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Abstract: Recent literature indicates that apathy is associated with poor cognitive and functional
outcomes in older adults, including motoric cognitive risk syndrome (MCR), a predementia syndrome.
However, the underlying biological pathway is unknown. The objectives of this study were to
(1) examine the cross-sectional associations between inflammatory cytokines (Interleukin 6 (IL-6)
and C-Reactive Protein (CRP)) and apathy and (2) explore the direct and indirect relationships of
apathy and motoric cognitive outcomes as it relates to important cognitive risk factors. N = 347 older
adults (≥65 years old) enrolled in the Central Control of Mobility in Aging Study (CCMA). Linear
and logic regression models showed that IL-6, but not CRP was significantly associated with apathy
adjusted for age, gender, and years of education (β = 0.037, 95% CI: 0.002–0.072, p = 0.04). Apathy was
associated with a slower gait velocity (β = −14.45, 95% CI: −24.89–4.01, p = 0.01). Mediation analyses
demonstrated that IL-6 modestly mediates the relationship between apathy and gait velocity, while
apathy mediated the relationships between dysphoria and multimorbidity and gait velocity. Overall,
our findings indicate that apathy may be an early predictor of motoric cognitive decline. Inflammation
plays a modest role, but the underlying biology of apathy warrants further investigation.

Keywords: apathy; depression; inflammation; gait; multimorbidity; motoric cognitive risk syndrome

1. Introduction

Current literature suggests that apathy is a predictor of dementia in older adults with
preexisting neurological conditions such as mild cognitive impairment (MCI), stroke, or
Parkinson’s disease (PD) [1,2]. Additionally, apathy has been associated with incident cog-
nitive decline and dementia in community dwelling older adults [3–5]. Our group has also
found an association between apathy and incident predementia syndromes including: non-
amnestic mild cognitive impairment (MCI) and motoric cognitive risk syndrome (MCR),
characterized by a slow gait and subjective cognitive complaints [6]. As the mechanistic
pathway between apathy and dementia is unknown, clarifying the biological correlates of
apathy will be important to develop novel treatment targets. A preponderance of studies
has established a positive association between proinflammatory cytokines (including C-
Reactive Protein (CRP), Interleukin-1 (IL-1), and Interleukin-6 (IL-6)) and depression, of
which apathy is an important component [7–12]. Growing evidence suggests that apathy
symptoms may mediate the previously described relationship between depression and
cognitive decline [13,14]. Inflammatory stimuli reduce corticostriatal reward connectivity,
ventral striatal neural responses to reward stimuli, dopamine in cerebrospinal fluid, corti-
cal and subcortical gray matter volumes, and the integrity of white matter tracts within
motivation- and reward-related circuits [15–20]. In particular, human studies of healthy
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volunteers acutely administered inflammatory stimuli and patients who received interferon
for treatment demonstrated increased anhedonia and psychomotor slowing [18]. Given the
impact of inflammation on neural reward pathways, we hypothesize that inflammation
may play an important role between apathy and motoric-cognitive decline.

In addition to the association between apathy and cognitive decline, apathy is a
feature of mild behavioral impairment (MBI), which is a concept that operationalizes late
life neuropsychiatry symptoms as a “risk state” for dementia [21]. Thus far, β-amylase [22],
neurofilament light [23], and cortical atrophy [24] have been correlated with MBI. Eurelings
and her colleagues suggested that C-reactive protein levels (CRP) are associated with
apathy in the preDIVA trial with older adults with cardiovascular risk [25]. Recently, deep
white matter lesions mediated the relationship between CRP and apathy in community
dwelling older adults [26]. However, these investigations have been limited to cohorts with
high vascular burden and multimorbidity.

The primary objectives of this study were to (1) examine the correlational associations
between inflammatory cytokines (Interleukin 6 (IL-6) and C-Reactive Protein (CRP)) and
apathy and (2) explore the direct and indirect relationships of apathy and motoric cognitive
outcomes (gait velocity, slow gait, and MCR) as it relates to important cognitive risk
factors including dysphoria and multimorbidity in a healthy community dwelling cohort
of older adults.

2. Materials and Methods
2.1. Study Population

347 out of 538 community dwelling older adults (age 65 and older) without dementia
enrolled between 2013–2017 in the Central Control of Mobility in Aging study (CCMA)
were included in this study. The primary aims of the CCMA cohort study are to determine
the cognitive and neural predictors of mobility in late life. Study recruitment and proce-
dures have been previously described in detail by Holtzer and colleagues [27]. Participants
were recruited by mail and telephone from population lists in Westchester County, NY.
Potential participants were screened for eligibility via a structured telephone interview to
obtain verbal assent, assess medical history and mobility function [28]. Dementia was ruled
out using the AD8 dementia screener [29], and the telephone-based memory impairment
screen (MIS) [27,30–33]. A score > 1 on the AD8 or <5 on the MIS excludes the potential
participant. Other exclusion criteria for enrollment into CCMA included the presence of
dementia (previous physician diagnosis or diagnosed at baseline CCMA case conference),
inability to walk with or without an assistive device, active neurological or psychiatric
disorders severe enough to interfere with study assessments, presence of major visual or
hearing loss, and recent or planned surgical procedures restricting walking. Participants
who passed the telephone interview were enrolled and received comprehensive neuropsy-
chological, psychological, and mobility assessments as well as a structured neurological
examination. CCMA participants were followed longitudinally at yearly intervals. Baseline
characteristics were collected during the clinical assessment, including age, gender, and
years of education. General Health Status (GHS) (the total reported number of chronic
medical conditions including depression, diabetes, hypertension, myocardial infarction,
congestive heart failure, arthritis, stroke, Parkinson’s Disease, chronic obstructive pul-
monary disease, and angina) was queried [34]. Between July 2013 and September 2014,
a subset of participants were cross enrolled in a sub study to evaluate the biological cor-
relates of fall [35]. Written informed consents were obtained at clinic visits according to
study protocols and approved by the Albert Einstein College of Medicine Institutional
Review Board.

2.2. Measures

Apathy. Currently there is no well-established gold standard instrument for assessing
apathy [36]. Most studies have assessed apathy using subscales of depression assessment
tools. Data reduction studies have consistently demonstrated an apathy-withdrawal as a
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distinct domain of the 30-item long form of the Geriatric Depression Scale (GDS) [37]. In
order to distinguish apathy from dysphoria, we developed a novel measurement model to
quantify apathy by applying confirmatory factor analysis (CFA) of the GDS [38], https://
psychology-tools.com/geriatric-depression-scale/ (accessed on 1 June 2022) in a combined
cohort of memory clinic patients and the CCMA cohort (N = 619). We identified a 2-factor
solution utilizing 15 items of the GDS: dysphoria (eight GDS items: 6, 7, 8, 9, 10, 16, 17, and
25; Cronbach’s α = 0.75) and apathy (seven GDS items: 2, 4, 12, 19, 20, 21, and 28; Cronbach’s
α = 0.63). Using the resultant measurement model, we computed scale scores for the pooled
sample using the mean of the items in each factor. The dysphoria scale score was used as a
covariate in the analysis.

Motoric cognitive outcomes. Gait velocity was assessed using the GAITRite system
(CIR Systems, Havertown, PA, USA), a computerized walkway (dimensions
180 × 35.5 × 0.25 inches) with pressure sensors [39]. Participants are asked to walk
on the mat at their “normal pace” for two trials without any attached monitoring devices.
The GAITRite software automatically computes gait parameters, which includes gait ve-
locity, based on footfall. Slow gait is a categorical variable that identifies participants with
a measured gait velocity 1 SD below age and sex adjusted means with a prevalence of
15.1% [40]. MCR was operationalized similar to MCI and is defined as presence of cognitive
complaints and slow gait in participants without dementia or mobility disability (inability
to ambulate even with assistance or walking aids) [41].

Inflammatory Markers. While inflammation has been significantly associated with
gait impairment in older adults [35], the biological underpinning of apathy and motoric
cognitive outcomes, it is important to find a role for inflammatory pathways. Inflammatory
biomarkers, such as Interleukin-6 (IL-6) and C-Reactive Protein (CRP), are suggested as
predictors of apathy in the literature [25]. Serum levels of IL-6 and CRP were measured
from frozen fasting blood samples. The samples were collected at a single wave between
2013 and 2014 as part of a sub study of the biological underpinnings of falls and are
representative of extended periods [35]. The log of IL-6 and CRP were used in the analyses
due to concerns about the normality.

2.3. Statistical Analysis

Bivariate analyses. We completed bivariate analyses of 347 community dwelling older
adults enrolled in the Central Control of Mobility in Aging study comparing high and
low apathy scale score as compared to the mean apathy scale score. Continuous variables
were evaluated using independent samples t-test and categorical variables were evaluated
by chi-square test and Fisher exact if greater than 20% of cells were less than 5. For this
analysis, GHS was converted to a dichotomous multimorbidity index, in which 2 or more
medical conditions was considered multimorbidity.

Mutivariable regression models. Linear regression models tested the hypothesized
association of log IL-6 and log of CRP with apathy. We assessed the mediating effect of
IL-6 on the association between apathy and MCR and slow gait, using logistic regression
and linear regression models, respectively. Linear associations were reported using β-
coefficients, while logistic associations were reported using odds ratio (OR) with 95%
confidence intervals (CI), adjusting for age, gender, years of education, general health
status and CFA-derived dysphoria scale score. All analyses were conducted in SPSS
Version 28.0 (IBM Corp. Released 2021. IBM SPSS Statistics for Windows, Version 28.0,
Armonk, NY, USA).

3. Results

Bivariate analyses. Table 1 highlights the pertinent baseline characteristics associated
with higher levels of apathy. Older age, fewer years of education and multimorbidity (two
or more chronic medical conditions) were all associated with a higher apathy scale score.
Alternatively, vascular risk factors including hypertension, stroke, myocardial infarction,
and congestive heart failure were not significantly associated with higher levels of apathy,
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in contrast to previous findings [42]. Additionally, behaviors, which increase vascular risk
such as smoking and alcohol use, were not significantly associated with levels of apathy,
and our findings agreed with previous literature [26]. Participants with higher apathy scale
scores had significantly higher dysphoria scale scores and decreased gait velocity. Slow
gait was borderline associated with higher apathy, while the predementia syndromes MCI
and MCR were not. The inflammatory biomarker IL-6 was significantly associated with the
higher levels of apathy while CRP was not.

Table 1. Baseline characteristics of apathy scale score.

Variable Low N = 152 % (N) High N = 193 % (N) Statistic p-Value *

Age, mean (±SD), years 76 (6.52) 77.5 (6.51) T = −2.16 0.03

Female 40.8 (75) 59.2 (109) X2 = 1.74 0.19

Level of Education, mean (±SD), years 15.3 (2.98) 14.3 (2.96) T = 2.90 0.004

Stroke 0.7 (1) 2.6 (5) X2 = 1.84 0.24

Hypertension 56.6 (86) 63.4 (121) X2 = 1.62 0.22

Diabetes 17.1 (26) 19.7 (38) X2 = 0.38 0.58

Myocardial Infarction 2.6 (4) 5.2 (10) X2 = 1.42 0.28

Congestive Heart Failure 2.0 (3) 0 (0) X2 = 3.82 0.09

Multimorbidity Index a 42.8 (65) 61.1 (118) X2 = 11.53 0.001

Alcohol b 36.0 (54) 32.3 (62) X2 = 0.52 0.49

Smoking c 2.0 (3) 4.7 (9) X2 = 1.80 0.24

Dysphoria Scale Score, mean (±SD) 0.04 (.10) 0.11 (0.16) T = −4.68 <0.001

Mild Cognitive Impairment 12.5 (19) 18.7 (36) X2 = 2.40 0.14

Motoric Cognitive Risk 7.2 (11) 10.9 (21) X2 = 1.74 0.27

Slow Gait (1 SD below the mean) 12.5 (19) 20.8 (40) X2 = 4.15 0.045

Gait Velocity, mean (±SD), cm/s 103.8 (21.54) 92.3 (22.76) T = 4.77 <0.001

logIL6, mean (±SD) −1.15 (152) −0.95 T = −2.51 0.01

logCRP, mean (±SD) 0.06 (1.24) 0.10 (1.32) T = −0.29 0.77

* p < 0.05 was considered significant. a Multimorbidity Index was defined as having 2 or more chronic medical
conditions on the general health status scale. b Alcohol use defined as more than 1 alcoholic beverage per week. c

Smoking use defined as currently or not smoking.

Mutivariable regression models. We explored the association between inflamma-
tory markers and apathy in linear regression models, which revealed that the log of IL-6
(0.04 95% CI: 0.01–0.08, p-value = 0.01) but not the log of CRP (−0.02 95% CI: −0.02–0.02,
p-value = 0.80) was significantly associated with apathy, adjusted for age, gender, and years
of education (Table 2). The association between IL-6 and apathy was no longer significant
after adjusting for multimorbidity (general health status variable), a substantial confounder
(25% change in the beta coefficient). Apathy was significantly associated with decreased
gait velocity in the unadjusted model (β = −24.72, 95% CI: −34.88–−14.56, p-value = 0.01)
(Table 3). While IL-6 was a modest confounder (14.5% change in the beta coefficient),
the relationship remained significant after adjusting for IL-6, age, gender, years of educa-
tion, multimorbidity, and dysphoria. Logistic regression models of slow gait and motoric
cognitive risk syndrome were not significant.

Figure 1 shows a path diagram of the direct and indirect effects of variables of interest
on gait velocity. Utilizing the product of the standardized coefficients, IL-6 was a modest
mediator of the relationship between apathy and gait velocity (cm/s), while apathy sub-
stantially mediated the association between multimorbidity (number of comorbidities) and
gait velocity and completely mediated the association between dysphoria and gait velocity.
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Table 2. Linear regression of the association of inflammatory markers (logIL-6 and log hsCRP) and
apathy N = 347.

Independent Variable Log IL-6 Log hsCRP

Model Beta (95% CI) p-Value Beta (95% CI) p-Value *

Model 1 0.05 (0.02–0.08) 0.001 * 0.00 (−0.02–0.02) 0.98

Model 2 0.04 (0.01–0.08) 0.01 * 0–0.02 (−0.02–0.02) 0.80

Model 3 0.03 (−0.004–0.06) 0.09 0–0.00 (−0.02–0.02) 0.72

Model 4 0.03 (−0.001–0.06) 0.06 0.00 (−0.02–0.02) 0.92
* p-value < 0.05. Model 1: unadjusted independent variable. Model 2: Model 1 + age + gender + years of education.
Model 3: Model 2 + general health status (number of comorbidities). Model 4: Model 3 + Dysphoria Scale Score.

Table 3. Linear regression of association between apathy and gait velocity N = 347.

Independent Variable Apathy a

Model Beta (95% CI) p-Value *

Model 1 −24.72 (−34.88–−14.56) <0.001

Model 2 −21.13 (−31.22–−11.04) <0.001

Model 3 −17.83 (−27.26–−8.39) <0.001

Model 4 −16.57 (−26.19–−6.94) 0.00

Model 5 −14.34 (−24.84–−3.84) 0.01
* p-value < 0.05. Model 1: CFA derived apathy scale scores. a Apathy is measured using the confirmatory factor
analysis derived scale score. Model 2: Model 1 + logIL6. Model 3: Model 2 + age + gender + years of education.
Model 4: Model 3 + general health status (number of comorbidities). Model 5: Model 4 + CFA derived dysphoria.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 6 of 11 
 

 

 

Figure 1. Path diagram of direct and indirect variable effects on gait velocity. 

4. Discussion 

In this study, we investigated the direct and indirect associations of apathy with mo-

toric cognitive outcomes as it related to important risk factors including inflammation and 

multimorbidity in a relatively healthy community dwelling cohort. Our bivariate analyses 

of the baseline characteristics revealed that dysphoria, IL-6, multimorbidity, and gait ve-

locity were all significantly associated with higher levels of apathy, which we investigated 

further in regression models. Surprisingly, vascular diseases such as hypertension, myo-

cardial infarction, stroke, and congestive heart failure were not significantly associated 

with levels of apathy, which differs from much of the previous literature on apathy in 

older adults [42]. Despite conducting our study in the CCMA cohort, a healthier cohort, 

multimorbidity was significantly related with the level of apathy [39]. In regression mod-

els, IL-6 but not CRP was associated with apathy. Unexpectedly, apathy was associated 

with gait velocity but not a slow gait or MCR. Utilizing a path diagram, we evaluated the 

mediation between these risk factors, apathy, and gait velocity and found that apathy me-

diated the previously described relationship between dysphoria and gait [43,44] as well 

as multimorbidity and gait [45]. While IL-6 was a modest mediator, it may be one compo-

nent of a more complex relation between multimorbidity, apathy, and gait [46–48]. 

Our prior study of the CCMA cohort found that apathy was associated with incident 

MCR, but this evaluation did not find the same association [6]. Rather at a cross section, 

apathy was associated with a motor outcome (gait velocity), but not outcomes such as 

slow gait (one1 SD below the mean) or MCR, which might be more clinically relevant. 

Taken together, this suggests that apathy is an early risk factor for motoric cognitive de-

cline, which precedes clinically notable motoric outcomes. 

In terms of the neurobiology of apathy and inflammation biomarkers, our findings 

support at least a modest inflammatory correlation to apathy. In our CCMA cohort, we 

found that IL-6 level, but not CRP, was significantly associated with apathy, which differs 

from Eurelings’ previous findings that CRP was associated with apathy in the PreDIVA 

Figure 1. Path diagram of direct and indirect variable effects on gait velocity.



Int. J. Environ. Res. Public Health 2022, 19, 7376 6 of 10

4. Discussion

In this study, we investigated the direct and indirect associations of apathy with mo-
toric cognitive outcomes as it related to important risk factors including inflammation
and multimorbidity in a relatively healthy community dwelling cohort. Our bivariate
analyses of the baseline characteristics revealed that dysphoria, IL-6, multimorbidity, and
gait velocity were all significantly associated with higher levels of apathy, which we inves-
tigated further in regression models. Surprisingly, vascular diseases such as hypertension,
myocardial infarction, stroke, and congestive heart failure were not significantly associated
with levels of apathy, which differs from much of the previous literature on apathy in
older adults [42]. Despite conducting our study in the CCMA cohort, a healthier cohort,
multimorbidity was significantly related with the level of apathy [39]. In regression mod-
els, IL-6 but not CRP was associated with apathy. Unexpectedly, apathy was associated
with gait velocity but not a slow gait or MCR. Utilizing a path diagram, we evaluated
the mediation between these risk factors, apathy, and gait velocity and found that apathy
mediated the previously described relationship between dysphoria and gait [43,44] as
well as multimorbidity and gait [45]. While IL-6 was a modest mediator, it may be one
component of a more complex relation between multimorbidity, apathy, and gait [46–48].

Our prior study of the CCMA cohort found that apathy was associated with incident
MCR, but this evaluation did not find the same association [6]. Rather at a cross section,
apathy was associated with a motor outcome (gait velocity), but not outcomes such as slow
gait (one1 SD below the mean) or MCR, which might be more clinically relevant. Taken
together, this suggests that apathy is an early risk factor for motoric cognitive decline,
which precedes clinically notable motoric outcomes.

In terms of the neurobiology of apathy and inflammation biomarkers, our findings
support at least a modest inflammatory correlation to apathy. In our CCMA cohort, we
found that IL-6 level, but not CRP, was significantly associated with apathy, which differs
from Eurelings’ previous findings that CRP was associated with apathy in the PreDIVA
trial [25]. Yao’s study revealed that the mediating effects of deep white matter lesions in
the relationship between CRP and apathy in community dwelling older adults [26]. The
difference in cytokines (CRP vs. IL-6) could be explained by the health status of our cohort
in contrast to other cohorts with a greater vascular burden. Additionally, it highlights a
more complex biology than can be measured by two inflammatory cytokines.

While our findings elucidated some of the important predictors and mediators of
gait velocity, we had some limitations. Firstly, our analysis was cross sectional, such that
a clear pathway to motoric-cognitive decline cannot be assumed. However, our prior
work demonstrated that apathy was associated with incident MCR and non-amnestic MCI,
suggesting that apathy is an early predictor and mediator in the pathway [6]. Secondly, we
only explored two cytokines (IL-6 and CRP), but there may be other cytokines or biomarkers
that could be mediating the relationship between apathy and decreased gait speed. For
instance, apathy has also been linked with other biomarkers associated with Alzheimer’s
disease, including amyloid [49–51], tau [52–54], and brain-derived neurotrophic factor
(BDNF) [55–57]. Given the mediating effects of apathy on the relationships between
multimorbidity and dysphoria and gait, it is likely there are other biological correlates that
are perpetuating motoric-cognitive decline. Thirdly, as this was a secondary analysis of an
existing database, there was limited demographic information including the alcohol (one
drink per week), which could bias any association between alcohol and apathy to the null.
In addition, many participants were missing their BMI (height and weight), as this data
was gathered at enrollment, but the biological underpinnings of the falls sub study was
conducted at a later wave. Given the fluctuation of weight over time, it was not reasonable
to try to impute the data.

Given our findings and the limitations of this study, our future analyses should include
proteomic assays such as SomaScan in healthy cohorts [58]. This should generate deeper
exploration into the inflammatory pathways but also promote investigation of additional
important biomarkers associated with motor and cognitive function. Additionally, we
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plan to investigate how apathy may promote behaviors such as social isolation and de-
creased motor activity, which may promote inflammatory cytokines [59–64] and decrease
brain-derived neurotrophic factor [65–69]. Another mechanism that warrants further ex-
ploration is the relationship between blood–brain barrier (BBB) disruption, which can
occur in normal aging, and disease states including cerebrovascular disease and metabolic
syndrome [70–72]. The loss of BBB integrity is associated with neuroinflammation and
contributes to neurodegeneration [73–75].

5. Conclusions

Apathy is an important behavioral marker of underlying biological processes and
an important early predictor of motoric-cognitive decline. Furthermore, the growing evi-
dence [5,13,14,76] and our findings suggest that apathy may mediate previously described
associations between depression, multimorbidity, and motoric-cognitive decline. Taken
together, the assessment of apathy in older adults appears to be of clinical importance
to identify high-risk populations early in the pathway of dementia-related pathogenesis.
Apathy also represents a potential target for intervention in order to slow cognitive and
functional decline.
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