either catalase (S4 Fig), suggesting
that data obtained from these mutants would resolve the disagreement between models.

Training uncertain model parameters on wild-type, ΔkatE ΔkatG, ΔkatE, and ΔkatG data
resulted in 40 parameters sets from the 1,000 random initializations that were within an ER of
10 (Fig 5A–5D). All of these models agreed regarding how H2O2 distributes across not only the
major pathways (Fig 5E–5H), but also the individual catalases (Fig 5I–5L). Reaction fluxes

Table 1. Model types. Rate equations can be found in S2 and S3 Tables, and a more complete description can be found in the Methods.

Structure AHP deg. HPI deg. HPII deg. Gradient # Params.

1 Independent, fixed Independent, fixed Independent, fixed No 10

2 Independent, optimized Independent, optimized Independent, optimized No 13

3 Bimolecular Bimolecular Bimolecular No 13

4 Independent, optimized Complex Complex No 13

5 Bimolecular Complex Complex No 13

6 Independent, fixed Independent, fixed Independent, fixed Yes 11

7 Independent, optimized Independent, optimized Independent, optimized Yes 14

8 Bimolecular Bimolecular Bimolecular Yes 14

9 Independent, optimized Complex Complex Yes 14

10 Bimolecular Complex Complex Yes 14

doi:10.1371/journal.pcbi.1004562.t001
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Fig 3. Parameter training on wild-type data and analysis of acceptable models. A-D. Parameters for each of the ten different structures were optimized
on wild-type clearance of 10 (A), 25 (B), 100 (C), and 400 (D) μMH2O2. Models were ranked using an AIC-based method (Methods), and the 35 models with
an ER�10 were considered viable. Experimental data (solid points) represents at least three biological replicates, with error bars showing the standard error
of the mean. Windows represent the maximum and minimum of the 35 acceptable models. Solid lines within the window show the most likely model. E-H.
Prediction of the amount of H2O2 cleared by the two major detoxification pathways, AHP (orange) and combined catalase activity (black), after boluses of 10
(E), 25 (F), 100 (G), and 400 (H) μMH2O2. Each line represents the prediction from a single model. I-L. Prediction for H2O2 clearance of 10 (I), 25 (J), 100 (K),
and 400 (L) μMH2O2 after removal of all catalase activity (ΔkatE ΔkatG). Structure 2 (green) and structure 3 (purple) models predict different clearance
dynamics after this perturbation, suggesting that data obtained from this mutant could be used to discriminate between the model structures.

doi:10.1371/journal.pcbi.1004562.g003
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Fig 4. Parameter training on wild-type and ΔkatEΔkatG data and analysis of acceptable models. A-D. Parameters for each of the two remaining
structures (structures 2 and 3) were optimized simultaneously on clearance of 10 (A), 25 (B), 100 (C), and 400 (D) μMH2O2 by wild-type (red) and a ΔkatE
ΔkatGmutant (blue). The clearance of 400 μMH2O2 by ΔkatE ΔkatG was omitted from the training procedure because significant cell death was observed
(S1H Fig). Experimental data (solid points) represents at least three biological replicates, with error bars showing the standard error of the mean. Windows
represent the maximum and minimum of the fits from the 965 acceptable models. Solid lines within the window show the most likely model. E-H. Prediction
for the amount of H2O2 cleared by the two major detoxification pathways AHP (orange) and combined catalase activity (black) after boluses of 10 (E), 25 (F),
100 (G), and 400 (H) μMH2O2. Each line represents the prediction from a single model. I-L. Prediction for the amount of H2O2 cleared by the individual
catalases HPI (pink) and HPII (green) after boluses of 10 (I), 25 (J), 100 (K), and 400 (L) μMH2O2. Each line represents the prediction from a single model.

doi:10.1371/journal.pcbi.1004562.g004
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Fig 5. Model training on wild-type,ΔkatEΔkatG, ΔkatE, and ΔkatG data and analysis of acceptable models. A-D. Parameters for the one remaining
structure were optimized simultaneously on clearance of 10 (A), 25 (B), 100 (C), and 400 (D) μMH2O2 by wild-type (red), ΔkatE ΔkatG (blue), ΔkatE (purple),
and ΔkatG (green) data. The clearance of 400 μMH2O2 by ΔkatE ΔkatG and ΔkatG were omitted from the training procedure because significant cell death
was observed (S1H, S1P Fig). Experimental data (solid points) represents at least three biological replicates, with error bars showing the standard error of
the mean. Windows represent the maximum and minimum of the fits from the 40 acceptable models. Solid lines within the window show the most likely
model. E-H. Prediction for the amount of H2O2 cleared by the two major detoxification pathways AHP (orange) and combined catalase activity (black) after
boluses of 10 (E), 25 (F), 100 (G), and 400 (H) μMH2O2. Each line represents the prediction from a single model. I-L. Prediction for the amount of H2O2
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through the major pathways and individual catalases can be found in S2I–S2L Fig and S3E–
S3H Fig, respectively. The consistent distributions satisfied our design criteria, so we proceeded
with the generation of an ensemble of viable parameter sets with which to make forward
predictions.

Exploration of the viable parameter space
The identification of universal “sloppiness” in computational biological models [46], meaning
many parameters are poorly constrained after fitting on experimental data, led to the develop-
ment of a number of methods designed to identify ensembles of parameter sets that could com-
parably describe the data and be used to assess the robustness of forward predictions [26, 46].
Methods such as “brute force” uniform sampling or Gaussian sampling become impossible
with increasingly complex models, so computational biologists have turned to the use of
Monte Carlo techniques to explore the viable parameter space efficiently (e.g., HYPERSPACE
[26] and SloppyCell [46]). Here, we used a previously developed MCMCmethod [26] to
explore the parameter space, initiating a random walk away from each of the 40 acceptable
parameter sets and keeping 100 viable sets with an ER�10 for each point. This resulted in an
ensemble of 4,000 parameter sets that could all capture our experimental observations, and
allowed us to assess robustness of our predictions to parametric uncertainty. In addition, before
proceeding, we ensured that all models in the ensemble satisfied our design criteria (S5 Fig).

Minimal H2O2 detoxification model
Based on the tight predictions that AHP, HPI, and HPII would dominate clearance (Fig 5), we
sought to determine the minimal reaction network required to capture all of our data. To do
this, we adopted a previously used two-tiered approach that first deletes reactions in a random
order, and then re-optimizes uncertain parameters to determine if adjusted parameters would
allow deletion of additional reactions [33]. Beginning with the best model in our ensemble and
using this method, we determined that 70 out of our 75 reactions could be removed without
increasing the ER beyond a threshold of 10. The essential reactions to the network were the
major detoxification enzymes (AHP, HPI, and HPII) and degradation of AHP and HPI. In the
case of AHP, a drop in active enzyme could indicate degradation, or alternatively a decrease in
available NADH, which is held constant during simulation. On the other hand, H2O2 is the
only substrate of catalase, which suggests that the importance of degradation reflects a decrease
in concentration of functional enzyme.

Parametric sensitivity analysis
In addition to identifying reactions in the network that are dispensable to capturing the H2O2

clearance data presented in Fig 5, we identified those uncertain parameters that influenced the
simulations. Using the optimal parameter set, we individually varied each of the 13 optimized
parameters within their bounds. Changes to the Fenton reaction rate constant and Fe2+ and
Fe3+ initial concentrations never increased the ER to beyond 10. All other uncertain/trained
parameters perturbed simulations to varying degrees, and their impact was quantified and dis-
played in S6 Fig

cleared by the individual catalases HPI (pink) and HPII (green) after boluses of 10 (I), 25 (J), 100 (K), and 400 (L) μMH2O2. Each line represents the
prediction from a single model.

doi:10.1371/journal.pcbi.1004562.g005
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Impact of carbon deprivation on H2O2 detoxification
With the model developed and an ensemble of viable parameter sets identified, we sought to
assess its predictive capabilities on a physiologically-relevant environmental perturbation.
There is growing evidence that microbial killing within macrophages is a combined effect of
the toxic environment and a scarcity of nutrients [47–49]. We therefore chose to investigate
how H2O2 detoxification changes during carbon starvation. In the absence of an exogenous
source of energy and carbon, the abundance of reducing equivalents can fall to limiting levels
[50] and energetic processes such as translation can be hampered [51]. These effects could
impact the stress response network by limiting AHP activity and inhibiting H2O2-dependent
induction of AHP and HPI. To determine if carbon starvation in the media used here leads to
NADH depletion, we directly measured NADH and NAD+ in M9 media cultures with and
without glucose and found that a significant reduction in NADH occurred in carbon-starved
cultures (S7 Fig). To see if carbon starvation depresses NADH to levels that inhibit enzyme
activities, we measured respiration, which is an NADH-driven process, in M9 media in the
presence and absence of glucose and found it to be significantly impaired when glucose was
omitted (S8 Fig). In addition, to see if a lack of carbon reduces NADH to levels that impair
AHP activity, we monitored clearance of 10 μMH2O2 in a strain with AHP as the lone major
detoxification enzyme (ΔkatE ΔkatG), and found that omission of glucose completely inhibited
H2O2 clearance in this strain (S9 Fig). In accordance with these results, model predictions indi-
cated that if NADH was not held constant, AHP would drain it from the system in less than a
second (S10 Fig). The impact of glucose starvation on induction of AHP and HPI expression
was also assessed with the use of GFP reporter plasmids. Omission of glucose completely inhib-
ited H2O2-dependent induction (S11 Fig). Therefore, to simulate the impact of carbon depriva-
tion, NADH concentrations were no longer held constant and protein production was set to
zero.

Ensemble predictions for carbon deprivation (- glucose) were made using the complete
reaction network and are shown in Fig 6A–6D, along with the carbon-replete control (+ glu-
cose). These predictions were experimentally confirmed and the data are presented in Fig 6I–
6L, orange). To quantify how the different elements of glucose deprivation (NADH limitation,
inhibition of translation) contributed to the observed phenotypes, we investigated the individ-
ual effects of NADH depletion or translation inhibition with simulation controls (Fig 6E–6H).
At lower treatment concentrations (10 and 25 μMH2O2), starvation was predicted to slow
detoxification as a result of NADH depletion, whereas inhibition of protein synthesis was pre-
dicted to have a negligible effect. At 100 μMH2O2, glucose-deprived cultures were predicted to
clear H2O2 comparably to glucose-fed cultures, with neither reducing equivalent availability
nor enzyme production substantially hindering detoxification. The impact of starvation at
400 μMH2O2 was predicted to be largely mediated by translation. We note that although selec-
tive inhibition of NADH production and usage was not feasible due to the wide variety of
sources and sinks, targeted inhibition of translation was experimentally tractable with the use
chloramphenicol (CAM) (S11 Fig). Experimental confirmation of clearance by CAM-treated
cultures is shown in Fig 6I–6K. Unfortunately, CAM-treatment led to cell death at 400 μM
H2O2 (S1X Fig), which prevented direct confirmation of the prediction at that concentration.
Interestingly, this cell death suggested that translation of some protein other than AHP or HPI
is important to survival at 400 μMH2O2, because we demonstrated that carbon deprivation
inhibited induction of AHP and HPI at 400 μMH2O2 (S11 Fig), and it is known that carbon
deprivation can have promoter-specific effects [51] and CAM stops synthesis of all proteins.

A Kinetic Model of H2O2 Detoxification in E. coli
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Fig 6. Predictions for clearance during carbon deprivation. A-D. Ensemble predictions for H2O2 clearance of 10 (A), 25 (B), 100 (C), and 400 (D) μM
H2O2 by wild-type in M9 10 mM glucose (red) and M9 lacking glucose (orange). The spontaneous rate of H2O2 degradation differs in media with and without
glucose, and this parameter was optimized using cell-free controls and adjusted to reflect the different spontaneous degradation during simulations. E-H.
Ensemble simulations for H2O2 clearance of 10 (E), 25 (F), 100 (G), and 400 (G) μMH2O2 by wild-type with only NADH depletion (blue) or translation
inhibition (black). Since these were controls for the–glucose predictions, the spontaneous H2O2 degradation rate matched that of media lacking glucose. I-L.
Experimental measurement of clearance of 10 (I), 25 (J), 100 (K), and 400 (L) μMH2O2 by glucose-deprived (orange) and CAM-treated (black) cultures,
shown with their predicted profiles. Experimental data (solid points) represents three biological replicates, with error bars showing the standard error of the
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Discussion
The toxic nature of H2O2 makes it an ideal weapon in inter-species warfare, and it is used as
such by the immune system during infection [2] and even by other bacteria in niche competi-
tions [15]. Bacteria have evolved numerous defense systems, which can differ significantly in
their substrate requirements, reaction mechanisms, and regulation, and the complexity of these
defense networks and the broad reactivity of H2O2 necessitate the use of computational model-
ing for quantitative interpretation and prediction of H2O2 distributions in cells [52]. Due to its
importance as a signaling molecule, models of H2O2 metabolism in mammalian systems have
been constructed, and they have included enzymatic detoxification of H2O2 [22–24], oxidation
of cysteine residues [22], transport of H2O2 across membranes [22–24], and oxidation of tar-
gets involved in signaling [24]. However, beyond their specificity for mammalian systems,
none have accounted for uncertainty in optimized parameters or included synthesis or inacti-
vation of enzymes, side reactions of H2O2, or other reactive oxygen species present in the net-
work. In bacteria, modeling efforts have focused on subsystems affected by H2O2 stress, such as
that of the thioredoxin system in E. coli, which included the oxidation of thioredoxin and the
reduction of oxidized thioredoxin, methionine sulfoxide, protein disulfides, and 3’-phosphoa-
denosine-5’-phosphosulfate [25]. These previous efforts inspired us to construct a quantitative,
systems-level model of H2O2 stress in E. coli that includes media and cellular compartment-
specific species and reactions; H2O2-dependent transcriptional regulation, inactivation, and
activity of H2O2 detoxification enzymes; reductases to reduce oxidized species; O2

−• and •OH
and their related reactions (e.g., oxidation of all twenty amino acids by •OH); and reactions of
H2O2 with other metabolites such as glutathione and the α-keto acid pyruvate. In addition, we
addressed structural uncertainty in the model using an iterative computational and experimen-
tal methodology, and assessed parametric uncertainty using an MCMC procedure, which
enabled the robustness of model predictions to be assessed. Similar ensemble approaches have
become popular methods to account for parametric uncertainty [53–62], and several tech-
niques have been developed to efficiently explore parameter spaces [26, 46].

One power of quantitative computational modeling is its ability to predict emergent systems
behavior [33, 44, 63–65]. For instance, Schaber and colleagues used an ensemble of possible
models describing different hypotheses regarding the mechanism of the high osmolarity glyc-
erol (HOG) pathway in yeast to uncover novel features of the pathway [44]. Here, we leveraged
our model to gain a quantitative understanding of how carbon deprivation, which bacteria
encounter in phagocytes [47–49], affects H2O2 detoxification by E. coli. Accounting for the
NADH limitation and translational inhibition that occurs with carbon source starvation, our
simulations were able to correctly predict H2O2 clearance dynamics. Upon dissection of
simulation results, delayed clearance at lower concentrations was attributed to reduced AHP
activity from NADH depletion, whereas at higher concentrations carbon-starved cultures
resembled carbon-replete cultures because pre-expressed HPI dominated H2O2 detoxification,
suggesting that both NADH availability and induction of AHP and HPI synthesis at H2O2

concentrations> 25μMwere of minor importance. We note that changes in concentrations of
other metabolites, such as ATP, occur in carbon-starved cultures [66], and that they were not
explicitly accounted for here because they did not directly act as a substrate in any of the reac-
tions of the model. Rather we anticipate that some of the metabolite perturbations were implic-
itly accounted for because they contributed to the inhibition of translation and/or depletion of

mean. Results for clearance of 400 μMH2O2 by CAM-treated cultures were omitted based on significant cell death (S1X Fig). In all simulations, windows
represent the maximum and minimum of the predictions from the 4,000 models in the ensemble. Solid lines within the window show the most likely model.

doi:10.1371/journal.pcbi.1004562.g006
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NADH that were included. These data demonstrate that the nutritional status of the environ-
ment can have a major impact on bacterial H2O2 defenses, but the extent of that impact
depends on the quantitative level of H2O2. Beyond carbon deprivation, it would be interesting
to see how other types of starvation (e.g., sulfate, iron) influence H2O2 detoxification, since bac-
teria are subjected to oxidative stress in various scenarios [1, 15, 67], and we expect that depen-
dencies distinct from those of carbon source starvation could be observed if other types of
limitation influence NADH availability and translation differently.

In immune cells, phagocytized bacteria are exposed to ROS with an oxidative “burst” from
NADPH oxidase, which then tapers over time [68–70]. In this work, we examined detoxifica-
tion of a burst of H2O2 with bolus treatments, and note that more complex treatment dynamics
could be handled by the model developed here. For instance, the model could be adjusted for
continuous treatment by adding an H2O2 delivery reaction, which could be achieved experi-
mentally with a fed-batch reactor. Alternatively, H2O2 could be provided through indirect
means, such as with exposure to redox-cycling agents like paraquat [71]; though obtaining
accurate estimates of H2O2 production from such compounds could be a challenge, because
generation would be cell-dependent. Different H2O2 delivery dynamics could have a profound
impact on the kinetic competition for H2O2, and as long as H2O2 influx can be accurately
accounted for the model developed could prove invaluable for interrogating its distribution.

One area of growth for the platform we developed is adaptation of the model to allow for
analysis of lethal H2O2 concentrations. In its current form, the size of the cellular compartment
is fixed and enzymatic reactions do not occur in the media compartment. To model lethal con-
centrations of H2O2, cell lysis has to be accounted for in terms of reduction in the volume and
surface area of the cellular compartment and the addition of certain enzymatic activities to the
media compartment, such as catalase, which can function when released from cells. In addi-
tion, it might be necessary to diversify the cellular compartment if all cells that die do not lyse
but contain compromised translational and/or catabolic activities. Despite this added complex-
ity, the ability to accurately simulate lethal damage, such as that involving DNA and the mem-
brane, could provide insight into H2O2-induced death.

Models akin to the one described here will improve understanding of bacterial defenses
against host immune responses, and possibly suggest targets for novel anti-virulence therapies
[52]. For example, an existing model of nitric oxide (NO•) defenses in E. coli [33] has provided
valuable predictions regarding NO• delivery rates that maximize antimicrobial activity [63].
Additionally, it provided a framework that allowed for a model-guided investigation of the
underlying mechanism of an NO•-sensitizing mutation, ΔclpP, in E. coli [72]. The success of the
NO•model provided inspiration to develop a similar model for H2O2, which is another toxic, dif-
fusible metabolite used by immune cells when fighting infection [1, 2]. We anticipate that the
H2O2 model developed here will yield novel quantitative insight into the kinetic competition for
H2O2 in E. coli and provide a framework for the mechanistic investigation of perturbations that
affect clearance, while illuminating targets to sensitize bacteria to immune attack.

Materials and Methods

Bacterial strains
E. coli K-12 MG1655 was used in all experiments. ΔkatE and ΔkatGmutations were transduced
into MG1655 from their respective strains in the Keio collection [73] by the P1 phage method.
The ΔahpCFmutation was generously provided by Michael Kohanski and transduced into
MG1655 using the P1 phage method. All antibiotic markers were cured out using pCP20 [74].
The known antioxidant pyruvate (25 mM) was included in all LB agar plates to prevent a toxic
build-up of H2O2 [75]. Deletions were PCR checked for proper chromosomal integration with
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a forward primer external to the gene and reverse primer within the kanamycin resistance cas-
sette (kanR) before curing. Internal primers were used to check for gene duplication. In cured
strains, external primers before and after the gene were used to check for proper scar size. All
PCR primers are listed in S4 Table.

Measurement of H2O2 clearance
Overnight cultures were inoculated from −80°C stocks and grown for 20 hours in 1 mL
LB + 30–75 U/mL catalase (bovine liver catalase at 2,000–5,000 units/mg protein: Sigma
Aldrich), then used to inoculate 20 mL M9 10 mM glucose medium + 30–75 U/mL catalase to
an OD600 of 0.01 in 250 mL baffled flasks. Catalase was added to prevent the possibility of
H2O2 accumulation in strains lacking major detoxifying enzymes, and added to wild-type
cultures to maintain consistency across strains. The catalase concentration was chosen based
on the amount required to maintain growth in a mutant lacking all major detoxification
enzymes (ΔkatE ΔkatG ΔahpCF), beyond which increasing the catalase concentration no lon-
ger increased growth rate or terminal cell density in the case of overnights. Cultures were
grown at 37°C with shaking at 250 rpm for 8 h (OD600 0.3–0.6, 0.15 for the slower growing
ΔkatE ΔkatG ΔahpCF). After the 8 hour growth period, 12 mL of culture was removed to a pre-
warmed 15 mL Falcon tube and centrifuged at 37°C and 4,000 rpm for 10 min. 10.8 mL of
spent media was removed, the cell pellet resuspended, and 1 mL transferred to a warm 1.5 mL
microcentrifuge tube. Cells were washed a total of four times to remove all catalase. Washes
consisted of spinning down at 14,000 rpm for 2 min, removing 980 μL of media, and resus-
pending the cell pellet with 980 μL fresh warm media. For samples lacking glucose during chal-
lenge with H2O2, glucose was omitted during the final wash step and in the inoculated flask.
For CAM treatment assays, all wash steps were performed with 100 μg/mL CAM.

Prior to inoculation with washed cells, 20 mL fresh M9 10 mM glucose media in 250 mL
baffled flasks were warmed to 37°C. A bolus of 10, 25, 100, or 400 μMH2O2 was added to the
flasks, and the time 0 point was measured, after which flasks were inoculated to an OD600 of
0.01. At desired time points, 200 μL was removed to a 1.5 mL microcentrifuge tube and centri-
fuged at 15,000 for 3 min. 150 μL of the supernatant was moved to a sterile microcentrifuge
tube and stored at 4°C until H2O2 concentration could be measured. Samples were assayed for
H2O2 within 2 h of harvesting. H2O2 in the supernatant was measured using the Amplex Red
Hydrogen Peroxide/Peroxidase kit (Life Technologies) according to the manufacturer’s
instructions after dilution to below 10 μMH2O2. A standard curve spanning 0 to 10 μMH2O2

was used to calculate H2O2 concentrations. A fresh standard curve was produced for each
Amplex Red assay to account for increasing background fluorescence over the course of the
day due to the sensitivity of Amplex Red to both light and air [76].

To assess whether centrifuging to remove cells was sufficient, we compared values from this
method to sterile filtering (0.22 μm pore size) of samples, as well as centrifuging + filtering, for
the 30 min point in the 400 μMH2O2 clearance assay (S12 Fig). Centrifuging alone was not sig-
nificantly different from filtering (p = 0.45) or centrifuging + filtering (p = 0.40) based on a
two-sample t-test with unequal variance. To determine if the exogenous catalase that was
added to the pre-culture steps affected clearance profiles, we performed identical experiments
for wild-type propagated without catalase in all steps (S13 Fig). The presence of catalase in the
pre-culture did not affect wild-type clearance of H2O2 at any concentration.

Measurement of colony forming units (CFUs)
To determine whether H2O2 treatment resulted in cell death, we quantified CFUs throughout
the clearance assays. After isolating the H2O2-containing supernatant for Amplex Red assays
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as described above, an additional 30 μL supernatant was removed from centrifuged samples
and discarded, to achieve a greater fold-dilution of H2O2 during the first wash step. In the first
wash step, 980 μL of PBS was added and the cell pellet was resuspended. Samples were centri-
fuged again at 15,000 rpm for 3 min, 980 μL of the supernatant was removed, and the cell pellet
was resuspended a final time in 80 μL PBS. Plating was performed using the serial dilution
method, and samples were plated on LB agar containing 25 mM pyruvate to scavenge any
residual H2O2 remaining in the pellet and any endogenously produced H2O2 in scavenging-
deficient strains. Plates were incubated for 16 h at 37°C prior to counting colonies.

Oxygen measurement
MG1655 cultures were grown and washed identically to the H2O2 clearance assay. After the
final wash, the resuspended cells were used to inoculate 10 mL of pre-warmed M9 with or with-
out glucose in a 50 mL Falcon tube containing a sterile magnetic stirring bar, immersed in a
stirred water bath at 37°C, to an OD600 of 0.1. Cells were allowed to consume oxygen for ten
minutes before being treated with 5 mM KCN to halt respiration, which consumes the majority
of O2 in E. coli cell cultures under these conditions [63]. The percent oxygen saturation was
measured at a frequency of one reading per second using the FireStingO2 fiber-optic O2 meter
with the OXROB10-CL2 robust oxygen miniprobe (PyroScience, GmbH). Temperature fluctu-
ations were compensated for using the TDIP15 temperature sensor (PyroScience GmbH) and
the FireSting Logger Software. The equilibrium oxygen concentration was used to convert the
percent saturation to concentration, and was determined by calibrating the probe in ultrapure
Milli-Q water at 37°C, which has an oxygen concentration of 210 μM [77], and transferring the
probe to air-saturated M9 media. The equilibrium concentration of the media matched that of
the ultrapure water.

NAD+/NADHmeasurement
Overnight cultures were inoculated and grown identically to the H2O2 clearance assay, and
used to inoculate 20 mL M9 10 mM glucose medium + 30–75 U/mL catalase to an OD600 of
0.01 in 250 mL baffled flasks. Cultures were grown at 37°C with shaking at 250 rpm to an
OD600 of 0.2 (~6.5 h). Four 1 mL aliquots were transferred from the flask to warm, 1.5 mL
microcentrifuge tubes and centrifuged at 15,000 rpm for 3 min. The media was removed, and
the pellets were resuspended with 1 mL fresh M9 with or without 10 mM glucose and trans-
ferred to warm test tubes. The tubes were then incubated at 37°C with shaking at 250 rpm for
60 min. The time 0− point was taken directly from the flask prior to centrifuging and
resuspension.

NAD+ and NADH were measured using the EnzyChromNAD/NADHAssay Kit (BioAssay
Systems) following the manufacturer’s protocol, except for a brief sonication step. For each
measurement, 400 μL (NAD+) or 800 μL (NADH) of cell culture was transferred from the
flask (time 0) or test tube (60 min) to a 1.5 mL microcentrifuge tube. The tubes were centri-
fuged for 3 min at 15,000 rpm, and 380 μL (NAD+) or 780 μL (NADH) of supernatant was
removed and discarded. The cell pellets were resuspended in 100 μL of either NAD or NADH
extraction buffer and sonicated for 20 s at room temperature at an amplitude of 10 using a
Fisher Scientific Model 50 Sonic Dismembrator. The extracts were heated at 60°C for 5 min,
before adding 20 μL of assay buffer and 100 μL of the opposite extraction buffer. Samples were
then vortexed briefly and centrifuged for 5 min at 14,000 rpm. The supernatants were used for
the NAD/NADH assay following manufacturer’s instructions. An NAD+ standard curve from
0–2 μMwas generated each day and used to convert absorbance to concentration. The stan-
dard curve underwent extraction protocols identical to cell samples, including sonication and
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heating. Since NAD+ and NADH produce identical standard curves, and NADH is more
unstable, only NAD+ was provided in the kit and was used to convert both NAD+ and NADH
absorbance to concentration.

Reporter assays
MG1655 was transformed with pUA66 PahpC-gfp, pUA66 PkatG-gfp, and pUA66 PkatE-gfp,
which were all obtained from a pre-existing library [78]. Overnight cultures were inoculated
from −80°C stocks and grown for 20 h in 1 mL LB + 30–75 U/mL catalase + 30 μg/ml kanamy-
cin for plasmid retention, then used to inoculate 20 mL M9 10 mM glucose medium + 30–75
U/mL catalase + 30 μg/ml kanamycin to an OD600 of 0.01 in 250 mL baffled flasks. Cultures
were grown, washed, and treated with H2O2 identically to the protocol described in the Amplex
Red assay protocol. Washed cells were fixed before inoculation to the H2O2-containing flasks
to provide a time 0− sample for each condition. Final points were sampled and fixed when
~90% of the H2O2 had been cleared by wild-type in 10 mM glucose M9 media: 30 min for the
10 μMH2O2 flask, 40 min for the 25 μMH2O2 flask, 1 h 15 min for the 100 μMH2O2 flask,
and 2 h for the 400 μMH2O2 samples. Fixing involved removing 1 mL culture to a microcentri-
fuge tube and centrifuging at 15,000 rpm for 3 min, removing 980 μL supernatant, and resus-
pending with 480 μL 4% paraformaldehyde (PFA). After 25 min at room temperature, the
samples were again centrifuged at 15,000 rpm for 3 min, 480 μL of the PFA was removed, and
the pellet was resuspended with 980 μL 1X PBS. Samples were stored at 4°C until analysis by
flow cytometry on an LSR II flow cytometer (BD Biosciences, San Jose, CA), where green fluo-
rescence was measured on a per cell basis. Fluorescence was measured using 488 nm excitation
and a 525/20 bandpass filter, and data were acquired using FACSDiVa software (BD Biosci-
ences, San Jose, CA).

Model framework
The modeling framework used in this work largely followed that used by Robinson and Bry-
nildsen [33]. It is composed of a system of ordinary differential equations that are numerically
integrated to provide predicted species concentration over time. We begin with a mole balance
for all species in the model:

dN
dt

¼ S � v ð1Þ

where N is an s x 1 vector representing the total amount of given species in moles, S is the s x r
stoichiometric matrix, and v is an r x 1 vector representing reaction rates in moles per time.
Here, s indicates the number of species in the model, and r indicates the number of reactions in
the model. Since most reaction rates are calculated on the basis of concentration per time, the
rate vector was converted into these units in the following manner.

dN
dt

¼ S � Vrxn � r ð2Þ

where Vrxn is an r x r diagonal matrix representing the volumes of the compartments in which
the reactions are taking place: Vcell for intracellular reactions, Vmedia for reactions taking place
only in the media, and Vtotal for exchange reactions. Due to experiments also being performed
on a concentration basis, N was converted into units of concentration by performing the fol-
lowing operation.

V�1
spec

dN
dt

¼ V�1
spec � S � Vrxn � r ð3Þ
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where Vspec is a diagonal s x smatrix of species compartment volumes: Vcell for intracellular
species, Vmedia for species in the media compartment, and Vtotal for species that freely diffuse
across the cell membrane (e.g., O2, H2O2 in non-gradient models). The left-hand side of the
equation is equivalent to dC/dt when the volume does not vary appreciably over the course of
the experiment. To avoid having a culture-volume-specific model, we transformed the volume
dependencies into volume fractions by multiplying and dividing by Vtotal (Vcell/Vtotal, Vmedia/
Vtotal, Vtotal/Vtotal) and rearranging the equation with the use of the commutative property of
scalar multiplication.

dC
dt

¼ Vtotal

Vtotal

� V�1
spec � S � Vrxn � r ð4Þ

dC
dt

¼ Vtotal � V�1
spec � S � 1

Vtotal

� Vrxn � r ð5Þ

dC
dt

¼ F�1
spec � S � Frxn � r ð6Þ

where Fspec is an s x s diagonal matrix of the volume fractions for species and Frxn is an r x r
diagonal matrix of the volume fractions for reactions. By making this adjustment, we avoid the
need of requiring total culture volume as an input into the model, and simplify the input to
optical density (OD600) that can readily be converted to volume fractions.

Initial species concentrations
Most initial species concentrations were obtained from literature (S1 Table)[21, 25, 79–90].
The equilibrium concentration of oxygen was determined by calibrating a FireStingO2 fiber-
optic O2 meter with the OXROB10-CL2 robust oxygen miniprobe (PyroScience, GmbH) in
ultrapure Milli-Q water at 37°C and transferring it to air-saturated M9 10 mM glucose medium
at 37°C. We calculated the concentration in our media by comparing it to the known value in
deionized water [77], which is 210 μM. The value in our media was equivalent. The initial
H2O2 concentration was set to the initial average value of the data when optimizing parameters
(e.g., 25.89 μM instead of 25 μM for wild-type) to avoid penalizing model fit for experimental
error. When making forward predictions, the concentration was set to the anticipated initial
concentration (e.g., exactly 25 μM).

Initial species that were trained on experimental data included AHP, HPI, HPII, Fe2+, and
Fe3+. While experimental measurements on AHP [21], HPI [82], and HPII [82] are available,
their concentrations vary with environment and growth phase, as shown in our reporter assays
(S11 Fig). AHP, HPI, and HPII are the major H2O2 detoxification systems in E. coli. We there-
fore allowed flexibility in their initial concentrations, constraining them to be within the range
of 0–20 μM. Because individual concentrations of Fe2+ and Fe3+ are unresolved, but experi-
mentally measured to have a combined concentration of 10 μM, we allowed their initial con-
centrations to vary from 0 to 10 μM.

HPI and HPII reaction mechanism
Catalase activity follows a ping-pong mechanism, reacting with one H2O2 to form a reactive
intermediate, followed by reaction with a second H2O2 molecule to return the enzyme to its
original form [91, 92]. Given that the substrate in the first and second reaction is the same, the
rate equation simplifies to a Michaelis-Menten type structure. While inhibition of catalase
activity by H2O2 becomes apparent at high concentrations (e.g., greater than 100 mMH2O2 for
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E. coliHPII [92]), it is assumed negligible at the concentrations used in our experiments, and
Michaelis-Menten kinetics are appropriate. Rate equations and constants can be found in S3
Table (Reactions 69 and 70). While HPI has the ability to utilize other reducing agents at low
H2O2 concentrations, this activity is significantly slower than its catalase activity (about 1% the
kcat of its catalase activity [21]), so the peroxidase activity was assumed to negligibly contribute
to H2O2 detoxification in this study.

AHP reaction mechanism
The AHP reaction cycle begins when the peroxidatic cysteine of AhpC reacts with H2O2 to
form a sulfenic acid, which resolves to form a disulfide bond with another cysteine residue. The
active AhpC is regenerated by its reductase partner AhpF, which uses NADH as an electron
donor [38]. We modeled this cycle using ping-pong reaction kinetics, with H2O2 and NADH
as the substrates, a structure which has been used previously [38]. Kinetic parameters were not
available for E. coli, but a protein BLAST search [93] revealed 98% protein sequence identity
for AhpC and 95% identity for AhpF between E. coliMG1655 and S. Typhi, so available param-
eters for S. Typhi were used [38, 94]. Additional information and rate constants can be found
in S3 Table (Reaction 71).

Expression of detoxification enzymes
In this work, the main experimental variable was the concentration of H2O2, and therefore, we
opted for simplicity and only H2O2-dependent regulation of gene expression was considered.
The expression of catalase HPI and AHP increase in response to H2O2 [17, 95], whereas the
expression of catalase HPII is not dependent on H2O2 [17, 18]. These dependencies were con-
firmed using transcriptional reporters for ahpC, katE, and katG, and measuring fluorescence
on a per cell basis using flow cytometry (S11 Fig). Following previous dynamic models, gene
expression was modeled using a Hill equation with a coefficient of n = 1 [33, 34], except for
HPII which had initial concentration but was not expressed further. In addition, transcription
was assumed to be limiting in the production of active enzyme, as assumed previously [33, 34],
and the bioavailability of ferroheme b, which is an essential cofactor of HPI, was assumed to
not be rate limiting. HPI and AHP are expressed according to Reactions 67 and 68, respec-
tively, in S3 Table. The maximum expression rate and Hill equation constants KAHP-exp,H2O2

and KHPI-exp,H2O2 are informed during parameter optimization. The bounds on the maximum
expression rates are based on the highest and lowest maximum expression rates found in the
work of Kotte and colleagues [34], and have been used previously when optimizing unknown
expression rates [33]. Bounds on KAHP-exp,H2O2 and KHPI-exp,H2O2 were approximated by the
work of Kotte and colleagues [34], which varied from approximately 2 nM to 1 mM. Here, we
allowed variation from 0 to 1 mM. We note that while the parsimonious treatment of H2O2-
dependent expression was sufficient in this work, exploration of new environments could
necessitate a more comprehensive modeling of transcriptional regulation, since expression of
the detoxification enzymes in this work are known to depend on numerous regulators (e.g.,
OxyR, RpoS, FIS, Fur) [96].

Modeling of enzyme degradation
In previous studies, enzymes have typically been modeled as undergoing first order degrada-
tion with a universal constant [33, 34]. However, rates can vary greatly among different pro-
teins [35, 36], and some evidence suggests that H2O2 detoxification enzymes, such as catalase
and alkyl hydroperoxidase, can be poisoned by their own substrate [37–39]. Inactivation of cat-
alase has been described using bimolecular kinetics [40], but it has also been suggested that
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poisoning should be of the same general form as the enzyme’s reaction kinetics [37]. The
AhpC component of alkyl hydroperoxidase is reduced by AhpF after oxidation by H2O2. If
there is not enough NADH present or AhpC reacts with more H2O2 before encountering
AhpF, the cysteine sulfenic acid formed by the first oxidation can be further oxidized to sulfinic
or sulfonic acid, rendering it inactive [38, 97]. Whether AhpC inactivation is significant at the
concentrations used in this work was uncertain [39]. We therefore allowed it to be degraded in
a first order or bimolecular manner. Due to the indeterminacy of how these enzymes are
degraded, we included all of these possible degradation scenarios. Rate equations can be found
in S2 Table. We note that since AHP requires a co-substrate, NADH, and that we assume that
NADH is constant (unless otherwise noted), if AHP inactivation were found to be important it
could reflect degradation of AHP or reduced availability of NADH (Reaction 71).

Parameters or bounds on parameters for enzyme degradation/deactivation rate equations
varied with the method of degradation. For constant degradation with a constrained constant,
we used the "general" protein degradation rate reported by Kotte and colleagues [34]. When
optimized, the constant degradation rate had bounds set by the longest [35] and shortest [36]
protein half-life we found in literature. For both bimolecular and the more complex inactiva-
tion, bounds were based loosely on rate constants found for Aspergillus niger and bovine cata-
lase [37, 40]. Based on the gross difference between the organisms tested in those studies
(fungus and mammal) and our own (bacteria), as well as the orders of magnitude difference
between the Aspergillus niger and bovine catalase rates in both the bimolecular and more com-
plex kinetics studies, these parameters were constrained to two orders of magnitude lower than
the lowest reported value, and two orders of magnitude higher than the highest reported value.

Modeling of H2O2 gradient across the membrane
While H2O2 rapidly diffuses across bacterial membranes at a rate similar to that of water, there
is evidence for and against the existence of a gradient across the membrane [41, 42]. For exam-
ple, an Ahp−Kat+ strain cocultured with Ahp−Kat− in the presence of a low H2O2 concentra-
tion can outcompete its scavenging deficient neighbors and multiply under the stress, whereas
the deficient strain only grows after the catalase proficient strain has cleared the environmental
H2O2 [41]. On the other hand, dilute suspensions of catalase proficient strains are readily killed
by high concentrations of H2O2 similarly to scavenging deficient strains, while high-density
catalase proficient strains can not only survive challenge with H2O2 but also protect deficient
neighbors [42]. There have been strides in the ability to measure H2O2 intracellularly, with the
introduction of genetically-encoded indicators (HyPer) [98] and the ability to use Amplex Red
intracellularly with expression of a mutated ascorbate peroxidase [99]. However, the depen-
dence of HyPer fluorescence on reductase activity, the impact of HyPer on cellular scavenging
capacity [100], and the difficulties associated with converting measurements from either
method to absolute H2O2 concentrations led us to use measurements of external H2O2 and sta-
tistical metrics (AIC) to assess the suitability of modeling the system with or without a gradient.
In one set of models, the intracellular and extracellular H2O2 concentrations were equal. In
the other set, we allowed for a gradient by modeling transport across the membrane as a con-
vective mass transport process, with the effective mass transport coefficient being an additional
parameter for optimization. The lower bound on the effective mass transfer coefficient was set
as the permeability coefficient of H2O2 across E. coli cell membranes in unstirred culture [41],
adjusted for cell area and the cell density for our system. The upper bound was set two orders
of magnitude higher than the permeability, to account for increased mass transfer in our cha-
otic shake flask system.
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Spontaneous degradation of H2O2

The rate of spontaneous degradation of H2O2 into H2O and O2 was determined using the
MATLAB function lsqcurvefit after monitoring H2O2 concentration over time in cell-free con-
trols for each media condition (M9 10 mM glucose with and without CAM and M9 lacking
glucose). Samples were collected at time 0, 20 min, 40 min, and 60 min for 10 and 25 μM
H2O2-containing flasks; time 0, 1 h, 2 h, and 3 h for 100 μMH2O2-containing flasks; and 0 h,
1 h, 2 h, 3 h, and 4 h for 400 μMH2O2-containing flasks. All control data for each media condi-
tion was fit simultaneously (e.g., 10, 25, 100, and 400 μMH2O2 in M9 10 mM glucose) while
accounting for experimental error by weighting points in the sum squared of residuals (SSR)
calculation by the inverse of the variance for that data point [43, 101–103]. The optimized rate
constants were 0.0324 h-1 for M9 10 mM glucose, 0.0331 h-1 for M9 10 mM glucose with
100 μg/mL CAM, and 0 h-1 for M9 lacking glucose. The spontaneous degradation rate was
assumed to be equivalent in the intracellular and media compartments.

Other reactions
Other reactive oxygen species in the reaction network include O2

-• and •OH. The model
includes endogenous production of O2

-• (Reaction 4) and its dismutation to H2O2 (Reactions
3, 74–75), as well as its reactions with other molecules (Reactions 1, 25, 26, 55) and production
by other reactions in the network (Reaction 49). Additionally, the Fenton reaction produces
•OH (Reaction 24), which can react with amino acids (Reactions 5–23) and other compounds
in the network (Reactions 1, 27, 36, 37, 48). The rate constant for the Fenton reaction were var-
iable in literature, so bounds were set as the slowest and fastest reported rates [21].

Other reactions include glutathione oxidation, reduction, and reaction with other molecules
(Reactions 29–32, 42–55), and oxidation of methionine (Reaction 2) and pyruvate (Reaction
57) by H2O2. All spontaneous reactions, rate equations, and rate constant can be found in S2
Table [21, 34–37, 39–41, 81, 85, 88, 91, 92, 104–111]. Enzymatic rate equations and rate con-
stants can be found in S3 Table [38, 91, 92, 94, 111–117], and include methionine sulfoxide
reductase (Reaction 64), thiol peroxidases (Reaction 65–66), thioredoxin reductase (Reaction
72), and glutathione reductase (Reaction 73).

Parameter optimization
Parameters were optimized by minimizing the SSR using the built-in MATLAB function
lsqcurvefit. Because experimental error varied for each time point, we weighted each data
point’s contribution to the SSR by the inverse of the variance of that point [43, 101–103]. The
initial concentration of H2O2 in the model was changed to match the experimental data before
optimizing. Due to the nonlinear nature of the optimization, each model structure was initial-
ized with random parameter sets within the defined bounds a total of 1,000 times. The progres-
sion of minimum SSR found by each of these iterations is shown in S14 Fig. A plateau suggests
that additional iterations would not lead to substantial improvement in the fit. The slowest
converging optimization reached a plateau after 639 optimizations.

The number of parameters optimized varied according to model structure, as presented in
Table 1. Parameters related to HPI and AHP expression (4 parameters total) were optimized in
all structures. The Fenton reaction rate constant varied in literature (1 parameter), and intra-
cellular Fe2+ and Fe3+ concentrations (2 parameters) were unresolved. Additionally, initial con-
centrations of the major detoxifying enzymes (3 parameters) were unknown and can vary with
growth environment and stage of cell growth. Beyond these 10 parameters, all structures that
did not have constant enzyme degradation with a universal degradation constant added 3
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parameters, and including an H2O2 gradient added 1 parameter (a convective mass transfer
coefficient).

Model ranking and selection
The introduction of additional parameters, such as enzyme degradation rate constants and
mass transport coefficients, has the potential to improve fit solely by increasing the flexibility
of the model. To account for the utility of additional parameters, we ranked models based on
their evidence ratios (ER), or likeliness relative to the most likely model in the set. For each
model, we calculated its Akaike Information Criterion corrected for small sample size (AICc)
[43]:

AICc ¼ n � lnðSSR
n

Þ þ 2K þ 2KðK þ 1Þ
n� K � 1

ð7Þ

where n represents the sample size and K is the number of estimable parameters. Here, n is the
number of data points used in the fitting procedure, and K is the number of model parameters
plus 1 because regression estimates SSR and parameter values [43]. We account for unequal
variances within the data by using weighted least squares, where each point is weighted by the
inverse of its variance.

The weight of evidence for a given model in a set ofMmodels is given by the following [43]:

wi ¼
e�Di=2

XM

i¼1

e�Di=2

ð8Þ

where Δi = AICi-min(AIC). With this, an ER can be calculated, which represents the relative
likelihood of a model compared to the best model in the set [27]:

ERi ¼
wbest

wi

ð9Þ

A larger ER indicates a more unlikely model. In this work, models with an ER greater than
10 were discarded, a cutoff that has been used previously to discard models during model selec-
tion [29].

Generation of the ensemble
To account for parametric uncertainty when making predictions, we generated an ensemble of
parameter sets that all predicted the data within an ER�10. We initially attempted to use the
software HYPERSPACE [26], which is a three-step process that provides a uniform sampling
of the viable parameter space. However, the calculation of our cost function was computation-
ally expensive, which lengthened the time required per iteration, and the method had not con-
verged within 100,000 iterations. Therefore, we utilized the pre-existing Markov chain Monte
Carlo function within the HYPERSPACE software, but started it from all 40 viable parameter
sets that met our design criteria. We allowed approximately 200 random steps away from each
viable point, and randomly selected 100 of those parameters sets with an ER�10 from each
random walk. This process generated 4,000 parameter sets that had an ER�10.

Identification of the minimal H2O2 model
We identified the minimal model that was able to capture our data (ER�10) using a previously
developed two tiered approach [33]. In the first tier, reactions were removed from the best
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model in a random order and the ER was calculated. If the deletion of a reaction increased the
ER above its threshold of 10, it was returned to the model and the process continued through
the remaining reactions. This random deletion process was repeated 100 times. In the second
tier, parameters were re-optimized after the deletion of each of the remaining reactions. If the
optimization produced a model that returned below an ER of 10, the parameters were changed
and the process continued.

Supporting Information
S1 Fig. CFUs/mL during clearance assays. A-D. CFUs/mL during wild-type clearance of 10
(A), 25 (B), 100 (C), and 400 (D) μMH2O2 in M9 10 mM glucose media. E-H. CFUs/mL dur-
ing ΔkatE ΔkatG clearance of 10 (E), 25 (F), 100 (G), and 400 (H) μMH2O2 in M9 10 mM glu-
cose media. I-L. CFUs/mL during ΔkatE clearance of 10 (I), 25 (J), 100 (K), and 400 (L) μM
H2O2 in M9 10 mM glucose media.M-P. CFUs/mL during ΔkatG clearance of 10 (M), 25 (N),
100 (O), and 400 (P) μMH2O2 in M9 10 mM glucose media.Q-T. CFUs/mL during wild-type
clearance of 10 (Q), 25 (R), 100 (S), and 400 (T) μMH2O2 in M9 media lacking glucose. U-X.
CFUs/mL during wild-type clearance of 10 (U), 25 (V), 100 (W), and 400 (X) μMH2O2 in M9
10 mM glucose media with 100 μg/mL CAM. Y. CFUs/mL during ΔkatE ΔkatG clearance of
10 μMH2O2 in M9 media lacking glucose. Z. CFUs/mL during ΔkatE ΔkatG clearance of
10 μMH2O2 in M9 10 mM glucose media with 100 μg/mL CAM. AA. CFUs/mL during
ΔahpCF ΔkatE ΔkatG clearance of 10 μMH2O2 in M9 10 mM glucose media. Experiments
were performed with three biological replicates. Error bars show the standard error of the
mean. Asterisks indicate significant (p<0.05) CFU loss from the initial value based on a two-
tailed t-test with unequal variance performed on log-transformed values.
(TIF)

S2 Fig. Reaction flux through AHP and HPI+HPII. Reaction flux through the two major
detoxification systems AHP vs. HPI+HPII are shown as a function of time. A-D. Reaction
fluxes for the 35 acceptable models after fitting on wild-type data (Fig 3). E-H. Reaction fluxes
for the 965 acceptable models after fitting simultaneously on wild-type and ΔkatE ΔkatG data
(Fig 4). I-L. Reaction fluxes for the 40 acceptable models after fitting on wild-type, ΔkatE
ΔkatG, ΔkatE, and ΔkatG data (Fig 5). Each line represents the prediction from a single model.
(TIF)

S3 Fig. Reaction flux through HPI and HPII. Reaction flux through the two catalases HPI
and HPII are shown as a function of time. A-D. Reaction fluxes for the 965 acceptable models
after fitting simultaneously on wild-type and ΔkatE ΔkatG data (Fig 4). E-H. Reaction fluxes
for the 40 acceptable models after fitting on wild-type, ΔkatE ΔkatG, ΔkatE, and ΔkatG data
(Fig 5). Each line represents the prediction from a single model.
(TIF)

S4 Fig. Prediction for H2O2 clearance by ΔkatE and ΔkatG. Predicted clearance of 10 (A), 25
(B), 100 (C), and 400 (D) μMH2O2 by ΔkatE, and 10 (E), 25 (F), 100 (G), and 400 (H) μM
H2O2 by ΔkatG in M9 10 mM glucose media. Each line represents the prediction from one of
the 965 acceptable models trained on wild-type and ΔkatE ΔkatGH2O2 clearance in M9 10
mM glucose media (Fig 4). Wide distributions on clearance dynamics suggest that these single
mutants could be used to discriminate between models.
(TIF)

S5 Fig. Ensemble consistency. To ensure that none of the models in our ensemble violated the
design criteria, we checked the consistency of predictions for H2O2 distribution across the
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detoxification pathways for the 4,000 model set. A-D. Prediction for the amount of H2O2

cleared by the two major detoxification pathways AHP (orange) and combined catalase activity
(black) after boluses of 10 (A), 25 (B), 100 (C), and 400 (D) μMH2O2. Each line represents the
prediction from a single model. I-L. Prediction for the amount of H2O2 cleared by the individ-
ual catalases HPI (pink) and HPII (green) after boluses of 10 (E), 25 (F), 100 (G), and 400 (H)
μMH2O2. Each line represents the prediction from a single model.
(TIF)

S6 Fig. Parameter sensitivity analysis. Beginning from the best parameter set in our ensemble,
parameters were varied between their bounds. Parameters that increased the ER to beyond our
threshold of 10 are shown in the figure. The Fenton reaction rate constant and Fe2+ and Fe3+

initial concentrations did not substantially affect the ER.
(TIF)

S7 Fig. [NAD+] and [NADH] dependence on glucose availability. Exponentially growing
cells were transferred to fresh M9 10 mM glucose or M9 lacking carbon. Time 0- points were
measured before resuspension in fresh media. Data represents the average of four biological
replicates, and error bars show the standard error of the mean. Cells have a significantly lower
NADH level after 60 minutes in carbon-free media (p = 0.035), as determined by a two-tailed
t-test with unequal variance. A higher cell density (OD600 = 0.2) than that used in the H2O2

clearance assays was necessary to exceed the limit of detection of the kit (BioAssay Systems
EnzyChromTM NAD/NADH Assay Kit).
(TIF)

S8 Fig. Dependence of respiration on glucose availability. Exponentially growing cells were
washed, resuspended in media with or without glucose, and used to inoculate M9 media +/-
glucose to an OD600 of 0.1. A higher density than that used for H2O2 clearance assays was nec-
essary to observe a measureable drop in O2. Cells were allowed to consume oxygen for ten min-
utes before being treated with 5 mM KCN to inhibit respiration. The solid lines show the
average of three biological replicates, and windows represent the standard error of the mean.
We found that cultures in M9 media with 10 mM glucose efficiently consumed oxygen via res-
piration, whereas glucose deprived cultures consumed very little.
(TIF)

S9 Fig. AHP activity is removed in glucose-deprived cultures treated with 10 μMH2O2. To
explore whether omitting glucose from the media effectively eliminated AHP activity in a
regime where it dominates (10 μMH2O2), we compared H2O2 clearance in ΔkatE ΔkatG in M9
minimal media with glucose (blue), without glucose (orange), and with glucose and 100 μg/mL
CAM (black) to ΔkatE ΔkatG ΔahpCF (red) and cell-free controls (green). Removal of the two
other major detoxification systems leaves AHP, which requires one NADH for every reaction
cycle, as the only major detoxification system. When glucose is omitted from the media, H2O2

clearance is eliminated, as evidenced by ΔkatE ΔkatG in M9 minimal media without glucose
never differing significantly from ΔahpCF ΔkatE ΔkatG or a cell-free control based on a two-
tailed t-test with unequal variance. These results were not due solely to inhibition of transla-
tion, another effect of glucose starvation (S11 Fig), based on clearance abilities of CAM-treated,
ΔkatE ΔkatG cultures.
(TIF)

S10 Fig. Predicted NADH concentration when its levels are not maintained. Under condi-
tions of glucose deprivation, AHP drains NADH in less than a second after exposure to 10 (A),
25 (B), 100 (C), and 400 (D) μMH2O2. Windows show the maximum and minimum
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predictions of the 4,000 models in the ensemble. The solid line indicates the prediction made
by the most likely model. Note that the x-axis here is in seconds, not hours. We note that in all
other simulations, the NADH concentration was held constant (S1 Table).
(TIF)

S11 Fig. Synthesis of GFP under control of katE, katG, and ahpC promoters.Wild-type cells
transformed with pUA66 PkatE-gfp (A-D), pUA66 PkatG-gfp (F-I), or pUA66 PahpC-gfp (J-M)
were exposed to H2O2 in M9 10 mM glucose (blue), M9 lacking glucose (red), or M9 10 mM
glucose + 100 μg/mL CAM (green) media. We confirmed that the lack of expression of GFP
from pUA66 PkatE-gfp after exposure to H2O2 was not due to a defect in the vector by including
a 16 h overnight control in M9 10 mM glucose. As expected, katE expression increases in sta-
tionary phase as determined by an increase in fluorescence after 16 h (0 μMH2O2 panel). In all
cases, an empty vector control (black) was included to account for auto-fluorescence. Two bio-
logical replicates were analyzed on different days for each experiment. A representative repli-
cate is shown here. Solid lines indicate time 0- distributions. For the PkatE-gfp control, the time
0- line in the 0 μMH2O2 panel represents inoculation after an 8 h growth period to mid-expo-
nential phase. Dashed lines show distributions after ~90% of the H2O2 has been cleared by
wild-type in M9 10 mM glucose (see Methods), or 16 h for the PkatE-gfp control (0 μMH2O2

panel).
(TIF)

S12 Fig. H2O2 measurement after centrifuging and/or sterile filtering to remove cells. For
the 30 min point in the 400 μMH2O2 clearance assay, three aliquots of sample were removed.
One was centrifuged for 3 min at 15,000 rpm and the supernatant was removed identically to
our protocol, one was left on the bench during the 3 min spin and then sterile filtered with an
0.22 μM syringe filter, and one was centrifuged and then sterile filtered. The experiment was
performed in triplicate. Error bars show the standard error of the mean. Measurements from
centrifuging alone were not significantly different from filtering (p = 0.45) or centrifuging + fil-
tering (p = 0.40) based on a two-sample t-test with unequal variance.
(TIF)

S13 Fig. Clearance assays without exogenous catalase. To determine whether exogenous cat-
alase in the overnight or flask growth prior to the assay affected H2O2 clearance profiles for
wild-type E. coli, we performed clearance assays in M9 media with 10 mM glucose after omit-
ting the catalase in all pre-processing steps. A-D.H2O2 concentration did not differ signifi-
cantly at any time point. E-H. CFU loss was not observed under either condition.
(TIF)

S14 Fig. Minimum sum of squared residuals (SSR) with increasing optimizations per-
formed. Each parameter set optimization was randomly initialized 1,000 times. Presented here
is the minimum SSR that had been found at each of the 1,000 iterations (model index) for the
following optimizations performed: model structure 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), 6 (F), 7
(G), 8 (H), 9 (I), 10 (J) trained on wild-type data; model structure 2 (K) and 3 (L) trained on
wild-type and ΔkatE ΔkatG data; model structure 3 (M) on wild-type, ΔkatE ΔkatG, ΔkatE,
and ΔkatG data. This data suggested that more than 1,000 initializations would provide very lit-
tle return for additional computational time invested.
(TIF)

S1 Table. Model species. All metabolites and enzymes are listed with their initial concentra-
tions, references, and relevant notes. Bounds are listed for uncertain parameters.
(XLSX)
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S2 Table. Spontaneous reactions. All spontaneous reactions are provided with their rate con-
stants, references, and relevant notes. Bounds are listed for uncertain parameters.
(DOCX)

S3 Table. Enzymatic reactions. All enzymatic reactions are provided with their rate equations,
constants, and references. Bounds are listed for uncertain parameters, which are indicated by
an asterisk.
(DOCX)

S4 Table. Primer sequences.
(DOCX)
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